Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Short Daily UV Treatment of the Phyllosphere on the Leaf and Root Metabolism of Tomato Plants
2.2. Outputs of the Volcano Analysis on the Metabolome
2.3. Effects of Short Daily UV Treatment on the Phenolic Profile of Tomato Leaves and Roots
2.4. Fold-Change Analysis on the Comprehensive Dataset of Leaves and Roots Phenolic Compounds
2.5. Outputs of the Volcano Analysis on the Phenolic Profile
2.6. Effects of Short UV Treatment on the Gene Expression of Tomato Leaves and Roots
2.6.1. Differences in the Gene Expression of UVR8 Pathway-Related Genes
2.6.2. Differences in the Gene Expression of Some Phenylpropanoid Biosynthetic Genes
3. Materials and Methods
3.1. Plant Cultivation and UV Treatment
3.2. Extraction and UHPLC-ESI-QTOF-MS Analysis of Leaves and Roots Metabolites
3.3. RNA Extraction and qRT-PCR Analysis
3.4. Data Elaboration and Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, G.I. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant Biol. 2009, 60, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Hideg, É.; Jansen, M.A.; Strid, Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Ulm, R.; Baumann, A.; Oravecz, A.; Máté, Z.; Ádám, É.; Oakeley, E.J.; Schäfer, E.; Nagy, F. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 1397–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.A.; Jenkins, G.I. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 2008, 146, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Kusano, M.; Tohge, T.; Fukushima, A.; Kobayashi, M.; Hayashi, N.; Otsuki, H.; Kondou, Y.; Goto, H.; Kawashima, M.; Matsuda, F.; et al. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 2011, 67, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Rizzini, L.; Favory, J.J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Kaiserli, E.; Jenkins, G.I. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B–specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 2007, 19, 2662–2673. [Google Scholar] [CrossRef] [Green Version]
- Favory, J.J.; Stec, A.; Gruber, H.; Rizzini, L.; Oravecz, A.; Funk, M.; Albert, A.; Cloix, C.; Jenkins, G.I.; Oakeley, E.J.; et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009, 28, 591–601. [Google Scholar] [CrossRef]
- Kaspar, S.; Matros, A.; Mock, H.P. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV−B Radiation of barley (Hordeum vulgare L.) seedlings. J. Proteome Res. 2010, 9, 2402–2411. [Google Scholar] [CrossRef] [PubMed]
- Burchard, P.; Bilger, W.; Weissenböck, G. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2000, 23, 1373–1380. [Google Scholar] [CrossRef]
- Kalbin, G.; Ohlsson, A.B.; Berglund, T.; Rydström, J.; Strid, A. Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur. J. Biochem. 1997, 249, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gregan, S.; Winefield, C.; Jordan, B. From UVR 8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Env. 2015, 38, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef]
- Tong, H.; Leasure, C.D.; Hou, X.; Yuen, G.; Briggs, W.; He, Z.H. Role of root UV-B sensing in Arabidopsis early seedling development. Proc. Natl. Acad. Sci. USA 2008, 105, 21039–21044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhaelewyn, L.; Bernula, P.; Van Der Straeten, D.; Vandenbussche, F.; Viczián, A. UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues. Photochem. Photobiol. Sci. 2019, 18, 1030–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, T.M.; Klem, K.; Urban, O.; Jansen, M.A. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ. 2015, 38, 856–866. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, P.; Wang, R.; Sun, L.; Wang, W.; Zhou, H.; Xu, J. UV-B radiation induces root bending through the flavonoid-mediated auxin pathway in Arabidopsis. Front. Plant Sci. 2018, 9, 618. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Hauser, M.T.; Miras-Moreno, B.; Rocchetti, G.; Lucini, L.; Stride, Å.; Castagna, A. The outer influences the inner: Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin. Food Chem. 2021, 338, 127782. [Google Scholar] [CrossRef]
- Santin, M.; Lucini, L.; Castagna, A.; Rocchetti, G.; Hauser, M.T.; Ranieri, A. Comparative “phenol-omics” and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments. Plant Physiol. Biochem. 2019, 135, 511–519. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Wang, H.Z.; Wu, K.X.; Guo, X.R.; Mu, L.Q.; Tang, Z.H. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: An integrated metabolomics strategy. Environ. Exp. Bot. 2020, 176, 104094. [Google Scholar] [CrossRef]
- Kaling, M.; Kanawati, B.; Ghirardo, A.; Albert, A.; Winkler, J.B.; Heller, W.; Barta, C.; Loreto, F.; Schmitt-Kopplin, P.; Schnitzler, J.P. UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. Plant Cell Environ. 2015, 38, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Tossi, V.E.; Regalado, J.J.; Iannicelli, J.; Laino, L.E.; Burrieza, H.P.; Escandón, A.S.; Pitta-Álvarez, S.I. Beyond Arabidopsis: Differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yao, Q.; Gao, X.; Jiang, C.; Harberd, N.P.; Fu, X. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 2016, 26, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Ha, J.H.; Park, C.M. Underground roots monitor aboveground environment by sensing stem-piped light. Commun. Integr. Biol. 2016, 9, e1261769. [Google Scholar] [CrossRef]
- Conconi, A.; Miquel, M.; Browse, J.A.; Ryan, C.A. Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 1996, 111, 797–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Wang, X.; Gao, C.; Chen, M.; Guan, Q.; Tian, J.; Komatsu, S. Proteomic and metabolomic analyses of leaf from Clematis terniflora DC. exposed to high-Level ultraviolet-B irradiation with dark treatment. J. Proteome Res. 2016, 15, 2643–2657. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Venâncio, A. The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins 2022, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Mannucci, A.; Mariotti, L.; Castagna, A.; Santin, M.; Trivellini, A.; Reyes, T.H.; Mensuali-Sodi, A.; Ranieri, A.; Quartacci, M.F. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation. Plant Physiol. Biochem. 2020, 148, 291–301. [Google Scholar] [CrossRef]
- Chauhan, N.P.; Fatma, T.; Mishra, R.K. Protection of wheat chloroplasts from lipid peroxidation and loss of photosynthetic pigments by quercetin under strong illumination. J. Plant Physiol. 1992, 140, 409–413. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Liu, Y.; Cao, B. Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol. Biochem. 2013, 73, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tuo, C.; Lizhe, A.; Huyuan, F.; Jinghong, Y.; Xunling, W. The effect of UV-B radiation on membrane lipid peroxidation and mechanisms in broad bean leaves. Acta Ecol. Sin. 2001, 21, 579–583. [Google Scholar]
- Liu, M.; Cao, B.; Zhou, S.; Liu, Y. Responses of the flavonoid pathway to UV-B radiation stress and the correlation with the lipid antioxidant characteristics in the desert plant Caryopteris mongolica. Acta Ecol. Sin. 2012, 32, 150–155. [Google Scholar] [CrossRef]
- Mannucci, A.; Scartazza, A.; Santaniello, A.; Castagna, A.; Santin, M.; Quartacci, M.F.; Ranieri, A. Short daily ultraviolet exposure enhances intrinsic water-use efficiency and delays senescence in Micro-Tom tomato plants. Funct. Plant Biol. 2022. [Google Scholar] [CrossRef]
- Gil, M.; Pontin, M.; Berli, F.; Bottini, R.; Piccoli, P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry 2012, 77, 89–98. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S.B. Alterations in metabolite profile and free radical scavenging activities of Withania somnifera leaf and root extracts under supplemental ultraviolet-B radiation. Acta Physiol. Plant. 2015, 37, 1–12. [Google Scholar] [CrossRef]
- Kadam, D.; Palamthodi, S.; Lele, S.S. LC–ESI-Q-TOF–MS/MS profiling and antioxidant activity of phenolics from L. Sativum seedcake. Food Sci. Technol. 2018, 55, 1154–1163. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Castagna, A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. Plants 2021, 10, 1485. [Google Scholar] [CrossRef]
- Jansen, M.A.; van den Noort, R.E.; Tan, M.A.; Prinsen, E.; Lagrimini, L.M.; Thorneley, R.N. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 2001, 126, 1012–1023. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.; Pan, J.; An, L.; Gan, Y.; Feng, H. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J. Photochem. Photobiol. B: Biol. 2012, 113, 29–35. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Papadopoulos, K.; Papamarkou, M.; Manetas, Y. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 1992, 86, 414–418. [Google Scholar] [CrossRef]
- Coffey, A.; Prinsen, E.; Jansen, M.A.K.; Conway, J. The UVB photoreceptor UVR8 mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under outdoor conditions. Plant Cell Environ. 2017, 40, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chantreau, M.; Sibout, R.; Hawkins, S. Plant cell wall lignification and monolignol metabolism. Front. Plant Sci. 2013, 4, 220. [Google Scholar] [CrossRef] [Green Version]
- Yokawa, K.; Baluška, F. Pectins, ROS homeostasis and UV-B responses in plant roots. Phytochemistry 2015, 112, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Trentin, A.R.; Masi, A.; Ferretti, M. Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation. Physiol. Plant. 2002, 116, 200–205. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, G.; Wang, L.; Zhou, Q.; Huang, X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicol. Environ. Saf. 2019, 171, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.; Peer, W.A.; Taiz, L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 2000, 211, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.E.; Rashotte, A.M.; Murphy, A.S.; Normanly, J.; Tague, B.W.; Peer, W.A.; Taiz, L.; Muday, G.K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001, 126, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.A. Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiol. Plant. 2002, 116, 423–429. [Google Scholar] [CrossRef]
- Peer, W.A.; Blakeslee, J.J.; Yang, H.; Murphy, A.S. Seven things we think we know about auxin transport. Mol. Plant 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Jacobs, M.; Rubery, P.H. Naturally occurring auxin transport regulators. Science 1988, 241, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.S. Root flavonoids. Bot. Rev. 1990, 56, 1–84. [Google Scholar] [CrossRef]
- Agati, G.; Tattini, M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010, 186, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 1–25. [Google Scholar] [CrossRef]
- Escobar-Bravo, R.; Chen, G.; Kim, H.K.; Grosser, K.; van Dam, N.M.; Leiss, K.A.; Klinkhamer, P.G. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J. Exp. Bot. 2019, 70, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plant Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, S.; Zhao, X.; Wu, Q. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS ONE 2018, 13, e0200903. [Google Scholar] [CrossRef]
- Cluis, C.P.; Mouchel, C.F.; Hardtke, C.S. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 2004, 38, 332–347. [Google Scholar] [CrossRef]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 123–152. [Google Scholar] [CrossRef]
- Frohnmeyer, H.; Loyall, L.; Blatt, M.R.; Grabov, A. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J. 1999, 20, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buer, C.S.; Muday, G.K.; Djordjevic, M.A. Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 2007, 145, 478–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, S.D.; Caldwell, M.M. A biological spectral weighting function for ozone depletion research with higher plants. Physiol. Plant. 2003, 117, 137–144. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C.; et al. The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Ramon, A.; M’Hiri, N.; Garcia Lobato, P.; Manach, C.; Knox, K.; Eisner, R.; Wishart, D.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Dreher, K.; Karthikeyan, A.; Chi, A.; Pujar, A.; Caspi, R.; Karp, P.; Kirkup, V.; Latendresse, M.; Lee, C.; et al. Creation of a Genome-Wide Metabolic Pathway Database for Populus trichocarpa Using a New Approach for Reconstruction and Curation of Metabolic Pathways for Plants. Plant Physiol. 2010, 153, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 2047-217X. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ghisoni, S.; Lucini, L.; Angilletta, F.; Rocchetti, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Discrimination of extra-virgin-olive oils from different cultivars and geographical origins by untargeted metabolomics. Food Res. J. 2019, 121, 746–753. [Google Scholar] [CrossRef]
- Caspi, R.; Dreher, K.; Karp, P.D. The Challenge of Constructing, Classifying, and Representing Metabolic Pathways. FEMS Microbiol. Lett. 2013, 345, 85–93. [Google Scholar] [CrossRef] [Green Version]
Compound | VIP Score ± STD | p Value | Log2 FC |
---|---|---|---|
2-oxoadipate | 2.23 ± 0.51 | *** | 14.39 |
2,4-pyridinedicarboxylate/quinolinate | 2.09 ± 0.41 | *** | −0.58 |
rosmarinate | 2.07 ± 0.54 | n.s. | 0.34 |
desmethylxanthohumol | 2.01 ± 0.43 | n.s. | −10.09 |
gibberellin A | 1.98 ± 0.40 | *** | −0.62 |
phlormethylbutanophenone | 1.96 ± 0.54 | n.s. | 4.00 |
O-sinapoylglucarolactone | 1.95 ± 0.89 | *** | −0.64 |
(-)-epipodophyllotoxin/β-peltatin/podophyllotoxin/5′-demethoxy-6-methoxypodophyllotoxin | 1.94 ± 0.55 | *** | 0.52 |
L-α-amino-ε-keto-pimelate | 1.92 ± 0.54 | n.s. | −8.37 |
ubiquinone-2 | 1.92 ± 0.50 | n.s. | 5.06 |
α-difluoromethylarginine | 1.91 ± 0.76 | n.s. | −6.03 |
oxalosuccinate | 1.90 ± 0.86 | *** | 12.36 |
1-O-(4-coumaroyl)-β-D-glucose | 1.88 ± 0.37 | n.s. | 13.85 |
(E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate | 1.87 ± 0.65 | *** | −0.31 |
3-deoxy-D-manno-octulosonate 8-phosphate | 1.86 ± 0.88 | *** | −0.57 |
pelargonidin/genistein/emodin/apigenin | 1.84 ± 0.54 | n.s. | −10.19 |
4,5-seco-dopa | 1.83 ± 0.51 | n.s. | −10.18 |
sn-glycero-3-phosphocholine | 1.83 ± 0.61 | n.s. | 13.75 |
N-methylanthranilate | 1.82 ± 0.36 | *** | −0.67 |
(+)-pisatin/1,7-dihydroxy-6,8-dimethoxy-2-methylanthraquinone/robustaquinone B/dimethylkaempferol/2′,7-dihydroxy-4′,5′-dimethoxyisoflavone/cirsimaritin/ladanein | 1.82 ± 0.83 | *** | 0.51 |
solasodine | 1.80 ± 0.91 | ** | 0.78 |
S-adenosyl-4-methylsulfanyl-2-oxobutanoate | 1.79 ± 0.76 | n.s. | n.s. |
2′-deoxymugineate | 1.78 ± 0.37 | * | −0.26 |
2-hydroxy-4-carboxypyrimidine | 1.75 ± 0.77 | n.s. | −10.39 |
3-C-glucosyl-2,4,4′,6-tetrahydroxydibenzoylmethane/6-C-glucosyl-2-hydroxynaringenin | 1.74 ± 0.70 | n.s. | n.s. |
A pentose | 1.72 ± 0.50 | *** | −0.72 |
acetonedicarboxylate/2-oxoglutarate | 1.72 ± 0.89 | * | −0.46 |
5-methylcytidine/N4-aminocytidine | 1.71 ± 0.81 | n.s. | 14.58 |
2-deoxyglucose 6-phosphate/β-L-fucose 1-phosphate/ | 1.69 ± 0.46 | n.s. | −12.70 |
methylsuccinate/glutarate | 1.69 ± 0.98 | ** | −1.62 |
pyridoxal | 1.69 ± 0.70 | n.s. | −10.19 |
(indol-3-yl)pyruvate | 1.69 ± 0.99 | ** | −0.62 |
tetraketide pyrone | 1.69 ± 0.74 | n.s. | n.s. |
capsidiol/lubimin | 1.68 ± 0.58 | * | 0.29 |
coniferaldehyde | 1.68 ± 0.37 | n.s. | 11.10 |
arabidopate | 1.67 ± 0.64 | n.s. | 0.34 |
dihydropapaverine/(S)-tetrahydrocolumbamine | 1.67 ± 0.64 | ** | −0.67 |
furcatin | 1.66 ± 0.55 | * | −0.40 |
1-[18-hydroxyoeoyl]-2-[18-hydroxy-linoleoyl]-sn-glycerol | 1.66 ± 0.51 | * | −9.12 |
1,2-dioleoylglycerol | 1.66 ± 0.54 | n.s. | −9.53 |
(R)-S-lactoylglutathione | 1.65 ± 0.59 | n.s. | −4.00 |
(3Z,6Z)-nonadienal | 1.65 ± 0.64 | n.s. | −2.09 |
Fe(II)-nicotianamine | 1.64 ± 0.56 | * | −0.77 |
(-)-4’-demethyl-deoxypodophyllotoxin/S-adenosyl-L-homocysteine | 1.64 ± 0.67 | ** | −0.59 |
quercetin-3-rhamnoside-7-rhamnoside/vicenin-2/isovitexin 2″-O-β-D-glucoside/vitexin 2″-O-β-D-glucoside/rhamnosylisoorientin | 1.64 ± 0.59 | * | −0.48 |
A phenylpropanoid | 1.64 ± 0.71 | n.s. | 11.57 |
A phenylpropanoid conjugate | 1.63 ± 0.60 | * | −0.48 |
L-dopachrome | 1.63 ± 0.97 | ** | 1.97 |
protoheme | 1.63 ± 0.62 | ** | −1.21 |
pelargonidin 3-O-β-D-p-coumaroylglucoside | 1.62 ± 0.62 | * | −0.47 |
D-tryptophan | 1.62 ± 0.73 | n.s. | 9.09 |
(4S)-2,3-dehydroleucopelargonidin/1,3,8-trihydroxy-2-methoxyanthraquinone/scutellarein/aureusidin | 1.61 ± 0.71 | * | −0.43 |
cyanidin 3-O-β-D-p-coumaroylglucoside/cyanidin 3-(p-coumaroyl)-glucoside/pelargonidin 3-O-β-D-caffeoylglucoside | 1.60 ± 0.78 | * | −1.30 |
N-vanillate-L-glutamate | 1.60 ± 0.71 | ** | −1.56 |
(2S)-eriodictyol/2-hydroxynaringenin/1-(4-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione/dalbergioidin | 1.60 ± 0.71 | * | −0.43 |
7-(methylsulfanyl)heptyl-desulfoglucosinolate | 1.60 ± 0.71 | ** | 0.49 |
1-aminocyclopropane-1-carboxylate/azetidine-2-carboxylate | 1.60 ± 0.77 | n.s. | n.s. |
(-)-isopiperitenone | 1.60 ± 0.56 | * | 2.08 |
(-)-yatein | 1.60 ± 0.73 | ** | 0.47 |
1,2-di-O-sinapoyl-β-D-glucose/7-O-methylvitexin 2″-O-β-L-rhamnoside | 1.60 ± 0.61 | n.s. | −11.11 |
TRIBOA-β-D-glucoside | 1.59 ± 0.85 | ** | −0.72 |
(4S)-2,3-dehydro-leucocyanidin/2-hydroxyeriodictyol/cis-12-sulfojasmonate | 1.58 ± 0.71 | * | −0.42 |
N-hydroxyhomomethionine | 1.58 ± 1.19 | * | −0.46 |
galactopinitol | 1.58 ± 0.76 | n.s. | −8.41 |
scopolamine | 1.57 ± 0.49 | * | 9.38 |
cyanidin-3-O-rutinoside-5-O-β-D-glucoside | 1.57 ± 1.02 | * | −0.68 |
(22R,23R)-28-homocastasterone | 1.57 ± 0.33 | * | −8.88 |
acenaphthenequinone | 1.56 ± 0.91 | * | −9.78 |
4-coumaroylhexanoylmethane | 1.56 ± 1.13 | n.s. | −10.56 |
2-hydroxyferulate/2-hydroxycaffeate | 1.56 ± 0.52 | n.s. | −9.25 |
hypoxanthine | 1.56 ± 0.35 | n.s. | 4.00 |
7,8-dihydromonapterin | 1.56 ± 0.35 | n.s. | 13.90 |
(R)-prunasin | 1.56 ± 0.35 | n.s. | 23.85 |
9-[6(S),9-diamino-5,6,7,8,9-pentadeoxy-β-D-ribo-nonafuranosyl]-9H-purin-6-amine | 1.55 ± 0.35 | * | 8.78 |
hydroxyechinenone | 1.55 ± 0.34 | n.s. | 21.57 |
luteoforol/(+)-catechin/leucopelargonidin | 1.54 ± 0.90 | n.s. | −9.26 |
(5Z,8Z,11Z,14Z,17Z)-icosapentaenoate | 1.54 ± 0.47 | n.s. | −7.60 |
(E)-2-(1H-indol-3-yl)-1-thioacetohydroximate | 1.54 ± 0.72 | n.s. | n.s. |
solavetivone/artemisinic aldehyde/germacra-1(10),4,11(13)-trien-12-al/(4S)-4-(5,5-dimethylcyclohex-1-en-1-yl)cyclohex-1-ene-1-carbaldehyde/zerumbone | 1.53 ± 0.54 | n.s. | 0.24 |
cysteine | 1.53 ± 0.99 | ** | −1.27 |
olivetolate | 1.53 ± 1.06 | n.s. | n.s. |
17-O-acetylajmaline | 1.53 ± 0.43 | n.s | 0.24 |
phenylmethanesulfenate | 1.53 ± 1.00 | n.s | −0.24 |
3-carboxy-8-(methylsulfanyl)-2-oxooctanoate | 1.53 ± 0.99 | n.s. | −8.76 |
(E)-phenylacetaldehyde oxime/2-phenylacetamide/N-benzylformamide/(Z)-phenylacetaldehyde oxime | 1.52 ± 0.54 | n.s. | −0.35 |
solasodine 3-O-β-D-glucoside | 1.52 ± 0.66 | * | −2.57 |
6,8-dihydroxypurine | 1.51 ± 0.53 | n.s. | 12.65 |
D,L-α-methylphosphinothricin | 1.50 ± 0.49 | n.s. | −4.12 |
5-[[4-methoxy-3-(phenylmethoxy)phenyl]methyl]-2,4-pyrimidinediamine | 1.50 ± 1.04 | * | 0.88 |
cyclo-dopa 5-O-glucoside | 1.50 ± 0.52 | ** | −9.12 |
(E)-8-(methylsulfanyl)octanal oxime | 1.50 ± 0.52 | n.s. | 2.33 |
6-amino-2-oxohexanoate | 1.50 ± 0.58 | n.s. | −9.18 |
adenosine 3′,5′-bisphosphate/GDP group | 1.50 ± 0.53 | n.s. | n.s. |
avenastenone | 1.48 ± 0.76 | n.s. | n.s. |
3-chlorodiaminopimelate | 1.48 ± 0.83 | * | −0.36 |
3-hydroxylubimin | 1.48 ± 0.92 | n.s. | n.s. |
(S)-4-hydroxymandelonitrile/(R)-4-hydroxymandelonitrile/2-formylaminobenzaldehyde/3-hydroxyindolin-2-one/5,6-dihydroxyindole/p-hydroxymandelonitrile/ | 1.48 ± 0.87 | n.s. | −7.84 |
dihydroconiferyl alcohol/iridotrial | 1.48 ± 0.58 | * | 0.75 |
1-18:3-2-18:3-digalactosyldiacylglycerol | 1.47 ± 0.48 | n.s. | −0.17 |
Se-methyl-Se-L-methionine | 1.46 ± 0.70 | n.s. | −6.46 |
(12Z,15Z)-9,10-dihydroxyoctadeca-12,15-dienoate/HPODE/(9Z,12Z)-15,16-dihydroxyoctadeca-9,12-dienoate/(9Z,15Z)-12,13-dihydroxyoctadeca-9,15-dienoate/9,10-12,13-diepoxyoctadecanoate | 1.46 ± 0.53 | n.s. | −3.01 |
benzyl alcohol 6-O-β-D-xylopyranosyl-β-D-glucopyranoside | 1.46 ± 0.60 | n.s. | −3.59 |
4-hydroxy-5-methyl-2-propyl-3(2H)-furanone | 1.46 ± 0.63 | n.s. | 6.86 |
S-adenosyl 3-(methylsulfanyl)propylamine | 1.45 ± 0.22 | n.s. | −5.26 |
gibberellin A25 | 1.45 ± 1.23 | n.s. | n.s. |
2-hydroxysuccinamate/aspartate | 1.45 ± 0.48 | n.s. | n.s. |
1-18:3-2-16:3-monogalactosyldiacylglycerol | 1.44 ± 0.39 | n.s. | −0.17 |
3-hydroxy-9-apo-δ-caroten-9-one | 1.44 ± 0.52 | * | 8.23 |
(S)-2-amino-6-oxohexanoate | 1.43 ± 0.28 | n.s. | −0.10 |
(3S,5R,6R)-3,5-dihydroxy-6,7-didehydro-5,6-dihydro-12′-apo-β-caroten-12′-al | 1.43 ± 0.65 | * | 0.45 |
tricoumaroyl spermidine | 1.43 ± 0.81 | * | 7.62 |
CMP group | 1.43 ± 0.63 | n.s. | −6.18 |
2-C-methyl-D-erythritol-2,4-cyclodiphosphate | 1.43 ± 0.69 | n.s. | n.s. |
D-galactosylononitol | 1.42 ± 1.02 | n.s. | −9.05 |
(indol-3-yl)acetyl-L-glutamine | 1.42 ± 0.58 | * | −2.57 |
2-carboxy-1,4-naphthoquinone | 1.42 ± 1.06 | * | −0.43 |
artemisinin | 1.42 ± 0.56 | n.s. | 12.07 |
enol-oxaloacetate/oxaloacetate | 1.42 ± 0.99 | n.s. | −0.37 |
hemigossypol-6-methyl ether | 1.42 ± 0.78 | n.s. | n.s. |
A terpenoid | 1.41 ± 0.65 | n.s. | 6.49 |
chelirubine | 1.41 ± 0.75 | n.s. | −2.27 |
tartrate | 1.41 ± 1.03 | n.s. | −0.37 |
palmitoleate | 1.41 ± 0.63 | n.s. | 6.00 |
1-heptanal | 1.40 ± 0.76 | n.s. | −6.31 |
16,17-dihydro-16α,17-dihydroxy gibberellin A4 | 1.40 ± 0.56 | n.s. | 4.88 |
Compound | VIP Score ± STD | p Value | Log2 FC |
---|---|---|---|
vanillylamine | 2.49 ± 0.60 | n.s. | −0.08 |
10-deacetyl-2-debenzoylbaccatin III | 2.41 ± 0.26 | *** | 12.13 |
A pentose | 2.40 ± 0.56 | *** | 13.43 |
gardenin B/dalnigrein/3,7,3′,4′-tetramethylquercetin | 2.39 ± 0.60 | n.s. | 4.00 |
heliocide B1 | 2.28 ± 0.31 | *** | 2.46 |
N-methylanthranilate | 2.16 ± 0.71 | *** | 12.27 |
L-α-(methylenecyclopropyl)-glycine | 2.10 ± 0.83 | *** | 12.89 |
5,10-methylenetetrahydropteroyl mono-L-glutamate | 2.10 ± 0.58 | *** | 14.55 |
1,2-dehydroreticuline/(S)-corytuberine | 2.06 ± 0.32 | n.s. | 11.07 |
1-hydroxycumene | 2.03 ± 0.62 | n.s. | 0.98 |
cyclogutamate | 2.01 ± 0.41 | n.s. | 14.83 |
all-trans-hexaprenyl diphosphate | 1.96 ± 1.19 | *** | 13.26 |
syn-copalyl diphosphate | 1.93 ±0.56 | n.s. | n.s. |
salutaridine | 1.90 ± 0.69 | n.s. | 3.66 |
quercetin 3-O-(4\-O-p-coumaroyl)-glucoside″ | 1.90 ± 0.85 | n.s. | n.s. |
geranate/(1R)-trans-chrysanthemate/N-hydroxy-L-valine | 1.86 ± 0.35 | * | 0.56 |
(+)-carvone/(-)-isopiperitenone/(-)-carvone/4-isopropylbenzyl alcohol/(4S)-perillyl aldehyde/(+)-menthofuran | 1.86 ± 0.37 | * | 0.56 |
(+)-bornane-2,5-dione | 1.86 ± 0.46 | n.s. | 2.77 |
O-sinapoylglucarolactone | 1.83 ± 1.15 | * | 0.49 |
butyl propanoate | 1.82 ± 0.52 | n.s. | −9.14 |
quercetin 3-O-(-O-p-coumaroyl)-glucoside | 1.82 ± 0.90 | n.s. | 14.77 |
2,4-diamino-6-methyl-5,3′-(3-nitrophenoxy)prop-1′-yloxypyrimidine | 1.78 ± 1.15 | n.s. | n.s. |
robustaquinone F | 1.77 ± 1.06 | ** | 0.76 |
(3-hydroxy-2-oxindol-3-yl)acetyl-L-aspartate | 1.77 ± 1.07 | ** | 0.77 |
cyanidin 3-O-β-D-caffeoylglucoside | 1.76 ± 1.04 | ** | 0.77 |
kaempferol 3-O-β-D-glucosylgalactoside/kaempferol 3-O-β-D-glucosyl-(1->2)-β-D-glucoside/ | 1.76 ± 1.04 | ** | 0.77 |
cyanidin 3-O-β-D-p-coumaroylglucoside/cyanidin 3-(p-coumaroyl)-glucoside/pelargonidin 3-O-β-D-caffeoylglucoside | 1.76 ± 1.05 | ** | 0.79 |
4-(β-D-glucosyloxy)benzoate | 1.76 ± 0.85 | ** | 10.55 |
α-hydroxyheme | 1.76 ± 0.98 | n.s. | 2.90 |
scopolamine | 1.73 ± 0.64 | n.s. | −2.15 |
5-oxooctanal | 1.72 ± 0.94 | * | −0.47 |
22-oxo-docosanoyl-CoA/3-oxobehenoyl-CoA | 1.71 ± 0.67 | n.s. | −9.97 |
L-nicotianamine | 1.70 ± 1.00 | *** | 15.39 |
soyasaponin I | 1.68 ± 0.54 | n.s. | −0.40 |
epoxypheophorbide a | 1.68 ± 0.94 | n.s. | 9.89 |
heliannuol C | 1.66 ± 1.09 | n.s. | −3.30 |
1-α-linolenoyl-2-α-linolenoyl-phosphatidylcholine | 1.66 ± 0.81 | n.s. | −0.54 |
presqualene diphosphate | 1.65 ± 1.05 | n.s. | 12.64 |
iridotrial/dihydroconiferyl alcohol | 1.65 ± 0.67 | n.s. | 2.67 |
ricinine | 1.65 ± 0.67 | n.s. | 2.67 |
conhydrinone/hygrine/ | 1.64 ± 0.58 | n.s. | −1.92 |
5-hydroxy-γ-coniceine | 1.61 ± 0.58 | n.s. | −3.51 |
2′-hydroxypseudobaptigenin | 1.61 ± 1.00 | n.s. | −0.10 |
rhamnetin | 1.60 ± 1.01 | n.s. | −0.11 |
grasshopper ketone | 1.59 ± 1.25 | n.s. | −0.58 |
(E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-ω-(methylsulfanyl)pentan-1-imine | 1.58 ± 0.51 | n.s. | 8.29 |
hydroxy-β-zeacarotene | 1.58 ± 1.32 | n.s. | −6.89 |
β-D-glucosyl crocetin | 1.58 ± 0.49 | n.s. | 9.40 |
N-acetyl-α-D-galactosamine 1-phosphate/N-acetyl-α-D-glucosamine 1-phosphate | 1.58 ± 0.89 | n.s. | −0.08 |
curcumin 4′-O-β-D-gentiotrioside/curcumin 4′-O-β-D-gentiobiosyl 4″-O-β-D-glucoside | 1.57 ± 1.25 | n.s. | 7.27 |
1-palmitoyl-2-vernoloyl-phosphatidylcholine | 1.56 ± 0.70 | n.s. | −1.99 |
4α-carboxy-5α-cholesta-7,24-dien-3β-ol | 1.56 ± 0.74 | * | −1.24 |
1-18:1-2-16:0-monogalactosyldiacylglycerol | 1.55 ± 0.86 | n.s. | −0.39 |
munjistin | 1.55 ± 1.14 | n.s. | −0.14 |
salicylate 2-O-β-D-glucoside | 1.55 ± 0.95 | * | −1.75 |
glutathione disulfide | 1.54 ± 1.06 | n.s. | 1.51 |
1-18:0-2-18:3-phosphatidylethanolamine | 1.54 ± 1.05 | n.s. | −1.67 |
1-18:3-2-16:0-digalactosyldiacylglycerol/1-16:0-2-18:3-digalactosyldiacylglycerol | 1.54 ± 1.16 | n.s. | −0.90 |
N-(4-aminobenzoyl)-L-glutamate | 1.54 ± 1.03 | * | 8.41 |
aloesone | 1.54 ± 0.49 | n.s. | 13.60 |
A phenylpropanoid | 1.53 ± 0.98 | n.s. | −0.08 |
1-18:2-2-18:2-monogalactosyldiacylglycerol | 1.52 ± 0.99 | * | 1.79 |
ginsenoside Rg1 | 1.52 ± 0.26 | n.s. | −1.74 |
7,8-diaminopelargonate | 1.52 ± 0.85 | n.s. | −2.56 |
3β-hydroxy-β-cyclocitral/(6E)-8-hydroxygeranial/(6E)-8-oxogeraniol | 1.52 ± 0.71 | * | 1.22 |
2,6-diaminopurine/heptanoate | 1.51 ± 0.37 | n.s. | −0.19 |
stevioside/rebaudioside B | 1.51 ± 0.88 | n.s. | −7.24 |
ajmaline | 1.51 ± 0.94 | n.s. | −8.37 |
pheophorbide b | 1.51 ± 0.86 | n.s. | −6.15 |
1-palmitoyl-2-linoleoyl-phosphatidylcholine | 1.50 ± 0.94 | n.s. | −0.31 |
22-hydroxydocosanoate | 1.49 ± 1.10 | n.s. | −0.39 |
(E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-ω-(methylsulfanyl)heptan-1-imine/sinapoyl-(S)-malate | 1.47 ± 0.30 | n.s. | −6.58 |
eupatolin | 1.47 ± 1.01 | n.s. | 0.42 |
deoxyhumulone | 1.47 ± 1.29 | n.s. | −0.54 |
(S)-scoulerine/(S)-coreximine | 1.47 ± 0.67 | n.s. | 0.28 |
phosphopantetheine | 1.47 ± 0.30 | n.s. | −6.63 |
delphinidin 3-O-rutinoside-7-O-glucoside/quercetin 3-O-rhamnosyl(1->2)glucoside-7-O-rhamnoside/quercetin 3-O-gentiobioside-7-O-rhamnoside/kaempferol 3-O-β-D-glucosyl-(1->2)-glucosyl-(1->2)-β-D-glucoside | 1.47 ± 0.56 | n.s. | 4.44 |
cycloheptadienyl/sinapate | 1.47 ± 0.96 | ** | −10.73 |
4α-carboxy-5α-cholesta-8,24-dien-3β-ol | 1.46 ± 0.78 | n.s. | −3.30 |
1-deoxy-2,3-hexodiulose-6-phosphate | 1.46 ± 1.02 | n.s. | −0.07 |
A saccharide | 1.46 ± 0.98 | n.s. | −0.07 |
(indol-3-yl)acetyl-L-proline | 1.46 ± 0.57 | n.s. | −6.48 |
catharanthine | 1.46 ± 0.95 | n.s. | −0.44 |
geranyl β-D-glucopyranoside | 1.46 ± 0.89 | * | 0.63 |
ajmaline-x | 1.46 ± 1.17 | n.s. | n.s. |
6-methoxypodophyllotoxin | 1.45 ± 1.14 | n.s. | 3.41 |
p-coumaroylserotonin | 1.45 ± 0.49 | n.s. | 8.25 |
(2E,4E,6E)-4-methylocta-2,4,6-trienedial | 1.45 ± 0.39 | n.s. | −0.18 |
(-)-medicarpin-3-O-glucoside | 1.45 ± 0.26 | n.s. | 5.54 |
3-oxocerotoyl-CoA | 1.45 ± 1.05 | n.s. | −7.81 |
1,3,5-trimethoxybenzene | 1.45 ± 0.39 | n.s. | −0.18 |
1-linoleoyl-2-palmitoyl-phosphatidylglycerol | 1.45 ± 0.90 | * | −1.29 |
1-stearoyl-sn-glycerol 3-phosphate | 1.44 ± 0.64 | n.s. | −0.17 |
β-citraurin | 1.44 ± 0.62 | n.s. | −0.19 |
myristate | 1.44 ± 0.95 | n.s. | −0.32 |
phosphocholine | 1.43 ± 1.16 | n.s. | −5.00 |
tetramethylmyricetin/tetramethylquercetagetin | 1.43 ± 0.31 | n.s. | −5.43 |
norbelladine | 1.43 ± 0.98 | n.s. | 7.39 |
cyanidin O-O-[6-O-(6-O-4-hydroxycinnamoyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside] | 1.43 ± 1.49 | n.s. | 0.48 |
cytochrome c | 1.43 ± 0.64 | n.s. | n.s. |
gibberellin A51-catabolite | 1.42 ± 0.52 | n.s. | 0.40 |
26-hydroxybrassinolide | 1.42 ± 1.22 | n.s. | −0.47 |
2-O-caffeoylglucarate | 1.42 ± 0.61 | n.s. | −7.41 |
allosamidin/N,N′,N″-triacetylchitotriose | 1.41 ± 0.73 | n.s. | −2.50 |
5-phospho-D-arabinonohydroxamate | 1.41 ± 1.07 | n.s. | −0.06 |
1,2-dipalmitoyl-phosphatidylglycerol-phosphate | 1.41 ± 1.26 | n.s. | −1.36 |
DIMBOA-β-D-glucoside | 1.41 ± 0.36 | n.s. | −0.76 |
coumarinate | 1.41 ± 0.40 | n.s. | −0.50 |
(R)-3-(4-hydroxyphenyl)lactate | 1.40 ± 0.39 | n.s. | −0.99 |
scopolin | 1.40 ± 0.38 | n.s. | −0.72 |
protochlorophyllide a | 1.40 ± 0.84 | n.s. | −1.85 |
(E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine | 1.40 ± 0.39 | n.s. | −0.67 |
chlorophyllide b | 1.40 ± 1.29 | n.s. | 0.40 |
anthraniloyl-O-glucopyranose | 1.40 ± 0.51 | n.s. | −0.97 |
5-(methylsulfanyl)pentyl-desulfoglucosinolate | 1.40 ± 0.31 | n.s. | −1.30 |
gibberellin A12-aldehyde | 1.40 ± 0.52 | n.s. | 8.42 |
isatin | 1.39 ± 1.43 | n.s. | −0.05 |
tetradecan-1-ol | 1.39 ± 0.55 | n.s. | 0.00 |
1-18:3-2-16:4-monogalactosyldiacylglycerol | 1.38 ± 0.98 | n.s. | −2.10 |
(indol-3-yl)acetyl-myo-inositol L-arabinoside | 1.38 ± 0.93 | n.s. | 0.36 |
cis-tuberonic acid | 1.38 ± 1.31 | n.s. | −6.50 |
(1,4)-β-xylobiose/7,8-dimethoxy-flavone/3-methylinosine | 1.38 ± 0.92 | n.s. | 7.30 |
p-aminobenzoate-β-D-glucopyranosyl ester | 1.38 ± 0.48 | n.s. | −7.95 |
1-(3,4-dihydroxyphenyl)-5-hydroxy-3-decanone/3″-hydroxy-geranylhydroquinone | 1.38 ± 1.50 | n.s. | −0.74 |
phenylarsine oxide | 1.37 ± 1.02 | n.s. | −0.05 |
tyramine | 1.37 ± 0.63 | n.s. | −0.16 |
trans-tuberonic acid | 1.37 ± 1.31 | n.s. | −1.18 |
CDP-1-18:1(9Z)-2-18:1(9Z)-glycerol | 1.36 ± 0.89 | * | 0.22 |
phlorisobutanophenone | 1.36 ± 1.34 | n.s. | 5.51 |
16-epivellosimine | 1.36 ± 1.23 | n.s. | 0.00 |
5-mercaptodeoxyuridine | 1.36 ± 0.77 | n.s. | −0.08 |
indole-3-carbinol | 1.35 ± 1.06 | n.s. | −6.80 |
capsanthin/antheraxanthin/4-hydroxyzeaxanthin | 1.35 ± 0.85 | n.s. | −0.64 |
3,4-dihydrocoumarin/4-coumaraldehyde/1-phenylpropane-1,2-dione | 1.35 ± 0.68 | n.s. | −0.15 |
dimethylsulfoniopropanoate-amine | 1.34 ± 0.96 | n.s. | −1.39 |
kaempferide 3-O-β-D-glucopyranosyl-(1->2)-O-α-L-rhamnoside | 1.34 ± 1.49 | n.s. | 0.41 |
5-methyl-DL-tryptophan | 1.34 ± 0.51 | n.s. | n.s. |
3,8-divinyl protochlorophyllide a | 1.33 ± 1.50 | n.s. | 0.409 |
1-18:1-2-16:0-phosphatidate | 1.33 ± 0.91 | n.s. | −7.65 |
N-demethylvindolidine | 1.32 ± 1.20 | n.s. | −2.73 |
dihydrogeranylgeranyl diphosphate | 1.32 ± 0.38 | n.s. | n.s. |
gibberellin A9 | 1.32 ± 0.99 | n.s. | −0.29 |
18-hydroxyoleate/9,10-epoxystearate/ricinoleate | 1.32 ± 0.73 | n.s. | −0.36 |
(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentenoate | 1.32 ± 0.60 | n.s. | −0.47 |
pheophytin b | 1.32 ± 1.08 | n.s. | −7.60 |
3-oxo-2-(cis-2′-pentenyl)-cyclopentane-1-butanoyl-CoA | 1.32 ± 1.51 | n.s. | 0.29 |
kaempferol 3-O-(\-O-p-coumaroyl)-glucoside″/kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside | 1.32 ± 1.41 | n.s. | n.s. |
linoleate | 1.32 ± 0.71 | n.s. | −0.36 |
α,ω-9Z-octadecenedioate | 1.32 ± 0.68 | n.s. | −0.51 |
prenyl diphosphate/isopentenyl diphosphate | 1.31 ± 1.00 | n.s. | −0.05 |
(+)-jasmonate | 1.31 ± 0.91 | n.s. | 4.85 |
6-isobutyl-4-hydroxy-2-pyrone | 1.31 ± 0.84 | n.s. | −2.59 |
α-chaconine | 1.31 ± 1.14 | n.s. | −7.90 |
HPOTE/(9Z,11E,14Z)-(13S)-hydroperoxyoctadeca-(9,11,14)-trienoate | 1.31 ± 0.71 | n.s. | −6.35 |
palmitoleoyl-CoA | 1.31 ± 1.60 | n.s. | 0.25 |
pheophytin a | 1.31 ± 1.14 | n.s. | −6.55 |
imidazole acetol-phosphate | 1.31 ± 1.01 | n.s. | −0.05 |
N-hydroxypentahomomethionine | 1.30 ± 0.83 | n.s. | −0.75 |
all-trans-nonaprenyl diphosphate | 1.30 ± 0.99 | n.s. | 0.08 |
kauralexin B3 | 1.30 ± 0.70 | n.s. | 0.72 |
Compound | Class | Subclass | VIP Score ± STD | p Value | Log2 FC |
---|---|---|---|---|---|
Cyanidin 3-O-(6″-p-coumaroyl-glucoside)/Petunidin 3-O-rutinoside/Pelargonidin 3-O-sophoroside/Cyanidin 3-O-rutinoside | Flavonoids | Anthocyanins | 1.40 ± 0.42 | n.s. | −0.26 |
Cyanidin | Flavonoids | Anthocyanins | 1.38 ± 0.49 | n.s. | −0.20 |
Cyanidin 3-O-glucosyl-rutinoside | Flavonoids | Anthocyanins | 1.35 ± 0.64 | n.s. | −0.49 |
Cyanidin 3-O-glucoside/Cyanidin 3-O-galactoside/Petunidin 3-O-arabinoside/Peonidin 3-O-arabinoside/p-Coumaric acid | Flavonoids | Anthocyanins | 1.24 ± 0.90 | n.s. | −6.47 |
Delphinidin 3-O-glucoside/Delphinidin 3-O-galactoside | Flavonoids | Anthocyanins | 1.13 ± 0.40 | n.s. | −6.09 |
Dihydroquercetin | Flavonoids | Dihydroflavonols | 1.38 ± 0.50 | n.s. | −0.20 |
(-)-Epicatechin 3-O-gallate/(+)-Catechin 3-O-gallate | Flavonoids | Flavanols | 1.22 ± 0.97 | n.s. | −6.54 |
Eriocitrin/Neoeriocitrin | Flavonoids | Flavanones | 1.38 ± 0.48 | n.s. | −0.26 |
Cirsimaritin | Flavonoids | Flavones | 1.59 ± 0.76 | *** | 0.72 |
Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | Flavonoids | Flavones | 1.13 ± 0.39 | n.s. | −0.54 |
Kaempferol 7-O-glucoside | Flavonoids | Flavonols | 1.48 ± 0.72 | n.s. | −2.51 |
Kaempferol 3-O-rutinoside/Chrysoeriol 7-O-apiosyl-glucoside/Apigenin 6.8-di-C-glucoside/Kaempferol 3-O-galactoside 7-O-rhamnoside/Luteolin 7-O-rutinoside | Flavonoids | Flavonols | 1.41 ± 0.40 | n.s. | −0.26 |
Kaempferol/Scutellarein/Luteolin | Flavonoids | Flavonols | 1.38 ± 0.50 | n.s. | −0.19 |
Kaempferol 3-O-glucosyl-rhamnosyl-galactoside/Quercetin 3-O-rhamnosyl-rhamnosyl-glucoside/Kaempferol 3-O-glucosyl-rhamnosyl-glucoside | Flavonoids | Flavonols | 1.35 ± 0.64 | n.s. | −0.49 |
3-Methoxysinensetin/Nobiletin | Flavonoids | Flavonols | 1.14 ± 0.61 | n.s. | −1.65 |
3-Methylcatechol/Guaiacol/4-Methylcatechol | Other polyphenols | Alkylphenols | 1.79 ± 0.34 | n.s. | 4.94 |
5-Nonadecenylresorcinol | Other polyphenols | Alkylphenols | 1.25 ± 0.75 | n.s. | 7.75 |
5-Heneicosenylresorcinol | Other polyphenols | Alkylphenols | 1.10 ± 0.81 | n.s. | −0.56 |
Umbelliferone/4-Hydroxycoumarin | Other polyphenols | Hydroxycoumarins | 1.10 ± 1.00 | n.s. | 0.10 |
p-HPEA-EA/Ligstroside-aglycone | Other polyphenols | Tyrosols | 1.53 ± 0.58 | n.s. | −0.36 |
Ligstroside | Other polyphenols | Tyrosols | 1.14 ± 0.52 | n.s. | 0.10 |
Galloyl glucose | Phenolic acids | Hydroxybenzoic acids | 1.21 ± 1.28 | n.s. | 1.78 |
Gallic acid 4-O-glucoside | Phenolic acids | Hydroxybenzoic acids | 1.18 ± 0.82 | n.s. | 0.08 |
Rosmarinic acid | Phenolic acids | Hydroxycinnamic acids | 1.69 ± 0.64 | *** | −4.00 |
Caffeoyl aspartic acid | Phenolic acids | Hydroxycinnamic acids | 1.52 ± 0.72 | ** | 0.52 |
p-Coumaroyl tartaric acid | Phenolic acids | Hydroxycinnamic acids | 1.44 ± 0.89 | n.s. | 1.85 |
4-Feruloylquinic acid/3-Feruloylquinic acid/5-Feruloylquinic acid | Phenolic acids | Hydroxycinnamic acids | 1.38 ± 0.77 | n.s. | −3.71 |
Ferulic acid 4-O-glucoside/Feruloyl glucose | Phenolic acids | Hydroxycinnamic acids | 1.32 ± 0.65 | n.s. | −0.44 |
Isoferulic acid/Ferulic acid | Phenolic acids | Hydroxycinnamic acids | 1.30 ± 0.62 | n.s. | −0.54 |
Caffeoyl tartaric acid | Phenolic acids | Hydroxycinnamic acids | 1.28 ± 1.15 | n.s. | −6.84 |
m-Coumaric acid/o-Coumaric acid | Phenolic acids | Hydroxycinnamic acids | 1.24 ± 1.25 | n.s. | −8.72 |
Avenanthramide 2c/Avenanthramide K | Phenolic acids | Hydroxycinnamic acids | 1.18 ± 0.91 | n.s. | 0.82 |
Dihydrocaffeic acid/Syringaldehyde/Homovanillic acid | Phenolic acids | Hydroxyphenylpropanoic acids | 1.20 ± 1.18 | n.s. | −7.57 |
Compound | Class | Subclass | VIP Score ± STD | p Value | Log2 FC |
---|---|---|---|---|---|
Delphinidin 3,5-O-diglucoside/Delphinidin 3-O-glucosyl-glucoside | Flavonoids | Anthocyanins | 1.70 ± 0.59 | n.s. | 0.60 |
Delphinidin 3-O-(6″-p-coumaroyl-glucoside) | Flavonoids | Anthocyanins | 1.70 ± 0.62 | n.s. | 0.64 |
Cyanidin 3-O-(6″-caffeoyl-glucoside) | Flavonoids | Anthocyanins | 1.70 ± 0.62 | n.s. | 0.64 |
Pelargonidin 3,5-O-diglucoside | Flavonoids | Anthocyanins | 1.68 ± 0.48 | n.s. | 8.60 |
Pigment A/Peonidin 3-O-(6″-p-coumaroyl-glucoside) | Flavonoids | Anthocyanins | 1.51 ± 0.63 | n.s. | −0.58 |
Peonidin 3-O-rutinoside | Flavonoids | Anthocyanins | 1.17 ± 1.05 | n.s. | −7.18 |
Prodelphinidin dimer B3 | Flavonoids | Flavanols | 1.70 ± 0.60 | n.s. | 0.61 |
Gardenin B | Flavonoids | Flavones | 2.19 ± 0.86 | n.s. | 4.00 |
Nepetin/Isorhamnetin/Rhamnetin | Flavonoids | Flavones | 1.41 ± 0.75 | n.s. | −0.28 |
Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | Flavonoids | Flavones | 1.31 ± 0.79 | n.s. | −0.99 |
Quercetin 3-O-galactoside 7-O-rhamnoside/Kaempferol 3-O-sophoroside/Quercetin 3-O-rutinoside/Kaempferol 3,7-O-diglucoside/Quercetin 3-O-rhamnosyl-galactoside | Flavonoids | Flavonols | 1.72 ± 0.56 | n.s. | 3.03 |
Quercetin/Morin/p-Coumaroyl malic acid/6-Hydroxyluteolin | Flavonoids | Flavonols | 1.70 ± 0.62 | n.s. | 0.58 |
4-Vinylguaiacol/3-Methoxyacetophenone | Other polyphenols | Alkylmethoxyphenols | 1.40 ± 0.45 | n.s. | −0.36 |
p-Anisaldehyde | Other polyphenols | Hydroxybenzaldehydes | 1.14 ± 1.06 | n.s. | −0.83 |
Thymol/Carvacrol | Other polyphenols | Phenolic terpenes | 1.67 ± 0.56 | n.s. | 0.39 |
Hydroxytyrosol 4-O-glucoside | Other polyphenols | Tyrosols | 1.24 ± 0.73 | n.s. | −1.00 |
3,4-DHPEA-AC | Other polyphenols | Tyrosols | 1.10 ± 1.09 | n.s. | 5.34 |
4-Hydroxybenzoic acid 4-O-glucoside | Phenolic acids | Hydroxybenzoic acids | 1.16 ± 0.53 | n.s. | 0.018 |
Sinapic acid | Phenolic acids | Hydroxycinnamic acids | 1.54 ± 1.26 | n.s. | 8.77 |
p-Coumaroyl glycolic acid | Phenolic acids | Hydroxycinnamic acids | 1.44 ± 0.63 | * | −10.91 |
5-Caffeoylquinic acid/3-Caffeoylquinic acid/4-Caffeoylquinic acid | Phenolic acids | Hydroxycinnamic acids | 1.25 ± 0.19 | n.s. | 9.47 |
p-Coumaric acid | Phenolic acids | Hydroxycinnamic acids | 1.21 ± 0.25 | n.s. | 5.25 |
Caffeic acid | Phenolic acids | Hydroxycinnamic acids | 1.11 ± 0.98 | n.s. | 5.34 |
Homoveratric acid | Phenolic acids | Hydroxyphenylacetic acids | 1.10 ± 1.09 | n.s. | −0.36 |
d-Viniferin/e-Viniferin/Pallidol | Stilbenes | Stilbenes | 1.19 ± 0.28 | n.s. | 0.57 |
Sample | Phenolic Class | Phenolic Subclass | Marker | Log2 FC | Accumulation |
---|---|---|---|---|---|
UV-11d | Other polyphenols | Tyrosols | Oleoside 11-methylester | 17.42 | ↑ |
Phenolic acids | Hydroxycinnamic acids | Rosmarinic acid | −19.09 | ↓ | |
UV-rec | Flavonoids | Flavones | Cirsimaritin | 17.68 | ↑ |
Flavonols | 6,8-Dihydroxykaempferol/Myricetin | 13.85 | ↑ | ||
Flavonols/Flavonols | Nepetin/Isorhamnetin/Rhamnetin | 16.44 | ↑ | ||
Flavones | Tetramethylscutellarein | −15.90 | ↓ | ||
Lignans | - | Dimethylmatairesinol | 19.12 | ↑ | |
Lignans/Hydroxybenzoic acids | Protocatechuic aldehyde | −18.90 | ↓ | ||
Lignans/Hydroxybenzoic acids | Sesamol/4-Hydroxybenzoic acid/2-Hydroxybenzoic acid | −18.92 | ↓ | ||
Phenolic acids | Hydroxybenzoic acids | 3-Hydroxybenzoic acid | −18.90 | ↓ | |
Gallic acid 4-O-glucoside | −8.90 | ↓ | |||
Galloyl glucose | −8.90 | ↓ | |||
Hydroxycinnamic acids | Caffeoyl aspartic acid | 18.02 | ↑ | ||
Ferulic acid 4-O-glucoside/Feruloyl glucose | −17.44 | ↓ | |||
m-Coumaric acid/o-Coumaric acid | −15.02 | ↓ | |||
p-Coumaric acid | 15.95 | ↑ | |||
p-Coumaroyl tartaric acid | 18.59 | ↑ | |||
Rosmarinic acid | −18.83 | ↓ | |||
Hydroxyphenylpropanoic acids | Dihydro-p-coumaric acid/Methoxyphenylacetic acid | −12.05 | ↓ | ||
Other polyphenols | Alkylmethoxyphenols/Hydroxybenzoketones | 4-Vinylguaiacol/3-Methoxyacetophenone | 12.67 | ↑ | |
Alkylphenols | 4-Vinylphenol | 20.91 | ↑ | ||
Hydroxybenzaldehydes | p-Anisaldehyde | −12.43 | ↓ | ||
Hydroxycoumarins | Coumarin | 14.96 | ↑ | ||
Tyrosol | 3,4-DHPEA-EDA | −15.68 | ↓ | ||
Tyrosols/Alkylphenols | Tyrosol/4-Ethylcatechol | 20.92 | ↑ |
Sample | Phenolic Class | Phenolic Subclass | Marker | Log2 FC | Accumulation |
---|---|---|---|---|---|
UV-11d | Flavonoids | Flavones | Gardenin B | 20.62 | ↑ |
UV-rec | Flavonoids | Flavones | Gardenin B | 21.69 | ↑ |
Jaceidin 4′-O-glucuronide | −15.19 | ↓ | |||
Phenolic acids | Hydroxycinnamic acids | 5-Caffeoylquinic acid/3-Caffeoylquinic acid/4-Caffeoylquinic acid | −21.25 | ↓ | |
p-Coumaroyl glycolic acid | −13.02 | ↓ | |||
p-Coumaric acid | −19.58 | ↓ | |||
Sinapic acid | 4.45 | ↑ | |||
Lignans | - | Pinoresinol/Matairesinol | −8.43 | ↓ | |
Phenolic acids/Other polyphenols/Phenolic acids | Hydroxyphenylpropanoic acids/Hydroxybenzaldehydes/Hydroxyphenylacetic acids | Dihydrocaffeic acid/Syringaldehyde/Homovanillic acid | 16.32 | ↑ | |
Other polyphenols | Alkylmethoxyphenols/Hydroxybenzoketones | 4-Vinylguaiacol/3-Methoxyacetophenone | −19.39 | ↓ | |
Alkylphenols | 5-Pentadecylresorcinol | −18.23 | ↓ | ||
4-Vinylphenol | −21.38 | ↓ | |||
Hydroxyphenylpropenes | Acetyl eugenol | −19.07 | ↓ | ||
Phenolic terpenes | Carnosic acid | −17.60 | ↓ | ||
Stilbene | Resveratrol | −18.66 | ↓ | ||
Tyrosols | Hydroxytyrosol 4-O-glucoside | 19.83 | ↑ | ||
Tyrosols/Alkylphenols | Tyrosol/4-Ethylcatechol | −21.37 | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannucci, A.; Santin, M.; Vanhaelewyn, L.; Sciampagna, M.C.; Miras-Moreno, M.B.; Zhang, L.; Lucini, L.; Quartacci, M.F.; Van Der Straeten, D.; Castagna, A.; et al. Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments. Plants 2022, 11, 1829. https://doi.org/10.3390/plants11141829
Mannucci A, Santin M, Vanhaelewyn L, Sciampagna MC, Miras-Moreno MB, Zhang L, Lucini L, Quartacci MF, Van Der Straeten D, Castagna A, et al. Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments. Plants. 2022; 11(14):1829. https://doi.org/10.3390/plants11141829
Chicago/Turabian StyleMannucci, Alessia, Marco Santin, Lucas Vanhaelewyn, Maria Calogera Sciampagna, Maria Begoña Miras-Moreno, Leilei Zhang, Luigi Lucini, Mike Frank Quartacci, Dominique Van Der Straeten, Antonella Castagna, and et al. 2022. "Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments" Plants 11, no. 14: 1829. https://doi.org/10.3390/plants11141829
APA StyleMannucci, A., Santin, M., Vanhaelewyn, L., Sciampagna, M. C., Miras-Moreno, M. B., Zhang, L., Lucini, L., Quartacci, M. F., Van Der Straeten, D., Castagna, A., & Ranieri, A. (2022). Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments. Plants, 11(14), 1829. https://doi.org/10.3390/plants11141829