Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent
Abstract
:1. Introduction
2. Results
2.1. Total Polyphenol Content and Antioxidant Capacity of By-Products’ Extracts from Capsicum chinense Jacq
2.2. Capsicum chinense By-Products Polyphenol Profile
2.3. Vitamin C
2.4. Vitamin A and E
2.5. Carotenoids
2.6. Correlation Analysis
2.7. Pearson’s Correlation
2.8. Principal Component Analysis (PCA)
3. Discussion
4. Materials and Methods
4.1. Chemical Reagents
4.2. By-Product Material
4.3. Honey (NADES-h)
4.4. Drying of Habanero Pepper’s By-Products
4.5. Preparation of NADES
4.6. Ultrasound-Assisted Extraction of Phenolic Compounds from Habanero Pepper’s By-Products
4.7. Evaluation of Total Polyphenol Content (TPC)
4.8. Evaluation of Extracts Antioxidant Capacity
4.8.1. DPPH Methodology
4.8.2. ABTS Methodology
4.9. Quantification and Identification of Individual Phenolic Compounds
4.10. Determination of Vitamins A, E and C
4.11. Determination of Carotenoids
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oney-Montalo, J.; López-Domínguez, C.; Zamacona-Ruiz, M.; Gómez-Rincón, E.; Ramíre-Sucrez, M.; Rodríguez-Buenfil, I. Metabolitos presentes en Capsicum chinense en dos estados de maduración cultivados en diferentes tipos de suelos de Yucatán, México. Bionatura 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Zamancona-Ruiz, M.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I. Comparación de dos Métodos de Extracción y Secado para la Cuantificación de Carotenoides en Chile Hananero. Rev. Cent. Grad. Investig. 2018, 33, 74. Available online: http://www.revistadelcentrodegraduados.com/2019/06/comparacion-de-dos-metodos-de.html (accessed on 5 April 2022).
- Chel-Guerrero, L.D.; Oney-montalvo, J.E.; Rodríguez-buenfil, I.M. Phytochemical characterization of by-products of habanero pepper grown in two different types of soils from Yucatán, Mexico. Plants 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 6 April 2022).
- Gayathri, N.; Gopalakrishnan, M.; Sekar, T. Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. Int. J. Adv. Pharm. Sci. 2016, 5, 12–20. [Google Scholar] [CrossRef]
- Herrera-Pool, E.; Patrón-Vázquez, J.; Ramos-Díaz, A.; Ayora-Talavera, T.; Pacheco, N. Extraction and identification of phenolic compounds in roots and leaves of Capsicum chinense by UPLC–PDA/MS. J. Bioeng. Biomed. Res. 2019, 3, 17–27. Available online: https://issuu.com/cmibqac/docs/jbbr-vol-3-no-2 (accessed on 25 April 2022).
- Chel-Guerrero, L.D.; Castañeda-Corral, G.; López-Castillo, M.; Scampicchio, M.; Morozova, K.; Oney-Montalvo, J.E.; Ferrentino, G.; Acevedo-Fernández, J.J.; Rodríguez-Buenfil, I.M. In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum chinense By-Products. Molecules 2022, 27, 1323. [Google Scholar] [CrossRef]
- Rodríguez-Buenfil, I.M.; Ramírez-Sucre, M.O.; Ramírez-Rivera, E. Metabolómica y Cultivo del Chile Habanero (Capsicum Chinense Jacq) de la Península de Yucatán, 1st ed.; CIATEJ: Jalisco, Mexico, 2020; Chapters 6–9, 11; pp. 95–169, 185–216. ISBN 978-607-8734-09-2. [Google Scholar]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef]
- Roy, W.R. Environmental Impact of Solvents: The Environmental Chemistry of Organic Solvents. In Handbook of Solvents: Second Edition; ChemTec Publishing: Scarborough, ON, Canada, 2014; Volume 2, pp. 361–385. [Google Scholar] [CrossRef]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Jambrak, A.R.; Granato, D.; Montesano, D.; Kovačević, D.B. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Craveiro, R.; Mano, F.; Paiva, A.; Duarte, A.R.C. Deep eutectic solvents: Exploring their role in nature. In Deep Eutectic Solvents: Synthesis, Properties, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 95–110. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Suppalak, P.; Gorawit, Y.; Poomraphie, N.; Seiichi, S.; Waraporn, P.; Satoshi, M.; Hiroyuki, T. Honey as solvent for the green extractio, analysis, and bioconversion of daidzin from Pueraria candollei var mirifica. Root. Pharmacogn. Mag. 2020, 16, 524–530. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2011, 11, 4897. [Google Scholar] [CrossRef]
- Chanioti, S.; Katsouli, M.; Tzia, C. Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules 2021, 26, 1781. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents—Ultrafast microwave-assisted NADES preparation and extraction. Food Chem. 2021, 366, 130562. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2021, 247, 117014. [Google Scholar] [CrossRef]
- Yang, M.; Cao, J.; Cao, F.; Lu, C.; Su, E. Efficient Extraction of Bioactive Flavonoids from Ginkgo biloba Leaves Using Deep Eutectic Solvent/Water Mixture as Green Media. Chem. Biochem. Eng. Q. 2018, 32, 315–324. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gomez-Alonso, S.; Perez-Navarro, J.; Pastene-navarrete, E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Ali Redha, A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J. Agric. Food Chem. 2021, 69, 878–912. [Google Scholar] [CrossRef] [PubMed]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Rente, D.; Paiva, A.; Duarte, A.R. The role of hydrogen bond donor on the extraction of phenolic compounds from natural matrices using deep eutectic systems. Molecules 2021, 26, 2336. [Google Scholar] [CrossRef] [PubMed]
- Troconis-Torres, I.G.; Rojas-López, M.; Hernández-Rodríguez, C.; Villa-Tanaca, L.; Maldonado-Mendoza, I.E.; Dorantes-Álvarez, L.; Tellez-Medina, D.; Jaramillo-Flores, M.E. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J. Biomed. Biotechnol. 2012, 2012, 873090. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Stupar, A.; Šeregelj, V.; Ribeiro, B.D.; Pezo, L.; Cvetanović, A.; Mišan, A.; Marrucho, I. Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrason. Sonochem. 2021, 76, 105638. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Dietz, C.H.J.T.; Van Spronsen, J.; Kroon, M.C.; Gallucci, F.; Van Sint Annaland, M.; Tuinier, R. A Search for Natural Hydrophobic Deep Eutectic Solvents Based on Natural Components. ACS Sustain. Chem. Eng. 2019, 7, 2933–2942. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015, 9, 5790–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, S.; Nam, T.G.; Lee, S.G.; Kim, Y.J.; Chun, O.K.; Kim, D.O. Additive antioxidant capacity of vitamin C and tocopherols in combination. Food Sci. Biotechnol. 2014, 3, 693–699. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (chaytor) franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
# Exp | Factors | Variable Response | ||||
---|---|---|---|---|---|---|
Variety | By-Product | Solvent * | TPC (mg GAE/100 g DM) | DPPH (% Inhibition) | ABTS (eq mg Trolox/g DM) | |
1 | Mayapan | Stem | NADES-cl | 9.18 ± 0.29 b | 54.21 ± 0.91 e | 9.55 ± 0.02 l |
2 | Jaguar | Stem | NADES-cl | 7.60 ± 0.56 a | 53.88 ± 1.11 e | 8.13 ± 0.05 h |
3 | Mayapan | Leaf | NADES-cl | 11.00 ± 0.54 c | 36.99 ± 1.30 d | 7.44 ± 0.08 f |
4 | Jaguar | Leaf | NADES-cl | 22.38 ± 0.07 f | 28.48 ± 1.95 c | 8.63 ± 0.03 j |
5 | Mayapan | Stem | NADES-h ** | 18.08 ± 0.03 d | 14.74 ± 2.81 b | 8.75 ± 0.01 k |
6 | Jaguar | Stem | NADES-h ** | 24.60 ± 0.81 g | 14.08 ± 5.69 b | 8.45 ± 0.03 i |
7 | Mayapan | Leaf | NADES-h ** | 28.12 ± 0.04 h | 7.09 ± 2.28 a | 7.85 ± 0.01 g |
8 | Jaguar | Leaf | NADES-h ** | 39.31 ± 0.09 k | 12.55 ± 2.73 ab | 7.16 ± 0.01 e |
9 | Mayapan | Stem | MeOH | 19.37 ± 0.03 e | 82.83 ± 4.12 f | 3.94 ± 0.02 d |
10 | Jaguar | Stem | MeOH | 33.90 ± 6.83 i | 81.36 ± 4.10 f | 3.58 ± 0.01 c |
11 | Mayapan | Leaf | MeOH | 37.75 ± 6.83 j | 78.32 ± 1.22 f | 2.62 ± 0.01 b |
12 | Jaguar | Leaf | MeOH | 63.80 ± 0.00 l | 77.84 ± 1.10 f | 1.58 ± 0.01 a |
Control | - | - | Honey *** | 0.67 ± 0.01 | 51.88 ± 2.27 | 0.44 ± 0.00 |
# Exp | Factors | Polyphenol Profile (mg/100 g DM) | |||||||
---|---|---|---|---|---|---|---|---|---|
Variety | By-Product | Solvent * | Gallic Acid | Protocatechuic Acid | Catechin | Chlorogenic Acid | Coumaric Acid | Cinnamic Acid | |
1 | Mayapan | Stem | NADES-cl | 2.82 ± 0.06 b | 2.91 ± 0.04 a | 50.20 ± 0.23 d | 15.74 ± 0.38 d | 0.00 ± 0.00 a | 2.06 ± 0.06 abc |
2 | Jaguar | Stem | NADES-cl | 0.82 ± 0.08 ab | 16.82 ± 12.31 b | 59.70 ± 6.04 e | 27.84 ± 2.28 f | 0.02 ± 0.03 a | 1.14 ± 0.61 ab |
3 | Mayapan | Leaf | NADES-cl | 15.21 ± 3.71 d | 1.36 ± 0.96 a | 9.64 ± 11.53 b | 7.57 ± 0.10 c | 0.00 ± 0.00 a | 2.58 ± 0.05 bc |
4 | Jaguar | Leaf | NADES-cl | 8.45 ± 0.74 c | 2.73 ± 0.17 a | 39.72 ± 0.81 c | 17.35 ± 0.09 e | 1.68 ± 0.07 e | 4.97 ± 0.83 d |
5 | Mayapan | Stem | NADES-h ** | 8.21 ± 0.15 c | 36.79 ± 12.31 c | 39.80 ± 6.04 c | 18.73 ± 2.28 e | 0.56 ± 0.03 b | 2.30 ± 0.61 bc |
6 | Jaguar | Stem | NADES-h ** | 6.42 ± 0.02 c | 59.63 ± 0.13 d | 69.88 ± 1.16 f | 30.29 ± 0.34 g | 1.45 ± 0.00 d | 2.03 ± 0.03 abc |
7 | Mayapan | Leaf | NADES-h ** | 0.66 ± 0.02 ab | 37.91 ± 0.13 c | 46.94 ± 0.26 cd | 10.58 ± 0.70 | 1.04 ± 0.12 c | 4.88 ± 0.05 d |
8 | Jaguar | Leaf | NADES-h ** | 13.10 ± 0.02 d | 39.78 ± 0.08 c | 52.39 ± 0.34 de | 18.78 ± 0.23 e | 2.77 ± 0.07 f | 7.20 ± 0.41 e |
9 | Mayapan | Stem | MeOH | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.14 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
10 | Jaguar | Stem | MeOH | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.12 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
11 | Mayapan | Leaf | MeOH | 2.31 ± 0.05 b | 0.00 ± 0.00 a | 12.83 ± 0.98 b | 0.98 ± 0.11 ab | 0.41 ± 0.00 b | 3.37 ± 0.14 cd |
12 | Jaguar | Leaf | MeOH | 1.92 ± 0.22 ab | 0.00 ± 0.00 a | 16.62 ± 2.58 b | 1.77 ± 0.27 b | 1.65 ± 0.32 de | 4.91 ± 0.81 d |
Control | - | - | Honey *** | 0.25 ± 0.00 | 0.27 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
# Exp | Polyphenol Profile (mg/100 g DM) | ||||||||
Rutin | Quercetin + Luteolin | Kaempferol | Vanillin | Diosmin + Hesperidin | Neohesperidin | Naringenin | Apigenin | Diosmetin | |
1 | 2.71 ± 0.14 ab | 0.72 ± 0.05 a | 0.00 ± 0.00 a | 1.41 ± 0.01 b | 1.93 ± 0.52 a | 0.66 ± 0.53 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
2 | 6.36 ± 2.07 bcd | 0.63 ± 0.02 a | 0.00 ± 0.00 a | 1.70 ± 0.06 bc | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
3 | 7.40 ± 2.36 cd | 2.99 ± 0.10 a | 0.46 ± 0.02 ab | 1.54 ± 0.05 b | 2.73 ± 0.67 a | 1.88 ± 1.33 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
4 | 16.82 ± 4.77 ef | 10.07 ± 0.85 b | 1.76 ± 0.10 bc | 4.14 ± 0.55 f | 59.64 ± 0.98 b | 1.16 ± 0.09 a | 0.00 ± 0.00 a | 1.27 ± 0.01 b | 5.25 ± 0.34 b |
5 | 4.92 ± 2.07 bc | 28.30 ± 0.02 d | 3.11 ± 0.00 c | 1.38 ± 0.06 b | 2.03 ± 0.00 a | 4.94 ± 0.00 a | 0.00 ± 0.00 a | 1.52 ± 0.00 b | 0.00 ± 0.00 a |
6 | 14.21 ± 0.13 e | 30.89 ± 0.11 d | 3.37 ± 0.02 c | 1.93 ± 0.02 cd | 6.63 ± 0.06 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 1.58 ± 0.01 b | 0.00 ± 0.00 a |
7 | 28.62 ± 0.58 h | 52.68 ± 2.51 e | 7.82 ± 0.12 d | 2.78 ± 0.03 e | 14.46 ± 0.08 a | 10.60 ± 0.29 b | 0.00 ± 0.00 a | 1.95 ± 0.01 c | 0.00 ± 0.00 a |
8 | 18.93 ± 0.23 g | 49.38 ± 5.60 e | 0.55 ± 0.35 ab | 5.31 ± 0.19 g | 11.63 ± 1.30 a | 10.94 ± 8.17 b | 2.06 ± 0.01 c | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
9 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
10 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
11 | 10.16 ± 1.15 d | 9.00 ± 0.84 b | 10.15 ± 1.52 e | 0.00 ± 0.00 a | 78.13 ± 1.57 c | 0.55 ± 0.05 a | 1.21 ± 0.18 b | 3.02 ± 0.35 d | 8.15 ± 0.22 c |
12 | 15.17 ± 2.78 ef | 18.38 ± 3.37 c | 18.22 ± 2.48 f | 2.10 ± 0.23 d | 169.06 ± 24.34 d | 4.00 ± 0.63 a | 1.14 ± 0.09 b | 4.59 ± 0.48 e | 9.71 ± 0.57 d |
Control | 0.02 ± 0.00 | 2.71 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.59 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.00 | 0.15 ± 0.00 | 0.00 ± 0.00 |
# Exp | Factors | Response Variable | |||
---|---|---|---|---|---|
Variety | By-Product | Solvent * | Vitamin C (mg/100 g DM) | Lutein (mg/100 g DM) | |
1 | Mayapan | Stem | NADES-cl | 16.89 ± 0.09 d | 0.00 ± 0.00 a |
2 | Jaguar | Stem | NADES-cl | 14.87 ± 0.08 c | 0.08 ± 0.00 c |
3 | Mayapan | Leaf | NADES-cl | 28.49 ± 0.98 f | 0.00 ± 0.00 a |
4 | Jaguar | Leaf | NADES-cl | 18.89 ± 0.02 e | 0.00 ± 0.00 a |
5 | Mayapan | Stem | NADES-h ** | 13.83 ± 1.95 c | 0.00 ± 0.00 a |
6 | Jaguar | Stem | NADES-h ** | 14.95 ± 1.07 c | 0.00 ± 0.00 a |
7 | Mayapan | Leaf | NADES-h ** | 50.43 ± 0.00 g | 0.00 ± 0.00 a |
8 | Jaguar | Leaf | NADES-h ** | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
9 | Mayapan | Stem | MeOH | 5.67 ± 0.03 b | 0.02 ± 0.00 b |
10 | Jaguar | Stem | MeOH | 5.86 ± 0.01 b | 0.00 ± 0.00 a |
11 | Mayapan | Leaf | MeOH | 6.17 ± 0.07 b | 0.20 ± 0.00 d |
12 | Jaguar | Leaf | MeOH | 6.63 ± 0.02 b | 0.29 ± 0.00 e |
Control | - | - | Honey *** | 0.90 ± 0.02 | 0.00 ± 0.00 |
Polyphenols | DPPH | ABTS | ||
---|---|---|---|---|
Stem | Leaf | Stem | Leaf | |
r2 | r2 | r2 | r2 | |
gallic acid | 0.1136 | 0.7468 | 0.1174 | 0.2587 |
protocatechuic acid | 0.7552 | 0.6137 | 0.2453 | 0.3129 |
catechin | 0.4431 | 0.6660 | 0.6143 | 0.6932 |
chlorogenic acid | 0.5399 | 0.5805 | 0.8517 | 0.7996 |
coumaric acid | 0.4338 | 0.4082 | 0.0138 | 0.0160 |
cinnamic acid | 0.3673 | 0.2257 | 0.0406 | 0.0024 |
rutin | 0.3529 | 0.4575 | 0.0114 | 0.0751 |
quercetin + luteolin | 0.6258 | 0.4948 | 0.0890 | 0.0333 |
kaempferol | 0.0103 | 0.1726 | 0.1754 | 0.4843 |
vanillin | 0.8175 | 0.5249 | 0.5918 | 0.1912 |
diosmin + hesperidin | 0.1561 | 0.1562 | 0.4659 | 0.4004 |
neohesperidin | 0.7345 | 0.1266 | 0.1724 | 0.0089 |
naringenin | 0.2533 | 0.0442 | 0.5176 | 0.0712 |
apigenin | 0.0139 | 0.0910 | 0.1509 | 0.3206 |
diosmetin | 0.2533 | 0.1391 | 0.5176 | 0.2924 |
TPC | 0.0206 | 0.1183 | 0.4507 | 0.6670 |
vitamin C | 0.5163 | 0.2627 | 0.9747 | 0.2766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Betanzos, K.A.; Oney-Montalvo, J.E.; Cauich-Rodríguez, J.V.; González-Ávila, M.; Scampicchio, M.; Morozova, K.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants 2022, 11, 2060. https://doi.org/10.3390/plants11152060
Avilés-Betanzos KA, Oney-Montalvo JE, Cauich-Rodríguez JV, González-Ávila M, Scampicchio M, Morozova K, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants. 2022; 11(15):2060. https://doi.org/10.3390/plants11152060
Chicago/Turabian StyleAvilés-Betanzos, Kevin Alejandro, Julio Enrique Oney-Montalvo, Juan Valerio Cauich-Rodríguez, Marisela González-Ávila, Matteo Scampicchio, Ksenia Morozova, Manuel Octavio Ramírez-Sucre, and Ingrid Mayanin Rodríguez-Buenfil. 2022. "Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent" Plants 11, no. 15: 2060. https://doi.org/10.3390/plants11152060
APA StyleAvilés-Betanzos, K. A., Oney-Montalvo, J. E., Cauich-Rodríguez, J. V., González-Ávila, M., Scampicchio, M., Morozova, K., Ramírez-Sucre, M. O., & Rodríguez-Buenfil, I. M. (2022). Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants, 11(15), 2060. https://doi.org/10.3390/plants11152060