Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple (Malus domestica) and Black Chokeberry (Aronia melanocarpa) Juice Blends
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Reagents and Standards
3.2. Raw Materials
3.3. Juice Processing and Storage
3.4. Physicochemical Parameters
3.5. Total Phenolic Content
3.6. Total Anthocyanin Content
3.7. Ascorbic Acid Content
3.8. DPPH Free Radical-Scavenging Activity
3.9. Juice Color Parameters
3.10. Sensory Evaluation
3.11. Statistical Data Evaluation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Francini, A.; Sebastiani, L. Phenolic compounds in apple (Malus × domestica Borkh.): Compounds characterization and stability during postharvest and after processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods; Commercial trends, research and health implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Verschuren, P.M. Functional foods—Scientific and global perspectives. Br. J. Nutr. 2002, 88 (Suppl. S2), S125–S130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B. Sustainable Functional Food Processing. Foods 2021, 10, 1438. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J. The influence of addition of cranberrybush juice to pear juice on chemical composition and antioxidant properties. J. Food Sci. Technol. 2018, 55, 3399–3407. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, A.; Farid, M.; Silva, F.V.M. Quality stability and sensory attributes of apple juice processed by thermosonication pulsed electric field and thermal processing. Food Sci. Technol. Int. 2017, 23, 64–71. [Google Scholar] [CrossRef]
- Wilczynski, K.; Kobus, Z.; Dziki, D. Effect of press construction on yield and quality of apple juice. Sustainability 2019, 11, 3630. [Google Scholar] [CrossRef] [Green Version]
- Baron, A.; Denes, J.M.; Durier, C. High-pressure treatment of cloudy apple juice. LWT—Food Sci. Technol. 2006, 39, 1005–1013. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, D.; Xi, P.; Cai, T.; Cao, X.; Liu, H.; Li, J. Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. LWT—Food Sci. Technol. 2021, 142, 111030. [Google Scholar] [CrossRef]
- Klimczak, I.; Gliszczyńska-Świgło, A. Green tea extract as an anti-browning agent for cloudy apple juice. J. Sci. Food Agric. 2017, 97, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Illera, A.E.; Chaple, S.; Sanz, M.T.; Ng, S.; Lu, P.; Jones, J.; Carey, E.; Bourke, P. Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chem. X 2019, 3, 100049. [Google Scholar] [CrossRef]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia Plants: A review of traditional use, biological activities, and perspectives for modern medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Hwang, E.S. Quality characteristics and antioxidant activity of yogurt supplemented with aronia (Aronia melanocarpa) juice. Prev. Nutr. Food Sci. 2016, 21, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [Green Version]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Dobričević, N.; Pliestić, S.; Galić, A.; Bilić, D.P.; Voća, S. Antioxidant potential of fruit juice with added chokeberry powder (Aronia melanocarpa). Molecules 2017, 22, 2158. [Google Scholar] [CrossRef] [Green Version]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT—Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Krbavčić, I.P.; Vujević, P.; Milinović, B.; Jurčević, I.L.; Vahčić, N. Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Pol. J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, D.; Podsędek, A.; Kucharska, A.Z.; Redzynia, M.; Opęchowska, M.; Koziołkiewicz, M. Comparison of in vitro anti-lipase and antioxidant activities, and composition of commercial chokeberry juices. Eur. Food Res. Technol. 2016, 242, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Hameed, F.; Kumar, A.; Hamid, N. Effect of thermal treatment and storage on the quality of apple juice. J. Pharmacogn. Phytochem. 2019, 8, 1976–1979. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.; Chen, Y.; Meng, A.; Liu, P.; Ye, K.; Yuan, A. Effect of different sterilization methods on the microbial and physicochemical changes in Prunus mume juice during storage. Molecules 2022, 27, 1197. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Afridi, S.R.; Ilyas, M.; Abid, H.; Sohail, M.; Khan, S.A. Effect of different chemical preservatives on the storage stability of mango-sea buckthorn blended juice. Pak. J. Biochem. Mol. Biol. 2012, 45, 6–10. [Google Scholar]
- Kaddumukasa, P.P.; Imathiu, S.M.; Mathara, J.M.; Nakavuma, J.L. Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, R.J.; Pandey, S. Juice blends—A way of utilization of under-utilized fruits, vegetables, and spices: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Mgaya-Kilima, B.; Remberg, S.F.; Chove, B.E.; Wicklund, T. Influence of storage temperature and time on the physicochemical and bioactive properties of roselle-fruit juice blends in plastic bottle. Food Sci. Nutr. 2014, 2, 181–191. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Imran, A.; Khan, R.; Ayub, M. Effect of added sugar at various concentrations on the storage stability of guava pulp. Sarhad J. Agric. 2000, 16, 89–93. [Google Scholar]
- Jaros, D.; Thamke, I.; Raddatz, H.; Rohm, H. Single-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference. Eur. Food Res. Technol. 2009, 229, 51–61. [Google Scholar] [CrossRef]
- Gralec, M.; Wawer, I.; Zawada, K. Aronia melanocarpa berries: Phenolics composition and antioxidant properties changes during fruit development and ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Beehcer, G.R.; Holden, J.M.; Haytowitiz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Zorić, Z.; Dragović-Uzelac, V.; Pedisić, S.; Kurtanjek, Ž.; Elez Garofulić, I. Kinetics of the degradation of anthocyanins, phenolic acids and flavonols during heat treatments of freeze-dried sour cherry marasca paste. Food Technol. Biotechnol. 2014, 52, 101–108. [Google Scholar]
- Brownmiller, C.; Howard, L.R.; Prior, R.L. Processing and storage effects on monomeric anthocyanins, percent polymeric colour, and antioxidant capacity of processed blueberry products. J. Food Sci. 2008, 5, H72–H79. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Allapat, B.; Allapat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Oke, M.O.; Olaniyan, S.A.; Ajala, A.S. A Review of Cyanogenic Glycosides in Edible Plants. In Toxicology—New Aspects to This Scientific Conundrum; Larramendy, M.L., Soleneski, S., Eds.; InTech: London, UK, 2016; pp. 179–191. [Google Scholar]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin content of seeds kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 1333–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef] [Green Version]
- Hoke, O.; Campbell, B.; Brand, M.; Hau, T. Impact of Information on Northeastern U.S. Consumer Willingness to Pay for Aronia Berries. HortScience 2017, 52, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Bajec, M.R.; Pickering, G.J. Astringency: Mechanisms and perception. Crit. Rev. Food Sci. Nutr. 2008, 48, 858–875. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Rawal, S.; Park, J.; Brand, M.H.; Sharafi, M.; Bolling, B.W. Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice. Appetite 2016, 107, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Patel, S.; Pan, X.; Naz, S.; Silva, A.S.; Saeed, F.; Suleria, H.A.R. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Troszyńska, A.; Narolewska, O.; Robredo, S.; Estrella, I.; Hernández, T.; Lamparski, G.; Amarowicz, R. The effect of polysaccharides on the astringency induced by phenolic compounds. Food Qual. Prefer. 2010, 21, 463–469. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Silva, A.M.; Evtuguin, D.V.; Nunes, F.M.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A. The hydrophobic polysaccharides of apple pomace. Carbohydr. Polym. 2019, 223, 115132. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Kolniak-Ostek, J.; Stokłosa, D. Effect of different sizes of ceramic membranes in the process of microfiltration on physicochemical parameters of chokeberry juice. Eur. Food Res. Technol. 2019, 245, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik, C.A.; Li, G.; Chrubasik, S. The Clinical Effectiveness of Chokeberry: A Systematic Review. Phytother. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant compounds, nutritional quality and colour of two strawberry genotypes from Fragaria × Ananassa. Erwerbs-Obstbau 2017, 59, 123–131. [Google Scholar] [CrossRef]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
Sampling Time | Samples | TSS (%) | TA (% as Malic Acid) | pH | TSS/TA |
---|---|---|---|---|---|
Immediately after processing | A | 13.57 ± 0.14 aA | 0.57 ± 0.02 cA | 3.28 ± 0.04 bA | 23.81 |
ABC5 | 13.75 ± 0.10 aB | 0.60 ± 0.03 cAB | 3.34 ± 0.02 cAB | 22.92 | |
ABC10 | 14.02 ± 0.13 aC | 0.64 ± 0.03 cBC | 3.38 ± 0.03 bBC | 21.91 | |
ABC15 | 14.32 ± 0.12 aD | 0.67 ± 0.03 cC | 3.41 ± 0.02 bCD | 21.22 | |
ABC20 | 14.50 ± 0.06 aE | 0.70 ± 0.04 cC | 3.44 ± 0.03 bD | 20.57 | |
BC | 18.55 ± 0.08 aF | 1.11 ± 0.06 cD | 3.63 ± 0.04 bE | 15.81 | |
Immediately after heat treatment | A | 13.67 ± 0.12 abA | 0.54 ± 0.03 bcA | 3.34 ± 0.04 bA | 25.31 |
ABC5 | 13.87 ± 0.05 bB | 0.56 ± 0.02 bcA | 3.39 ± 0.02 cAB | 24.77 | |
ABC10 | 14.15 ± 0.14 bC | 0.61 ± 0.04 bcAB | 3.41 ± 0.03 bBC | 23.20 | |
ABC15 | 14.40 ± 0.17 abD | 0.64 ± 0.04 bcB | 3.46 ± 0.02 bCD | 22.37 | |
ABC20 | 14.65 ± 0.08 bE | 0.66 ± 0.03 bcB | 3.49 ± 0.03 bD | 22.05 | |
BC | 18.68 ± 0.13 abF | 1.05 ± 0.07 bcC | 3.72 ± 0.04 cE | 16.84 | |
After two months storage at 20 °C | A | 13.72 ± 0.12 bcA | 0.51 ± 0.02 abA | 3.28 ± 0.03 bA | 23.66 |
ABC5 | 13.95 ± 0.10 bcB | 0.52 ± 0.02 abA | 3.31 ± 0.03 bAB | 23.64 | |
ABC10 | 14.27 ± 0.05 bC | 0.56 ± 0.03 abAB | 3.32 ± 0.02 aABC | 22.30 | |
ABC15 | 14.53 ± 0.08 bcD | 0.60 ± 0.04 abBC | 3.35 ± 0.03 aBC | 21.22 | |
ABC20 | 14.72 ± 0.08 bE | 0.63 ± 0.04 abC | 3.37 ± 0.04 aC | 21.88 | |
BC | 18.77 ± 0.14 bcF | 0.97 ± 0.06 abD | 3.58 ± 0.03 bD | 16.15 | |
After four months storage at 20 °C | A | 13.82 ± 0.08 cA | 0.48 ± 0.02 aA | 3.17 ± 0.02 aA | 22.29 |
ABC5 | 14.05 ± 0.10 cB | 0.50 ± 0.03 aAB | 3.25 ± 0.03 aAB | 22.30 | |
ABC10 | 14.33 ± 0.15 bC | 0.53 ± 0.02 aAB | 3.32 ± 0.02 aABC | 21.38 | |
ABC15 | 14.62 ± 0.11 cD | 0.55 ± 0.03 aBC | 3.37 ± 0.03 aBC | 20.42 | |
ABC20 | 14.80 ± 0.09 bE | 0.59 ± 0.03 aC | 3.40 ± 0.03 aC | 19.60 | |
BC | 18.83 ± 0.12 cF | 0.92 ± 0.05 aD | 3.50 ± 0.02 aD | 15.78 |
Sampling Time | Samples | Total Anthocyanin Content (mg CGE/100 mL) | Total Phenolic Content (mg GAE/100 mL) | Ascorbic Acid Content (mg/100 mL) | DPPH Radical Scavenging Activity (mmol Trolox/100 mL) |
---|---|---|---|---|---|
Immediately after processing | A | 3.04 ± 0.18 aD | 16.13 ± 0.73 aD | 8.56 ± 0.38 aD | 1.07 ± 0.06 aD |
ABC5 | 22.14 ± 0.98 bD | 49.84 ± 2.43 bD | 11.56 ± 0.48 bD | 2.11 ± 0.09 bD | |
ABC10 | 41.73 ± 1.87 cD | 83.36 ± 3.98 cD | 14.22 ± 0.66 cD | 2.93 ± 0.14 cD | |
ABC15 | 58.74 ± 2.68 dD | 116.42 ± 5.67 dD | 15.87 ± 0.62 cD | 3.97 ± 0.18 dD | |
ABC20 | 75.98 ± 3.65 eD | 142.49 ± 6.66 eD | 19.67 ± 0.89 dD | 4.95 ± 0.23 eD | |
BC | 366.54 ± 15.32 fD | 678.04 ± 30.42 fD | 62.33 ± 2.86 eD | 19.77 ± 0.78 fD | |
Immediately after heat treatment | A | 2.62 ± 0.12 aC | 14.06 ± 0.64 aC | 4.45 ± 0.18 aC | 0.88 ± 0.05 aC |
ABC5 | 19.16 ± 0.84 bC | 44.46 ± 2.26 bC | 5.72 ± 0.24 bC | 1.78 ± 0.08 bC | |
ABC10 | 34.51 ± 1.66 cC | 72.19 ± 3.46 cC | 6.64 ± 0.28 cC | 2.33 ± 0.12 cC | |
ABC15 | 46.47 ± 2.08 dC | 98.28 ± 3.97 dC | 7.63 ± 0.34 dC | 3.05 ± 0.16 dC | |
ABC20 | 57.68 ± 2.68 eC | 114.27 ± 4.98 eC | 9.38 ± 0.40 eC | 3.66 ± 0.16 eC | |
BC | 272.33 ± 12.61 fC | 517.34 ± 18.55 fC | 29.11 ± 0.98 fC | 14.32 ± 0.68 fC | |
After two months storage at 20 °C | A | 1.71 ± 0.09 aB | 11.94 ± 0.46 aB | 2.72 ± 0.16 aB | 0.61 ± 0.04 aB |
ABC5 | 15.09 ± 0.54 bB | 40.45 ± 1.78 bB | 3.43 ± 0.22 abB | 1.42 ± 0.08 bB | |
ABC10 | 26.27 ± 1.18 cB | 63.11 ± 2.88 cB | 3.96 ± 0.26 bcB | 1.82 ± 0.07 cB | |
ABC15 | 34.38 ± 1.62 dB | 85.26 ± 3.65 dB | 4.69 ± 0.19 cdB | 2.29 ± 0.10 dB | |
ABC20 | 41.30 ± 1.87 eB | 98.11 ± 4.56 eB | 5.44 ± 0.36 dB | 2.89 ± 0.15 eB | |
BC | 191.86 ± 8.78 fB | 438.86 ± 17.88 fB | 18.77 ± 0.88 eB | 10.32 ± 0.48 fB | |
After four months storage at 20 °C | A | 1.10 ± 0.06 aA | 10.37 ± 0.41 aA | 1.56 ± 0.04 aA | 0.40 ± 0.02 aA |
ABC5 | 11.67 ± 0.43 bA | 32.89 ± 1.71 bA | 1.99 ± 0.06 bA | 1.12 ± 0.05 bA | |
ABC10 | 19.93 ± 0.81 cA | 53.28 ± 2.80 cA | 2.34 ± 0.05 cA | 1.39 ± 0.06 cA | |
ABC15 | 25.05 ± 1.09 dA | 70.64 ± 3.23 dA | 2.76 ± 0.05 dA | 1.70 ± 0.08 dA | |
ABC20 | 29.29 ± 1.46 eA | 80.11 ± 3.78 eA | 3.34 ± 0.14 eA | 2.11 ± 0.11 eA | |
BC | 133.61 ± 6.88 fA | 336.61 ± 15.68 fA | 9.86 ± 0.28 fA | 7.24 ± 0.32 fA |
Sample | Color Values | Immediately after Processing | After Heat Treatment | After 2 Months Storage at 20 °C | After 4 Months Storage at 20 °C |
---|---|---|---|---|---|
A | L* | 83.99 ± 3.71 a | 81.36 ± 2.37 a | 81.51 ± 2.34 a | 82.57 ± 2.13 a |
a* | 1.18 ± 0.40 b | −0.13 ± 0.08 a | −0.22 ± 0.07 a | −0.33 ± 0.02 a | |
b* | 9.83 ± 0.45 d | 7.08 ± 0.67 a | 8.22 ± 0.47 b | 8.87 ± 0.32 c | |
ΔE | - | 4.02 | 3.26 | 2.28 | |
ABC5 | L* | 59.81 ± 0.53 b | 58.53 ± 1.35 a | 60.58 ± 0.98 b | 62.17 ± 0.84 c |
a* | 24.94 ± 0.36 d | 20.55 ± 0.88 c | 19.48 ± 0.71 b | 18.04 ± 0.82 a | |
b* | −4.26 ± 0.22 a | −2.35 ± 0.12 b | −0.77 ± 0.08 c | 0.80 ± 0.09 d | |
ΔE | - | 4.95 | 6.52 | 8.87 | |
ABC10 | L* | 44.43 ± 2.91 a | 49.83 ± 2.06 b | 52.20 ± 2.11 b | 55.01 ± 1.18 c |
a* | 27.30 ± 1.42 d | 24.26 ± 0.74 c | 21.61 ± 0.48 b | 18.29 ± 0.59 a | |
b* | −2.61 ± 0.51 a | −2.72 ± 0.38 a | −0.50 ± 0.06 b | 1.29 ± 0.16 c | |
ΔE | - | 6.20 | 9.86 | 14.43 | |
ABC15 | L* | 45.74 ± 2.54 a | 49.41 ± 2.22 b | 51.88 ± 2.16 b | 55.31 ± 1.22 c |
a* | 26.88 ± 1.13 d | 22.69 ± 1.14 c | 19.48 ± 0.49 b | 15.67 ± 0.35 a | |
b* | −2.27 ± 1.21 a | −2.03 ± 0.21 a | −0.03 ± 0.32 b | 3.42 ± 0.23 c | |
ΔE | - | 5.58 | 9.88 | 15.81 | |
ABC20 | L* | 39.60 ± 3.30 a | 46.46 ± 2.06 b | 48.85 ± 1.92 bc | 51.37 ± 1.64 c |
a* | 26.00 ± 0.59 d | 21.99 ± 1.20 c | 19.47 ± 1.34 b | 16.57 ± 0.87 a | |
b* | 0.31 ± 0.05 b | −1.43 ± 0.26 a | 0.90 ± 0.28 c | 3.75 ± 0.22 d | |
ΔE | - | 8.14 | 11.33 | 15.47 | |
BC | L* | 33.81 ± 1.18 a | 37.68 ± 0.79 b | 38.96 ± 1.25 b | 40.54 ± 1.63 c |
a* | 20.97 ± 0.82 d | 16.30 ± 0.42 c | 14.03 ± 0.72 b | 12.29 ± 0.27 a | |
b* | 1.80 ± 0.19 b | 1.14 ± 0.09 a | 2.65 ± 0.12 c | 4.38 ± 0.20 d | |
ΔE | - | 6.10 | 8.69 | 11.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nour, V. Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple (Malus domestica) and Black Chokeberry (Aronia melanocarpa) Juice Blends. Plants 2022, 11, 2027. https://doi.org/10.3390/plants11152027
Nour V. Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple (Malus domestica) and Black Chokeberry (Aronia melanocarpa) Juice Blends. Plants. 2022; 11(15):2027. https://doi.org/10.3390/plants11152027
Chicago/Turabian StyleNour, Violeta. 2022. "Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple (Malus domestica) and Black Chokeberry (Aronia melanocarpa) Juice Blends" Plants 11, no. 15: 2027. https://doi.org/10.3390/plants11152027
APA StyleNour, V. (2022). Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple (Malus domestica) and Black Chokeberry (Aronia melanocarpa) Juice Blends. Plants, 11(15), 2027. https://doi.org/10.3390/plants11152027