Determination of Colchicine in Pharmaceutical Formulations, Traditional Extracts, and Ultrasonication-Based Extracts of Colchicum autumnale Pleniflorum (L.) Using Regular and Greener HPTLC Approaches: A Comparative Evaluation of Validation Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Validation Studies
2.3. Application of Regular and Greener HPTLC Methods in CLH Analysis in Commercial Unani Formulations, Commercial Allopathic Formulations, TE, and UBE of C. autumnale
2.4. Greenness Assessment
3. Materials and Methods
3.1. Materials
3.2. Plant Materials
3.3. Instrumentation and Analytical Conditions
3.4. Calibration Curves and QC Sample for CLH
3.5. Sample Preparation for the Determination of CLH in Commercial Allopathic and Unani Tablets Using TE
3.6. Sample Preparation for the Determination of CLH in Marketed Allopathic and Unani Tablets Using UBE
3.7. TE of CLH from C. autumnale Seeds Obtained from Egypt and India
3.8. UBE of CLH from C. autumnale Seeds Obtained from Egypt and India
3.9. Validation Studies
3.10. Application of Regular and Greener HPTLC Methods in the Determination of CLH in Commercial Unani Formulations, Commercial Allopathic Formulations, TE, and UBE of C. autumnale
3.11. Greenness Estimation
3.12. Statistical Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Nebaihi, H.M.; Le, T.S.; Davies, N.M.; Brocks, D.R. Liquid Chromatography Tandem Mass Spectrometric Analytical Method for Study of Colchicine in Rats Given Low Doses. Processes 2021, 9, 2007. [Google Scholar] [CrossRef]
- Roberts, W.N.; Liang, M.H.; Stern, S.H. Colchicine in acute gout. Reassessment of risks and benefits. JAMA 1987, 257, 1920–1922. [Google Scholar] [CrossRef] [PubMed]
- Molad, Y. Update on colchicine and its mechanism of action. Curr. Rheumatol. Rep. 2002, 4, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.-C.; Chang, S.-J.; Hsieh, M.-C. Colchicine Significantly Reduces Incident Cancer in Gout Male Patients. Medicine 2015, 94, e1570. [Google Scholar] [CrossRef]
- Cerquaglia, C.; Diaco, M.; Nucera, G.; La Regina, M.; Montalto, M.; Manna, R. Pharmacological and clinical basis of treatment of Familial Mediterranean Fever (FMF) with colchicine or analogues: An update. Curr. Drug Targets 2005, 4, 117–124. [Google Scholar] [CrossRef]
- Karatza, E.; Ismailos, G.; Karalis, V. Colchicine for the treatment of COVID-19 patients: Efficacy, safety, and model informed dosage regimens. Xenobiotica 2021, 51, 643–656. [Google Scholar] [CrossRef]
- Madrid-García, A.; Pérez, I.; Colomer, J.I.; León-Mateos, L.; Jover, A.J.; Fernández-Gutiérrez, B.; Abásolo-Alcazar, L.; Rodríguez-Rodríguez, L. Influence of colchicine prescription in COVID-19-related hospital admissions: A survival analysis. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Omar, S.K.; Abdolla, N.S.Y.; Boujwod, F.F.; Rajab, Y.M.M. Spectrophotometric method for the determination of colchicine in pure and pharmaceutical forms (a kinetic study). J. Pure Appl. Sci. 2019, 18, 313–319. [Google Scholar]
- Thompson, R.D. Liquid Chromatographic Determination of Colchicine in Pharmaceuticals: Collaborative Study. J. AOAC Int. 1985, 68, 1051–1055. [Google Scholar] [CrossRef]
- Alali, F.; Tawaha, K.; Qasaymeh, R.M. Determination of colchicine in Colchicum steveni and C. heirosolymitanum (colchicaceae): Comparison between two analytical methods. Phytochem. Anal. 2004, 15, 27–29. [Google Scholar] [CrossRef]
- Samanidou, V.F.; Sarantis, G.A.; Papadoyannis, I.N. Development and Validation of a Rapid HPLC Method for the Direct Determination of Colchicine in Pharmaceuticals and Biological Fluids. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1–13. [Google Scholar] [CrossRef]
- Gowda, B.G. High-performance liquid chromatographic determination of colchicine in pharmaceutical formulations and biological fluids. Int. J. Pharm. Pharm. Sci. 2014, 6, 335–337. [Google Scholar]
- Maslarska, V.; Pencheva, I. Determination of colchicine content in drug by RP-HPLC. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 116–119. [Google Scholar]
- Rica, C.I.; Naessens, T.; Pieters, L.; Apers, S. An HPLC Method for the Quantification of Colchicine and Colchicine Derivatives in Gloriosa superba seeds. Nat. Prod. Commun. 2017, 12, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.A.; Jalalpure, S.S.; Kempwade, A.A.; Peram, M.R. Development and validation of HPLC method to determine colchicine in pharmaceutical formulations and its application for analysis of solid lipid nanoparticles. Curr. Pharm. Anal. 2018, 14, 76–83. [Google Scholar] [CrossRef]
- Chanchula, N.; Fongsuk, C.; Na-Nakorn, P.; Pansuksan, K. Colchicine determination in Gloriosa spp. by HPLC. Sci. Technol. Asia 2021, 26, 120–127. [Google Scholar]
- Klein, A.E.; Davis, P.J. Determination of colchicine and colchiceine in microbial cultures by high-performance liquid chromatography. Anal. Chem. 1980, 52, 2432–2435. [Google Scholar] [CrossRef]
- Gumustas, M.; Polat, D.; Kılıç, C.S.; Akalın, K.; Ozkan, S.A.; Coşkun, M. Comparison of Seeds of Colchicum Speciosum and Gloriosa Superba in Respect to Colchicine and Colchicoside Contents by RP-LC. Nat. Prod. Commun. 2016, 11, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Khodadoust, S.; Sadeghi, H.; Pebdani, A.A.; Mohammadi, J.; Salehi, A. Optimization of ultrasound-assisted extraction of colchicine compound from Colchicum haussknechtii by using response surface methodology. J. Saudi Soc. Agric. Sci. 2017, 16, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, P.; Bermejo, A.; Tabernero, M.; López-Rivadulla, M.; Cruz, A. Determination of colchicine in biological fluids by reverse-phase HPLC. Variation of colchicine levels in rats. Forensic Sci. Int. 1993, 59, 15–18. [Google Scholar] [CrossRef]
- Chen, Q.H.; Hou, S.; Gan, L.C.; Li, Y.B. Determination of colchicine in mouse plasma by high performance liquid-chromatographic method with UV detection and its application to pharmacokinetic studies. J. Pharm. Soc. Jpn. 2007, 127, 1485–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamscher, G.; Priess, B.; Nau, A.H.; Panariti, E. Determination of Colchicine Residues in Sheep Serum and Milk Using High-Performance Liquid Chromatography Combined with Electrospray Ionization Ion Trap Tandem Mass Spectrometry. Anal. Chem. 2005, 77, 2421–2425. [Google Scholar] [CrossRef]
- Abe, E.; Lemaire-Hurtel, A.-S.; Duverneuil, C.; Etting, I.; Guillot, E.; de Mazancourt, P.; Alvarez, J.-C. A Novel LC-ESI-MS-MS Method for Sensitive Quantification of Colchicine in Human Plasma: Application to Two Case Reports. J. Anal. Toxicol. 2006, 30, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgogne, E.; Soichot, M.; Latour, C.; Laprévote, O. Rugged and accurate quantitation of colchicine in human plasma to support colchicine poisoning monitoring by using turbulent-flow LC–MS/MS analysis. Bioanalysis 2013, 5, 2889–2896. [Google Scholar] [CrossRef] [PubMed]
- Petruczynik, A.; Waksmundzka-Hajnos, M.; Hajnos, M.L. The effect of chromatographic conditions on the separation of selected alkaloids in RP-HPTLC. J. Chromatogr. Sci. 2005, 43, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Toniolo, C.; Nicoletti, M.; Maggi, F.; Venditti, A. HPTLC determination of chemical composition variability in raw materials used in botanicals. Nat. Prod. Res. 2014, 28, 119–126. [Google Scholar] [CrossRef]
- Misra, A.; Srivastava, S.; Shukla, P.K.; Kumar, M.; Khalid, M.; Kushwaha, P.; Agrawal, P.K. Variability in alkaloid and phenolic content vis-a-vis antigout potential among the natural population of Gloriosa superba (L.) collected from central India. Nat. Prod. Res. 2021, 35, 2444–2448. [Google Scholar] [CrossRef]
- Mirakor, V.; Vaidya, V.; Menon, S.; Champanerker, P.; Laud, A. HPTLC method for determination of colchicine in a pharmaceutical formulation. J. Planar Chromatogr. 2008, 21, 187–189. [Google Scholar] [CrossRef]
- Gowda, B.G. High performance thin layer chromatographic determination of colchicine in pharmaceutical preparations and biological fluids. Int. J. Pharm. Pharm. Sci. 2013, 4, 2737–2741. [Google Scholar]
- Hadad, G.M.; Badr, J.M.; El-Nahriry, K.; Hassanean, H.A. Validated HPLC and HPTLC Methods for Simultaneous Determination of Colchicine and Khellin in Pharmaceutical Formulations. J. Chromatogr. Sci. 2012, 51, 258–265. [Google Scholar] [CrossRef]
- Rahmawati, S.I.; Susilowati, A.; Yunus, A.; Widyastuti, Y. Determination colchicine content in aquadest-extracted Gloriosa sperba seed from Sukoharjo and Gunung Kidul. IOP Conf. Ser. Earth Env. Sci. 2018, 142, E012053. [Google Scholar] [CrossRef]
- Rathod, D.; Panigrahi, J.; Patel, I. Colchicine (a high-priced alkaloid) accumulation and HPTLC quantification in different stages of in vitro developed tuber of Gloriosa sperba L. Fut. J. Pharm. Sci. 2021, 7, E177. [Google Scholar] [CrossRef]
- Ahmad, S.; Fahim, M.; Singh, M.; Kamal, Y.; Mukhtar, H.M. A high performance thin layer chromatographic method for the estimation of colchicine in different formulations. J. Pharm. Bioallied Sci. 2015, 7, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Qadir, A.; Khan, M.A.; Al-Otaibi, F.O.; Khan, S.; Abdin, M.Z. A Simple Validated HPTLC Method for Simultaneous Analysis of Colchicine and Gallic Acid in Polyherbal Formulation: Habb-E-Irqun-Nisha. Food Anal. Methods 2017, 10, 2934–2942. [Google Scholar] [CrossRef]
- Pandey, D.K.; Kaur, P.; Kumar, V.; Banik, R.M.; Malik, T.; Dey, A. Screening the elite chemotypes of Gloriosa superba L. in India for the production of anticancer colchicine: Simultaneous microwave-assisted extraction and HPTLC studies. BMC Plant Biol. 2021, 21, E77. [Google Scholar] [CrossRef] [PubMed]
- Bodoki, E.; Săndulescu, R.; Roman, L. Method validation in quantitative electrochemical analysis of colchicine using glassy carbon electrode. Open Chem. 2007, 5, 766–778. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, J.; Liu, J.; Li, K.; Li, Y.; Yang, L.; Ye, B. Sensitive determination of colchicine at carbon paste electrode doped with multiwall carbon nanotubes. Anal. Methods 2013, 5, 1830–1836. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Zherdev, A.; Formanovsky, A.A.; Abuknesha, R.A.; Eremin, S.A.; Dzantiev, B.B. Fluorescence polarization immunoassay of colchicine. J. Pharm. Biomed. Anal. 2018, 159, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Moreira, D.A.R.; de Oliveira, F.M.; Pimentel, D.M.; Guedes, T.J.; Luz, R.C.S.; Damos, F.S.; Pereira, A.C.; da Silva, R.A.B.; dos Santos, T.P. Determination of colchicine in pharmaceutical formulations and urine by multiple-pulse amperometric detection in an FIA system using born-doped diamond electrode. J. Braz. Chem. Soc. 2018, 29, 1796–1802. [Google Scholar]
- Bodoki, E.; Iacob, B.C.; Oprean, R. Capillary Electromigration Techniques for the Quantitative Analysis of Colchicine. Croat. Chem. Acta 2011, 84, 383–391. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously self-administered madness drops (Tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, 105582. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain. Chem. Pharm. 2021, 21, 100413. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, 105960. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–text and Methodology; International Conference on Harmonization (ICH): Geneva, Switzerland, 2005. [Google Scholar]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Ali, A.; Alshehri, S.; Ghoneim, M.M.; Alam, P. Determination of thymol in commercial formulations, essential oils, traditional, and ultrasound-based extracts of Thymus vulgaris and Origenum vulgare using a greener HPTLC approach. Molecules 2022, 27, 1164. [Google Scholar] [CrossRef]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, E8178294. [Google Scholar] [CrossRef] [Green Version]
Parameters | Normal-Phase HPTLC | Reversed-Phase HPTLC |
---|---|---|
Linearity range (ng/band) | 100–600 | 25–1200 |
Regression equation | y = 15.039x + 1497.9 | y = 20.837x + 800.37 |
R2 | 0.9935 | 0.9971 |
R | 0.9967 | 0.9985 |
Standard error of slope | 0.38 | 0.40 |
Standard error of intercept | 13.57 | 3.03 |
95% confidence interval of slope | 13.38–16.69 | 19.11–22.55 |
95% confidence interval of intercept | 1439.49–1556.30 | 787.29–813.44 |
LOD ± SD (ng/band) | 34.31 ± 0.62 | 8.41 ± 0.10 |
LOQ ± SD (ng/band) | 102.93 ± 1.86 | 25.23 ± 0.30 |
Parameters | Normal-Phase HPTLC | Reversed-Phase HPTLC |
---|---|---|
Rf | 0.44 ± 0.01 | 0.55 ± 0.02 |
As | 1.07 ± 0.02 | 1.03 ± 0.01 |
N/m | 4464 ± 3.74 | 4754 ± 3.91 |
Conc. (ng/band) | Conc. Found (ng/band) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|
Normal-Phase HPTLC | |||
100 | 95.41 ± 3.02 | 95.41 | 3.16 |
400 | 387.32 ± 11.23 | 96.83 | 2.89 |
600 | 618.54 ± 15.24 | 103.09 | 2.46 |
Reversed-phase HPTLC | |||
50 | 50.12 ± 0.41 | 100.24 | 0.81 |
400 | 403.65 ± 2.85 | 100.91 | 0.70 |
1200 | 1187.32 ± 7.45 | 98.94 | 0.62 |
Conc. (ng/band) | Intraday Precision | Interday Precision | ||||
---|---|---|---|---|---|---|
Conc. Found (ng/band) ± SD | Standard Error | RSD (%) | Conc. Found (ng/band) ± SD | Standard Error | RSD (%) | |
Normal-phase HPTLC | ||||||
100 | 103.21 ± 3.28 | 1.33 | 3.17 | 104.24 ± 3.64 | 1.48 | 3.49 |
400 | 406.85 ± 12.34 | 5.03 | 3.03 | 407.84 ± 13.21 | 5.39 | 3.23 |
600 | 584.32 ± 17.41 | 7.10 | 2.97 | 597.23 ± 18.24 | 7.44 | 3.14 |
Reversed-phase HPTLC | ||||||
50 | 49.87 ± 0.38 | 0.15 | 0.76 | 49.63 ± 0.42 | 0.17 | 0.84 |
400 | 397.56 ± 2.59 | 1.05 | 0.65 | 405.61 ± 2.61 | 1.06 | 0.64 |
1200 | 1212.31 ± 7.52 | 3.07 | 0.62 | 1184.32 ± 7.21 | 2.94 | 0.60 |
Conc. (ng/band) | Mobile Phase Composition (Chloroform-Methanol) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Conc. (ng/band) ± SD | RSD (%) | Rf | ||
Normal-phase HPTLC | ||||||
92:8 | +2.0 | 386.32 ± 13.21 | 3.41 | 0.42 | ||
400 | 90:10 | 90:10 | 0.0 | 396.94 ± 14.32 | 3.61 | 0.44 |
88:12 | −2.0 | 407.51 ± 16.24 | 3.98 | 0.46 | ||
Reversed-phase HPTLC | ||||||
Mobile phase composition (ethanol-water) | ||||||
72:28 | +2.0 | 392.41 ± 2.54 | 0.64 | 0.54 | ||
400 | 70:30 | 70:30 | 0.0 | 402.12 ± 2.67 | 0.66 | 0.55 |
68:32 | −2.0 | 406.32 ± 2.76 | 0.67 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqarni, M.H.; Shakeel, F.; Aljarba, T.M.; Abdel-Kader, M.S.; Zaatout, H.H.; Alshehri, S.; Alam, P. Determination of Colchicine in Pharmaceutical Formulations, Traditional Extracts, and Ultrasonication-Based Extracts of Colchicum autumnale Pleniflorum (L.) Using Regular and Greener HPTLC Approaches: A Comparative Evaluation of Validation Parameters. Plants 2022, 11, 1767. https://doi.org/10.3390/plants11131767
Alqarni MH, Shakeel F, Aljarba TM, Abdel-Kader MS, Zaatout HH, Alshehri S, Alam P. Determination of Colchicine in Pharmaceutical Formulations, Traditional Extracts, and Ultrasonication-Based Extracts of Colchicum autumnale Pleniflorum (L.) Using Regular and Greener HPTLC Approaches: A Comparative Evaluation of Validation Parameters. Plants. 2022; 11(13):1767. https://doi.org/10.3390/plants11131767
Chicago/Turabian StyleAlqarni, Mohammed H., Faiyaz Shakeel, Tariq M. Aljarba, Maged S. Abdel-Kader, Hala H. Zaatout, Sultan Alshehri, and Prawez Alam. 2022. "Determination of Colchicine in Pharmaceutical Formulations, Traditional Extracts, and Ultrasonication-Based Extracts of Colchicum autumnale Pleniflorum (L.) Using Regular and Greener HPTLC Approaches: A Comparative Evaluation of Validation Parameters" Plants 11, no. 13: 1767. https://doi.org/10.3390/plants11131767
APA StyleAlqarni, M. H., Shakeel, F., Aljarba, T. M., Abdel-Kader, M. S., Zaatout, H. H., Alshehri, S., & Alam, P. (2022). Determination of Colchicine in Pharmaceutical Formulations, Traditional Extracts, and Ultrasonication-Based Extracts of Colchicum autumnale Pleniflorum (L.) Using Regular and Greener HPTLC Approaches: A Comparative Evaluation of Validation Parameters. Plants, 11(13), 1767. https://doi.org/10.3390/plants11131767