Effects of Botanical Ingredients Addition on the Bioactive Compounds and Quality of Non-Alcoholic and Craft Beer
Abstract
:1. Introduction
2. An Overview of Artisanal Beers
2.1. Bioactive Compounds and Nutritional Composition
2.2. Sensorial Assessments and Consumers’ Perception
3. Strengths and Weaknesses of Botanical Addition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- TBOE European Beer Trends—Beer Statistics. 2021. pp. 1–36. Available online: https://brewersofeurope.org/uploads/mycms-files/documents/publications/2021/european-beer-statistics-2020.pdf (accessed on 9 July 2022).
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, S.A.; Lucio, M.; Rychlik, M.; Schmitt-Kopplin, P. Decomposing the molecular complexity of brewing. Npj. Sci. Food 2020, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Maize and sorghum as raw materials for brewing, a review. Appl. Sci. 2022, 11, 3139. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Vegara, S.; Martí, N.; Valero, M.; Saura, D. Physicochemical characterization of special persimmon fruit beers using bohemian pilsner malt as a base. J. Inst. Brew. 2017, 123, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Fanari, M.; Forteschi, M.; Sanna, M.; Piu, P.P.; Porcu, M.C.; D’hallewin, G.; Secchi, N.; Zinellu, M.; Pretti, L. Pilot plant production of craft fruit beer using Ohmic-treated fruit puree. J. Food Process. Preserv. 2020, 44, e14317. [Google Scholar] [CrossRef]
- Shopska, V.; Denkova-kostova, R. Modeling in Brewing—A Review. Processes 2022, 10, 267. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Haifeng, Z. Non-Alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Haifeng, Z. Functionality of Special Beer Processes and Potential Health Benefit. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Silva, M.C.; Dos Anjos, J.P.; Guarieiro, L.L.N.; Machado, B.A.S. A simple method for evaluating the bioactive phenolic compounds’ presence in brazilian craft beers. Molecules 2021, 26, 4716. [Google Scholar] [CrossRef] [PubMed]
- Mazengia, G.; Dessalegn, E.; Dessalegn, T. Effect of Moringa stenopetala leaf extracts on the physicochemical characteristics and sensory properties of lagered beer. Food Sci. Nutr. 2022, 10, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Humia, B.V.; Santos, K.S.; Schneider, J.K.; Leal, I.L.; de Abreu Barreto, G.; Batista, T.; Machado, B.A.S.; Druzian, J.I.; Krause, L.C.; da Costa Mendonça, M.; et al. Physicochemical and sensory profile of Beauregard sweet potato beer. Food Chem. 2020, 312, 126087. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, M.; Trusek, A. Non-alcoholic beer production—An overview. Polish J. Chem. Technol. 2018, 20, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Murray, D.; Leveritt, M. Beer as a sports drink? Manipulating beer’s ingredients to replace lost fluid. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 593–600. [Google Scholar] [CrossRef]
- Mastanjević, K.; Krstanović, V.; Lukinac, J.; Jukić, M.; Lučan, M.; Mastanjević, K. Craft brewing—Is it really about the sensory revolution? Kvas. Prum. 2019, 65, 13–16. [Google Scholar] [CrossRef]
- Gómez-Corona, C.; Escalona-Buendía, H.B.; García, M.; Chollet, S.; Valentin, D. Craft vs. industrial: Habits, attitudes and motivations towards beer consumption in Mexico. Appetite 2016, 96, 358–367. [Google Scholar] [CrossRef]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
- Merlino, V.M.; Blanc, S.; Massaglia, S.; Borra, D. Innovation in craft beer packaging: Evaluation of consumer perception and acceptance. AIMS Agric. Food 2020, 5, 422–433. [Google Scholar] [CrossRef]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A review of the potential health benefits of low alcohol and alcohol-free beer: Effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The role of bioactive phenolic compounds on the impact of beer on health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef]
- Marques, D.R.; Cassis, M.A.; Quelhas, J.O.F.; Bertozzi, J.; Visentainer, J.V.; Oliveira, C.C.; Monteiro, A.R.G. Characterization of craft beers and their bioactive compounds. Chem. Eng. Trans. 2017, 57, 1747–1752. [Google Scholar] [CrossRef]
- Silva, S.; Cruz, A.; Oliveira, R.F.; Oliveira, A.I.; Pinho, C. Potential biological activities of craft beer: A review. ACTA Port. Nutr. 2021, 25, 84–89. [Google Scholar]
- Cheiran, K.P.; Raimundo, V.P.; Manfroi, V.; Anzanello, M.J.; Kahmann, A.; Rodrigues, E.; Frazzon, J. Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem. 2019, 286, 113–122. [Google Scholar] [CrossRef]
- Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-products in the malting and brewing industries-re-usage possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T.L.; Hajirahimkhan, A.; Mbachu, O.; Chen, S.N.; Chadwick, L.; Nikolic, D.; Van Breemen, R.B.; Pauli, G.F.; Dietz, B.M. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem. Res. Toxicol. 2019, 32, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces cerevisiae var. boulardii: Valuable probiotic starter for craft beer production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef] [Green Version]
- Habschied, K.; Krstanovi, V. Beer Quality Evaluation—A Sensory Aspect. Beverages 2022, 8, 15. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.d.C.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Mutz, Y.S.; Rosario, D.K.A.; Conte-Junior, C.A. Insights into chemical and sensorial aspects to understand and manage beer aging using chemometrics. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3774–3801. [Google Scholar] [CrossRef]
- Gómez-López, J. Sensory Evaluation of Beer; Elsevier LTD. Woodhead Publishing: Oxford, UK, 2020; ISBN 9780081020791. [Google Scholar]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef]
- Tozetto, L.T.; Nascomento, R.F.; Oloveora, M.; Beok, J.; Giovanetti Cantero, M.H. Bia Gừng.Pdf. Food Sci. Technol. Campinas 2019, 39, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Sriwichai, W.; Detchewa, P.; Prasajak, P. Evaluation of The Physicochemical, Sensorial and Antioxidant Properties of Functional Ale Beer Brewed with Rice and Fruit by-Products. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 1–12. [Google Scholar] [CrossRef]
- de Alves, M.M.; da Rosa, M.S.; Santos, P.P.A.D.; da PAZ, M.F.; Morato, P.N.; Fuzinatto, M.M. Artisanal beer production and evaluation adding rice flakes and soursop pul (Annona muricata L.). Food Sci. Technol. 2020, 40, 545–549. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Rodriguez-Mendez, M.L.; Lozano, J.; Razavi, S.H.; Ahmadi, H.; Apetrei, C. Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools. Expert Syst. Appl. 2012, 39, 4315–4327. [Google Scholar] [CrossRef]
- Medoro, C.; Cianciabella, M.; Camilli, F.; Magli, M.; Gatti, E.; Predieri, S. Sensory Profile of Italian Craft Beers, Beer Taster Expert versus Sensory Methods: A Comparative Study. Food Nutr. Sci. 2016, 7, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Barker, S.; McSweeney, M.B. An analysis of the sensory properties, emotional responses and social settings associated with non-alcoholic beer. Food Qual. Prefer. 2022, 98, 104456. [Google Scholar] [CrossRef]
- Blanco, C.A.; Andrés-Iglesias, C.; Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1379–1388. [Google Scholar] [CrossRef]
- Müller, M.; Gastl, M.; Becker, T. Key constituents, flavour profiles and specific sensory evaluation of wheat style non-alcoholic beers depending on their production method. J. Inst. Brew. 2021, 127, 262–272. [Google Scholar] [CrossRef]
- Lafontaine, S.; Senn, K.; Dennenlöhr, J.; Schubert, C.; Knoke, L.; Maxminer, J.; Cantu, A.; Rettberg, N.; Heymann, H. Characterizing volatile and nonvolatile factors influencing flavor and American consumer preference toward nonalcoholic beer. ACS Omega 2020, 5, 23308–23321. [Google Scholar] [CrossRef]
- Paiva, R.A.M.; Mutz, Y.S.; Conte-Junior, C.A. A review on the obtaining of functional beers by addition of non-cereal adjuncts rich in antioxidant compounds. Antioxidants 2021, 10, 1132. [Google Scholar] [CrossRef]
- Djordjevic, S.; Popovic, D.; Despotovic, S.; Veljovic, M.; Atanackovic, M.; Cvejic, J.; Nedovic, V.; Leskosek-Cukalovic, I. Extracts of medicinal plants—As functional beer additives. Chem. Ind. Chem. Eng. Q. 2016, 22, 301–308. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Guido, A.; Liberatore, C.M.; Ganino, T.; Lazzi, C.; Chiancone, B. From byproduct to resource: Fermented apple pomace as beer flavoring. Foods 2019, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Suthovski, G.; Corassa, R.; Silva, T.O.; Silva, C.P.; Weber, J.; Gallina, A.L.; Soares, L.C.; Pizatto, E.; Cereto, C.E.; Dalmolin, C.; et al. Development of craft Beer with pecan shell aqueous extract [(Carya illinoensis) (Wangenh) C. Koch]. Conjecturas 2021, 21, 448–461. [Google Scholar] [CrossRef]
- Nardini, M.; Foddai, M.S. Phenolics profile and antioxidant activity of special beers. Molecules 2020, 25, 2466. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburu-Chau, C.; Parra, C. Brewing of a Porter Craft Beer Enriched with the Plant Parastrephia lucida: A Promising Source of Antioxidant Compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Pereira, I.M.C.; Matos Neto, J.D.; Figueiredo, R.W.; Carvalho, J.D.G.; Figueiredo, E.A.T.D.; Menezes, N.V.S.D.; Gaban, S.V.F. Physicochemical characterization, antioxidant activity, and sensory analysis of beers brewed with cashew peduncle (Anacardium occidentale) and orange peel (Citrus sinensis). Food Sci. Technol. 2020, 40, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, P.A.; Vidal, J.; Ávila, M.I.; Labbe, M.; Cohen, S.; Salazar, F.N. Effect of the addition of propolis extract on bioactive compounds and antioxidant activity of craft beer. J. Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Veljovic, M.; Despotovic, S.; Stojanovic, M.; Pecic, S.; Vukosavljevic, P.; Belovic, M.; Leskosek-Cukalovic, I. The fermentation kinetics and physicochemical properties of special beer with addition of prokupac grape variety. Chem. Ind. Chem. Eng. Q. 2015, 21, 391–397. [Google Scholar] [CrossRef]
- Gasiński, A.; Kawa-Rygielska, J.; Mikulski, D.; Kłosowski, G.; Głowacki, A. Application of white grape pomace in the brewing technology and its impact on the concentration of esters and alcohols, physicochemical parameteres and antioxidative properties of the beer. Food Chem. 2022, 367, 130646. [Google Scholar] [CrossRef] [PubMed]
- Durga Prasad, C.G.; Vidyalakshmi, R.; Baskaran, N.; Tito Anand, M. Influence of Pichia myanmarensis in fermentation to produce quinoa based non-alcoholic beer with enhanced antioxidant activity. J. Cereal Sci. 2022, 103, 103390. [Google Scholar] [CrossRef]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Vegara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-added lager beer enriched with eggplant (Solanum melongena L.) peel extract. Molecules 2020, 25, 731. [Google Scholar] [CrossRef] [Green Version]
- Gasinski, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gasior, J.; Pietrzak, W. Volatile Compounds Content, Physicochemical Parameters, and Antioxidant Activity of Beers with Addition of Mango Fruit (Mangifera Indica). Molecules 2020, 20, 3033. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. Lwt 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Gasinski, A.; Kawa-Rygielska, J.; Szumny, A.; Gasior, J.; Głowack, A. Assessment of Volatiles and Polyphenol Content, Physicochemical Parameters and Antioxidant Activity in Beers with Dotted Hawthorn (Crataegus punctata). Foods 2020, 9, 775. [Google Scholar] [CrossRef]
- Piva, R.C.; Verdan, M.H.; Mascarenhas Santos, M.d.S.; Batistote, M.; Cardoso, C.A.L. Manufacturing and characterization of craft beers with leaves from Ocimum selloi Benth. J. Food Sci. Technol. 2021, 58, 4403–4410. [Google Scholar] [CrossRef] [PubMed]
- Belscak-Cvitanovic, A.; Nedovic, V.; Salevic, A.; Despotovic, S.; Komes, D.; Niksic, M.; Bugarski, B.; Leskosek-Cukalovic, I. Modification of functional quality of beer by using microencapsulated green tea (Camellia sinensis L.) and Ganoderma mushroom (Ganoderma lucidum L.) bioactive compounds. Chem. Ind. Chem. Eng. Q. 2017, 23, 457–471. [Google Scholar] [CrossRef]
- Spessoto, F.A.; Fonteles, N.T.; Pizato, S.; Vega-Herrera, S.S.; Paredes-Mur, J.S.; Cortez-Vega, W.R. Determination of anthocyanins content and antioxidant activity of beer from Chicha Morada obtained of the purple corn (Zea mays L.). J. Bioenergy Food Sci. 2020, 7, 1–8. [Google Scholar]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; D’Amelia, V.; et al. Comparative phytochemical characterization, genetic profile, and antiproliferative activity of polyphenol-rich extracts from pigmented tubers of different solanum tuberosum varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [Green Version]
- Dranca, F.; Oroian, M. Total Monomeric Anthocyanin, Total Phenolic Content and Antioxidant Activity of Extracts from Eggplant (Solanum Melongena L.) Peel Using Ultrasonic Treatments. J. Food Process Eng. 2017, 40, e12312. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Gorjanović, S.Ž.; Novaković, M.M.; Potkonjak, N.I.; Ida, L.Č.; Sužnievič, D.Ž. Application of a novel antioxidative assay in beer analysis and brewing process monitoring. J. Agric. Food Chem. 2010, 58, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Sanna, V.; Pretti, L. Effect of wine barrel ageing or sapa addition on total polyphenol content and antioxidant activities of some Italian craft beers. Int. J. Food Sci. Technol. 2015, 50, 700–707. [Google Scholar] [CrossRef]
- Ditrych, M.; Kordialik-Bogacka, E.; Czyzowska, A. Antiradical and reducing potential of commercial beers. Czech J. Food Sci. 2015, 33, 261–266. [Google Scholar] [CrossRef]
- Zhao, H. Effects of Processing Stages on the Profile of Phenolic Compounds in Beer; Elsevier Inc.: Oxford, UK, 2015; ISBN 9780124047099. [Google Scholar]
- Socha, R.; Pająk, P.; Fortuna, T.; Buksa, K. Antioxidant activity and the most abundant phenolics in commercial dark beers. Int. J. Food Prop. 2017, 20, S595–S609. [Google Scholar] [CrossRef]
- Dietz, C.; Cook, D.; Huismann, M.; Wilson, C.; Ford, R. The multisensory perception of hop essential oil: A review. J. Inst. Brew. 2020, 126, 320–342. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Miró, P.; Serra-Cayuela, A.; Buxaderas, S.; López-Tamames, E. Assessment of the aroma profiles of low-alcohol beers using HS-SPME-GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- Peña-Gómez, N.; Ruiz-Rico, M.; Pérez-Esteve, É.; Fernández-Segovia, I.; Barat, J.M. Microbial stabilization of craft beer by filtration through silica supports functionalized with essential oil components. LWT 2020, 117, 108626. [Google Scholar] [CrossRef]
Plant Added | Addition Part | Type of Beer | Brewing Process Stage | Conventional Beer TPC (mg GAE/L) | Enriched Beer TPC (mg GAE/L) | Conventional beer TFC (mg QE/L) | Enriched Beer TFC (mg QE/L) | References |
---|---|---|---|---|---|---|---|---|
Parastrephia lucida (romero or tola) | dried leaves | American Porter | maturation | 413.21 | 480.16–800.64 | 333.47 | 346.67–601.12 | [48] |
Citrus sinensis (orange) | peel | Craft | fermentation | 516.4 | 515.9–726.6 | - | - | [49] |
Anacardium occidentale (cashew nut) | peduncule | 640.9–722.3 | - | - | ||||
Propolis | extract | Golden ale | maturation | 242.0 | 253–306.5 | 16.9 | 19.6–26.9 | [50] |
Prokupac grape | fruit | Craft | fermentation | 467.78 | 550–569.3 | - | - | [51] |
White grape | pomace | Lager | fermentation | 219.028 | 321.584–501.459 | - | - | [52] |
Chenopodium quinoa (quinoa) | seeds | Non-alcoholic | wort boiling | 208.66 | 221.64–271.24 | 20.65 | 24.29–30.85 | [53] |
Lycium barbarum (goji berry) | fruit | Amber ale | fermentation | 335 | 357–623 | - | - | [54] |
Hibiscus sabdariffa (red sorrel) | calices powdered extract | Ale | maturation | 294.18 | 410.62–743.16 | - | - | [55] |
Solanum melongena L. (eggplant) | peel extract | Lager | after maturation | 0.416–0.426 | 0.433–0.631 | 0.063–0.065 | 0.074–0.175 | [56] |
Mangifera Indica (mango) | fruit/pulp | Craft | fermentation | 187.4 | 218.6–267.6 | - | - | [57] |
Cydonia oblonga (quince) | fruit | Amber ale | maturation | 13.47 | 15.9–17.55 | - | - | [58] |
Ipomoea batatas (sweet potato) | root | Pale ale | wort boiling | 210.92 | 218.38–230.5 | 17.53 | 16.02–21.31 | [13] |
Crataegus punctata (dotted hawthorn) | fruit and juice | American Saison | fermentation | 200 | 279.6–410.1 | - | - | [59] |
Ocimum selloi (green pepper basil) | leaves | Craft | fermentation | 291.2 | 359–371.9 | - | - | [60] |
Melissae folium (lemon balm leaves) Thymi vulgaris herba (wild thyme) Juniperi fructus (juniper cone) Urticae radix (nettle) Lupuli strobuli (hops strobilus) | extract | Lager | after packaging | 280.26 | 316–384 | - | - | [44] |
Camellia sinensis L. (tea tree) | Extract microencapsulate | Pilsner beer | after packaging | <300 | <600 <1200 | - | - | [61] |
Plant Added | Addition Part | Brewing Process Stage | Control Beer—DPPH Assay | Enriched Beer—DPPH Assay | Control Beer—FRAP Assay | Enriched Beer—FRAP Assay | Control Beer—ABTS Assay | Enriched Beer—ABTS Assay | Control Beer—ORAC Assay | Enriched Beer—ORAC Assay | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Parastrephia lucida (romero or tola) | dried leaves | maturation | - | - | 1.88 mM TE | 2.17–5.46 mM TE | 1.15 mM TE | 1.38–3.34 mM TE | 7.86 mM TE | 10.14–30.58 mM TE | [48] |
Citrus sinensis (orange) | peel | fermentation | - | - | - | - | 1604.7 µM/L | 1580.06–1736.9 µM/L | - | - | [49] |
Anacardium occidentale (cashew nut) | peduncle | - | - | - | 1567.9–1725.1 µM/L | - | - | ||||
Propolis | extract | maturation | 0.533 mmol TE/L | 0.491–0.576 mmol TE/L | 1415.0 µmol TE/L | 1555.0–1892.5 µmol TE/L | 0.629 mmol TE/L | 0.687–0.808 mmol TE/L | - | - | [50] |
Prokupac grape | fruit | fermentation | 0.73 mM TE | 1.02–1.05 mM TE | 1.28 mM TE | 2.64–2.65 mM TE | - | - | - | - | [51] |
White grape | pomace | fermentation | 0.482 mmol TE/dm³ | 0.6–1.4 mmol TE/dm³ | 1.5 mmol TE/dm³ | 1.8–3.6 mmol TE/dm³ | 1.581 mmol TE/dm³ | 1.2–4.1 mmol TE/dm³ | - | - | [52] |
Chenopodium quinoa (quinoa) | seeds | wort boiling | 4.52 mMol/TE | 4.70–4.86 mMol/TE | 0.94 mMol/TE | 1.16–1.48 mMol/TE | - | - | - | [53] | |
Lycium barbarum (goji berry) | fruit | fermentation | - | - | - | - | - | - | 8.87 mmol/L TE | 10.03–16.84 mmol/L TE | [54] |
Hibiscus sabdariffa (red sorrel) | calices powdered extract | maturation | - | - | - | - | 3.94 mmol TE/L | 5.71–6.67 mmol TE/L | - | - | [55] |
Solanum melongena L. (eggplant) | peel extract | after maturation | 0.926 mmol TE/mL | 1.244–1.333 mmol TE/mL | - | - | 0.086 mmol TE/mL | 0.084–0.140 mmol TE/mL | - | - | [56] |
Mangifera Indica (mango) | fruit/pulp | fermentation | 1.44 mmol TE/L | 1.44–2.05 mmol TE/L | 1.04 mmol TE/L | 1.32–1.69 mmol TE/L | 0.97 mmol TE/L | 1.25–1.74 mmol TE/L | - | - | [57] |
Ipomoea batatas (sweet potato) | root | wort boiling | 18.79 IC50 (μL) | 16.05–18.69 IC50 (μL) | - | - | - | - | - | - | [13] |
Crataegus punctata (dotted hawthorn) | fruit and juice | fermentation | 0.352 mmol TE/L | 0.443–2.175 mmol TE/L | 0.512 mmol TE/L | 0.869–1.35 mmol TE/L | 0.936 mmol TE/L | 1.356–2.041 mmol TE/L | - | - | [59] |
Ocimum selloi (green pepper basil) | leaves | fermentation | 30.09 % inhibition | 34.0–69.9 % inhibition | - | - | - | - | - | - | [60] |
Melissae folium (lemon balm leaves) | extract | after packaging | 2.54 mM TE | 3.05 mM TE | 4.15 mM TE | 4.51 mM TE | - | - | - | - | [44] |
Thymi vulgaris herba (wild thyme) | 3.72 mM TE | 4.71 mM TE | |||||||||
Urticae radix (nettle) | 2.85 mM TE | 4.25 mM TE | |||||||||
Junupei fructus (juniper cone) | 3.14 mM TE | 4.55 mM TE | |||||||||
Lupuli strobuli (hops strobilus) | 2.83 mM TE | 4.27 mM TE | |||||||||
Zea mays L. (corn) | extracts of seed and cob | - | - | 23.93 IC50 gmL−1 | - | - | - | - | - | - | [62] |
Plant Added | Brewing Process Stage | Type of Beer | Additional Tech Specifics | Extra Antioxidant Compounds | Sensory Enhancements | Disadvantages to Overcome | Difficulty of Implementation | Cost of Implementation Time/$$ | References |
---|---|---|---|---|---|---|---|---|---|
Parastrephia lucida (romero or tola) | maturation | Dark | Added dried leaves in steps in a straining bag similar to the dry hopping process | - | light herbal flavor | increased astringency | [48] | ||
Citrus sinensis (orange) | fermentation | Ale | 5 g/L fresh fruit peel added to beer during the first step of the fermentation process | flavonoids catechin and rutin | higher quality, more stable flavor and aroma, foam stability and longer shelf life | increased acidity, higher pH, lesser total soluble solid | [49] | ||
Anacardium occidentale (cashew nut) | - | - | - | - | - | ||||
Propolis | maturation | - | 0.25 g/L ethanolic extract of propolis by a magnetic stir bar agitation in the dark for 24 h | coumaric acid, cinnamic acid, and caffeic acid | Natural preservatives for beer. | Allergic reactions | [50] | ||
Prokupac grape | fermentation | Ale | Up to 30% of grape mash from crushed/pressed fruit | - | higher rate of fermentation, higher alcohol % | Increase of lightness of beer or shifts to redness | [51] | ||
White grape | fermentation | Ale | 200 g/l fresh fruits added to beer during the first step of the fermentation process | Catechin, Resveratrol | higher quality, more stable flavor and aroma, foam stability and longer shelf life | increased concentration of organic acids and decreased fermentable sugars | [52] | ||
Chenopodium quinoa (quinoa) | wort boiling | Pils | 30% quinoa wort Fermented with P. myanmarensis | Ethyl acetate, Methyl acetate and ethyl propionate | Higher antioxidant potential more volatiles, increasing the flavor | Decreased enzyme concentration, reduced ethanol content | [53] | ||
Lycium barbarum (goji berry) | fermentation | Ale | 50 g/L ground goji 1 h boiling at 100 °C | rutin and 2-O-β-D-glucopyranosyl-L31 ascorbic acid | lower turbidity, high color intensity, caramel and coffee-like taste | Reddish color, plant odor | [54] | ||
Solanum melongena L. (eggplant) | after maturation | Lager | 10 mg/mL extract from eggplant peels | anthocyanins delphinidin-3-rutinoside, delphinidin-3-glucoside and delphinidin-3-rutinoside-5-glucoside | Good stability | reddish color because of the presence of anthocyanin pigments | [56] | ||
Mangifera Indica (mango) | fermentation | Light beer | heated homogenate of raw fruit pieces or mango leaves, followed by pasteurization at 15 PU | Maltol, 4 H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, 5-Hydroxymethylfurfural, Furan-2-carboxaldehyde, 5-(1-piperidinyl) | lower pH, higher micro stability | increased risk of beer contamination, [32]. | [57] | ||
Ipomoea batatas (sweet potato) | wort boiling | Pale Ale/LAB | sweet potato flakes dried in the absence of light replacing 50% of grist (crushed malt) and previously held for 1 h at 62 °C for starch gelatinization | High anthocyanin and β-carotene content | balance between flavor and aroma; cheaper costs | - | | [13] | |
Crataegus punctata (dotted hawthorn) | fermentation | Ale | 10% (w/v) juice/fruit in the last 3 days of fermentation | - | reduces the pH, improves the aroma compounds | Less foaminess | [59] | ||
Ocimum selloi (green pepper basil) | fermentation | Lager/NAB | aqueous extract at 0.1% (m/v) added after the fermentation step | - | increased shelf-life performance | - | [60] | ||
Melissae folium (lemon balm leaves) | after packaging | Pils | Ethanol-water extraction from leafs Ethanol-water extraction from roots Ethanol-water extracts from berries | flavonoids, rosmarinic acid and triterpenes | improved antimicrobial and antioxidative properties | - | | [44] | |
Thymi vulgaris herba (wild thyme) | Wheat beer | flavonoids and triterpenes | - | ||||||
Urticae radix (nettle) | Pils | lectins, sterols (β-sitosterol), lignans. | Plant/Herbal flavor | ||||||
Junupei fructus (juniper cone) | Lager | flavonoids, tannins, oligomeric proanthocyanidins | - | ||||||
Lupuli strobuli (hops strobilus) | Blond, red | flavonoids, tannins, oligomeric proanthocyanidins | - | ||||||
Zea mays L. (corn) | - | Chicha Morada NAB | Added Seed and cob, boiled at 100 °C for approximately 20 min; cheaper row material | Anthocyanins cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside | purple color | The degradation of anthocyanins in beer is related to the thermal process. | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borșa, A.; Muntean, M.V.; Salanță, L.C.; Tofană, M.; Socaci, S.A.; Mudura, E.; Pop, A.; Pop, C.R. Effects of Botanical Ingredients Addition on the Bioactive Compounds and Quality of Non-Alcoholic and Craft Beer. Plants 2022, 11, 1958. https://doi.org/10.3390/plants11151958
Borșa A, Muntean MV, Salanță LC, Tofană M, Socaci SA, Mudura E, Pop A, Pop CR. Effects of Botanical Ingredients Addition on the Bioactive Compounds and Quality of Non-Alcoholic and Craft Beer. Plants. 2022; 11(15):1958. https://doi.org/10.3390/plants11151958
Chicago/Turabian StyleBorșa, Andrei, Mircea Valentin Muntean, Liana Claudia Salanță, Maria Tofană, Sonia Ancuța Socaci, Elena Mudura, Anamaria Pop, and Carmen Rodica Pop. 2022. "Effects of Botanical Ingredients Addition on the Bioactive Compounds and Quality of Non-Alcoholic and Craft Beer" Plants 11, no. 15: 1958. https://doi.org/10.3390/plants11151958
APA StyleBorșa, A., Muntean, M. V., Salanță, L. C., Tofană, M., Socaci, S. A., Mudura, E., Pop, A., & Pop, C. R. (2022). Effects of Botanical Ingredients Addition on the Bioactive Compounds and Quality of Non-Alcoholic and Craft Beer. Plants, 11(15), 1958. https://doi.org/10.3390/plants11151958