Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress
Abstract
:1. Introduction
2. Results
2.1. Effect of Silicon on Growth Performances of Rice Seedlings under Salinity
2.2. Effect of Silicon on Different Physiological and Biochemical Parameters
2.3. Effect of Silicon on Photosynthetic Pigments
2.4. Effect of Silicon on the Na+ and K+ Content of Rice Shoot
2.5. Correlation Analysis among Different Growth and Physiological Parameters
2.6. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Procedure
4.2. Estimation of Shoot Height, Fresh and Dry Weight of Shoot-Root
4.3. Photosynthetic Pigments Analysis (Chlorophyll a, b, Total Chlorophyll and Carotenoid)
4.4. Relative Water Content (RWC) Determination
4.5. Determination of Electrolyte Leakage (%EL)
4.6. Proline Quantification
4.7. Determination of Cellular MDA in Leaves
4.8. Determination of Shoot Na+ and K+
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, B.S.; Li, X.W.; Ma, H.Y.; Sun, Y.; Wei, L.X.; Jiang, C.J.; Liang, Z.W. Differences in Growth and Physiology of Rice in Response to Different Saline-Alkaline Stress Factors. Agron. J. 2013, 105, 1119–1128. [Google Scholar] [CrossRef]
- Ramayya, P.J. Alkalinity Tolerance in Rice (Oryza Sativa L.) Using Molecular Markers (SSRs). J. Adv. Biotechnol. 2009, IX, 24–27. [Google Scholar]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, S.; Abbas, G.; Shahid, M.; Saqib, M.; Umer Farooq, A.B.; Hussain, M.; Murtaza, B.; Amjad, M.; Naeem, M.A.; Farooq, A. Effect of Salinity on Cadmium Tolerance, Ionic Homeostasis and Oxidative Stress Responses in Conocarpus Exposed to Cadmium Stress: Implications for Phytoremediation. Ecotoxicol. Environ. Saf. 2019, 171, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Bhandari, P. Interactive Effects of Silicon and Arbuscular Mycorrhiza in Modulating Ascorbate-Glutathione Cycle and Antioxidant Scavenging Capacity in Differentially Salt-Tolerant Cicer Arietinum L. Genotypes Subjected to Long-Term Salinity. Protoplasma 2016, 253, 1325–1345. [Google Scholar] [CrossRef]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Duan, Y.; Mitani-Ueno, N.; Che, J.; Jia, J.; Liu, J.; Guo, J.; Ma, J.F.; Gong, H. Tomato Roots Have a Functional Silicon Influx Transporter but Not a Functional Silicon Efflux Transporter. Plant Cell Environ. 2020, 43, 732–744. [Google Scholar] [CrossRef]
- Ma, J.F. Role of Silicon in Enhancing the Resistance of Plants to Biotic and Abiotic Stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon Uptake and Accumulation in Higher Plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Saha, G.; Mostofa, M.G.; Rahman, M.M.; Tran, L.S.P. Silicon-Mediated Heat Tolerance in Higher Plants: A Mechanistic Outlook. Plant Physiol. Biochem. 2021, 166, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.; Rout, G.R. Silicon Mediated Alleviation of Salinity Stress Regulated by Silicon Transporter Genes (Lsi1 and Lsi2) in Indica Rice. Braz. Arch. Biol. Technol. 2020, 63, 1–13. [Google Scholar] [CrossRef]
- Almeida, D.M.; Margarida Oliveira, M.; Saibo, N.J.M. Regulation of Na+ and K+ Homeostasis in Plants: Towards Improved Salt Stress Tolerance in Crop Plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Fan, X.; Peng, M.; Yin, C.; Xiao, Z.; Liang, Y. Silicon Improves Rice Salinity Resistance by Alleviating Ionic Toxicity and Osmotic Constraint in an Organ-Specific Pattern. Front. Plant Sci. 2020, 11, 260. [Google Scholar] [CrossRef]
- Gong, H.J.; Randall, D.P.; Flowers, T.J. Silicon Deposition in the Root Reduces Sodium Uptake in Rice (Oryza Sativa L.) Seedlings by Reducing Bypass Flow. Plant Cell Environ. 2006, 29, 1970–1979. [Google Scholar] [CrossRef]
- Ahmad, R.; Zaheer, S.H.; Ismail, S. Role of Silicon in Salt Tolerance of Wheat (Triticum Aestivum L.). Plant Sci. 1992, 85, 43–50. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Higgs, D.; Murillo-Amador, B.; Aydemir, S.; Girgin, A.R. Silicon Improves Salinity Tolerance in Wheat Plants. Environ. Exp. Bot. 2008, 62, 10–16. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, W.; Chen, Q.; Ding, R. Effects of Silicon on H+-ATPase and H+-PPase Activity, Fatty Acid Composition and Fluidity of Tonoplast Vesicles from Roots of Salt-Stressed Barley (Hordeum Vulgare L.). Environ. Exp. Bot. 2005, 53, 29–37. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Q.; Liu, Q.; Zhang, W.; Ding, R. Exogenous Silicon (Si) Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation in Roots of Salt-Stressed Barley (Hordeum Vulgare L.). J. Plant Physiol. 2003, 160, 1157–1164. [Google Scholar] [CrossRef]
- Liang, Y.; Shen, Q.; Shen, Z.; Ma, T. Effects of Silicon on Salinity Tolerance of Two Barley Cultivars. J. Plant Nutr. 1996, 19, 173–183. [Google Scholar] [CrossRef]
- Ashraf, M.; Rahmatullah; Afzal, M.; Ahmed, R.; Mujeeb, F.; Sarwar, A.; Ali, L. Alleviation of Detrimental Effects of NaCl by Silicon Nutrition in Salt-Sensitive and Salt-Tolerant Genotypes of Sugarcane (Saccharum Officinarum L.). Plant Soil 2010, 326, 381–391. [Google Scholar] [CrossRef]
- Ashraf, M.; Rahmatullah; Ahmad, R.; Bhatti, A.S.; Afzal, M.; Sarwar, A.; Maqsood, M.A.; Kanwal, S. Amelioration of Salt Stress in Sugarcane (Saccharum Officinarum L.) by Supplying Potassium and Silicon in Hydroponics. Pedosphere 2010, 20, 153–162. [Google Scholar] [CrossRef]
- Lee, S.K.; Sohn, E.Y.; Hamayun, M.; Yoon, J.Y.; Lee, I.J. Effect of Silicon on Growth and Salinity Stress of Soybean Plant Grown under Hydroponic System. Agrofor. Syst. 2010, 80, 333–340. [Google Scholar] [CrossRef]
- Savvas, D.; Giotis, D.; Chatzieustratiou, E.; Bakea, M.; Patakioutas, G. Silicon Supply in Soilless Cultivations of Zucchini Alleviates Stress Induced by Salinity and Powdery Mildew Infections. Environ. Exp. Bot. 2009, 65, 11–17. [Google Scholar] [CrossRef]
- Yan, G.C.; Nikolic, M.; Ye, M.J.; Xiao, Z.X.; Liang, Y.C.; Causey, G.W. Cytological Investigations with the Electron Microscope; Elsevier: Amsterdam, The Netherlands, 2018; Volume 22, ISBN 9789401799775. [Google Scholar]
- Liang, X.; Fang, S.; Ji, W.; Zheng, D. The Positive Effects of Silicon on Rice Seedlings Under Saline-Alkali Mixed Stress. Commun. Soil Sci. Plant Anal. 2015, 46, 2127–2138. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.A.; Al-Qurainy, F.; Foolad, M.R. Drought Tolerance. Roles of Organic Osmolytes, Growth Regulators, and Mineral Nutrients, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 111, ISBN 9780123876898. [Google Scholar]
- Vyrides, I.; Stuckey, D.C. Compatible Solute Addition to Biological Systems Treating Waste/Wastewater to Counteract Osmotic and Other Environmental Stresses: A Review. Crit. Rev. Biotechnol. 2017, 37, 865–879. [Google Scholar] [CrossRef]
- El-Shintinawy, F.; El-Shourbagy, M.N. Alleviation of Changes in Protein Metabolism in NaCl-Stressed Wheat Seedlings by Thiamine. Biol. Plant. 2001, 44, 541–545. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Dharmendra, S.; Abhishek, G. Phytochemistry of Medicinal Plants. J. Pharmacogn. Phytochem. Phytochem. 2013, 1, 13–14. [Google Scholar]
- Cuin, T.A.; Shabala, S. Amino Acids Regulate Salinity-Induced Potassium Efflux in Barley Root Epidermis. Planta 2007, 225, 753–761. [Google Scholar] [CrossRef]
- Yan, G.; Fan, X.; Zheng, W.; Gao, Z.; Yin, C.; Li, T.; Liang, Y. Silicon Alleviates Salt Stress-Induced Potassium Deficiency by Promoting Potassium Uptake and Translocation in Rice (Oryza Sativa L.). J. Plant Physiol. 2021, 258–259, 153379. [Google Scholar] [CrossRef]
- Farooq, M.A.; Saqib, Z.A.; Akhtar, J. Silicon-Mediated Oxidative Stress Tolerance and Genetic Variability in Rice (Oryza Sativa L.) Grown under Combined Stress of Salinity and Boron Toxicity. Turk. J. Agric. For. 2015, 39, 718–729. [Google Scholar] [CrossRef]
- Fatikhasari, Z.; Rachmawati, D. Growth and Oxidative Defense Response to Silicon Application on Rice (Oryza Sativa L. ‘Sembada Merah’) under Salinity Stress. AIP Conf. Proc. 2020, 2260, 030021. [Google Scholar] [CrossRef]
- Flam-Shepherd, R.; Huynh, W.Q.; Coskun, D.; Hamam, A.M.; Britto, D.T.; Kronzucker, H.J. Membrane Fluxes, Bypass Flows, and Sodium Stress in Rice: The Influence of Silicon. J. Exp. Bot. 2018, 69, 1679–1692. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Q.; Ervin, E.H.; Yang, Z.; Zhang, X. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide. Front. Plant Sci. 2017, 8, 1017. [Google Scholar] [CrossRef] [Green Version]
- Hafez, Y.; Mazrou, Y.; Abdelaal, K. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants 2020, 9, 733–748. [Google Scholar]
- Matoh, T.; Kairusmee, P.; Takahashi, E. Salt-Induced Damage to Rice Plants and Alleviation Effect of Silicate. Soil Sci. Plant Nutr. 1986, 32, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.X.; Xu, X.B.; Hu, Y.H.; Han, W.H.; Yin, J.L.; Li, H.L.; Gong, H.J. Silicon Improves Salt Tolerance by Increasing Root Water Uptake in Cucumis Sativus L. Plant Cell Rep. 2015, 34, 1629–1646. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 19. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Abbas, T.; Sher, A.; Ijaz, M.; Hussain, M. Separate and Combined Effects of Silicon and Selenium on Salt Tolerance of Wheat Plants. Russ. J. Plant Physiol. 2017, 64, 341–348. [Google Scholar] [CrossRef]
- Yin, L.; Wang, S.; Li, J.; Tanaka, K.; Oka, M. Application of Silicon Improves Salt Tolerance through Ameliorating Osmotic and Ionic Stresses in the Seedling of Sorghum Bicolor. Acta Physiol. Plant. 2013, 35, 3099–3107. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Gong, H.J.; Yin, J.L. Role of Silicon in Mediating Salt Tolerance in Plants: A Review. Plants 2019, 8, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y. Effects of Silicon on Enzyme Activity and Sodium, Potassium and Calcium Concentration in Barley under Salt Stress. Plant Soil 1999, 209, 217–224. [Google Scholar] [CrossRef]
- Wang, X.S.; Han, J.G. Effects of NaCl and Silicon on Ion Distribution in the Roots, Shoots and Leaves of Two Alfalfa Cultivars with Different Salt Tolerance. Soil Sci. Plant Nutr. 2007, 53, 278–285. [Google Scholar] [CrossRef]
- Fleck, A.T.; Nye, T.; Repenning, C.; Stahl, F.; Zahn, M.; Schenk, M.K. Silicon Enhances Suberization and Lignification in Roots of Rice (Oryza Sativa). J. Exp. Bot. 2011, 62, 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Fleck, A.T.; Schulze, S.; Hinrichs, M.; Specht, A.; Waßmann, F.; Schreiber, L.; Schenk, M.K. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes. PLoS ONE 2015, 10, e0138555. [Google Scholar] [CrossRef]
- Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V. Effect of Salt Stress on Growth, Electrolyte Leakage, Na+ and k+ Content in Selected Plant Species. Plant Soil Environ. 2019, 65, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Polash, M.A.S.; Sakil, M.A.; Tahjib-Ul-Arif, M.; Hossain, M.A. Effect of Salinity on Osmolytes and Relative Water Content of Selected Rice Genotypes. Trop. Plant Res. 2018, 5, 227–232. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Merwad, A.M.; Elnaka, E.A.; Burras, C.L.; Follett, L. Application of Silicon Ameliorated Salinity Stress and Improved Wheat Yield. J. Soil Sci. Environ. Manag. 2016, 7, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.A.; de Rodrigues, F.Á.; Debona, D.; Silva, L.C. Photosynthetic Gas Exchange in Leaves of Wheat Plants Supplied with Silicon and Infected with Pyricularia Oryzae. Acta Physiol. Plant. 2014, 36, 371–379. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Senadhira, D.; Mendoza, R.D.; Division, B. Screening Rice for Salinity Tolerance; IRRI: Manila, Phillipines, 1997; ISBN 9712200981. [Google Scholar]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris; Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Weatherley, P.E. Studies in the Water Relations of the Cotton Plant: I. the Field Measurement of Water Deficits in Leaves. New Phytol. 1950, 49, 81–97. [Google Scholar] [CrossRef]
- Lutts, S. NaCl-Induced Senescence in Leaves of Rice (Oryza Sativa L.) Cultivars Differing.Pdf. Ann. Bot. 1996, 5, 389–398. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Short Communication Rapid Determination of Free Proline for water-stress Studies. Plant Soil 1973, 207, 205–207. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Ali, M.B.; Hahn, E.J.; Paek, K.Y. Effects of Light Intensities on Antioxidant Enzymes and Malondialdehyde Content during Short-Term Acclimatization on Micropropagated Phalaenopsis Plantlet. Environ. Exp. Bot. 2005, 54, 109–120. [Google Scholar] [CrossRef]
- Krishnamurthy, S.L.; Sharma, P.C.; Sharma, S.K.; Batra, V.; Kumar, V.; Rao, L.V.S. Effect of Salinity and Use of Stress Indices of Morphological and Physiological Traits at the Seedling Stage in Rice. Indian J. Exp. Biol. 2016, 54, 843–850. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somaddar, U.; Dey, H.C.; Mim, S.K.; Sarker, U.K.; Uddin, M.R.; Ahmed, N.U.; Mostofa, M.G.; Saha, G. Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress. Plants 2022, 11, 1831. https://doi.org/10.3390/plants11141831
Somaddar U, Dey HC, Mim SK, Sarker UK, Uddin MR, Ahmed NU, Mostofa MG, Saha G. Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress. Plants. 2022; 11(14):1831. https://doi.org/10.3390/plants11141831
Chicago/Turabian StyleSomaddar, Uzzal, Hridoy Chandra Dey, Sarah Khanam Mim, Uttam Kumer Sarker, Md. Romij Uddin, Nasar Uddin Ahmed, Mohammad Golam Mostofa, and Gopal Saha. 2022. "Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress" Plants 11, no. 14: 1831. https://doi.org/10.3390/plants11141831
APA StyleSomaddar, U., Dey, H. C., Mim, S. K., Sarker, U. K., Uddin, M. R., Ahmed, N. U., Mostofa, M. G., & Saha, G. (2022). Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress. Plants, 11(14), 1831. https://doi.org/10.3390/plants11141831