Chemical Composition and Histochemical Localization of Essential Oil from Wild and Cultivated Rhaponticum carthamoides Roots and Rhizomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Microscopic Histochemical Analysis
2.4. Isolation of Essential Oils
2.5. Chromatographic Condition
3. Results and Discussion
3.1. Histolocalization of Secretory Structures
3.2. Volatile Constituents in Rhaponticum carthamoides Roots and Rhizomes Essential Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kokoska, L.; Janovska, D. Chemistry and Pharmacology of Rhaponticum carthamoides: A Review. Phytochemistry 2009, 70, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant Adaptogens-History and Future Perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef] [PubMed]
- Łotocka, B.; Geszprych, A. Anatomy of the Vegetative Organs and Secretory Structures of Rhaponticum carthamoides (Asteraceae). Bot. J. Linn. Soc. 2004, 144, 207–233. [Google Scholar] [CrossRef] [Green Version]
- State Pharmacopoeia of the Russian Federation/Ministry of Health of the Russian Federation, 14th ed.; The Ministry of Health of the Russian Federation: Moscow, Russia, 2018; Volume 4, pp. 6360–6368.
- Todorova, V.; Ivanov, K.; Ivanova, S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties (Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). Plants 2021, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Vokáč, K.; Buděšínský, M.; Harmatha, J. Minor Ecdysteroid Components of Leuzea carthamoides. Collect. Czechoslov. Chem. Commun. 2002, 67, 124–139. [Google Scholar] [CrossRef]
- Buděšínský, M.; Vokáč, K.; Harmatha, J.; Cvačka, J. Additional Minor Ecdysteroid Components of Leuzea carthamoides. Steroids 2008, 73, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Cahlíková, L.; Macáková, K.; Chlebek, J.; Hošt’álková, A.; Kulhánková, A.; Opletal, L. Ecdysterone and Its Activity on Some Degenerative Diseases. Nat. Prod. Commun. 2011, 6, 707–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafont, R.; Dinan, L. Practical Uses for Ecdysteroids in Mammals Including Humans: And Update. J. Insect. Sci. 2003, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.; Skiba, A.; Weglarz, Z.; El-Ansari, M.A. Two Flavonol 5-O-Glycosides from the Roots of Leuzea carthamoides. Fitoterapia 2001, 72, 940–942. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Faizieva, S.K.; Khushbaktova, Z.A.; Syrov, V.N.; Yuldashev, M.P.; Batirov, É.K.; Sagdullaev, S.S. The Total Flavonoids from Thermopsis Alterniflora, Th. Dolichocarpa, Vexibia Alopecuroides, and Rhaponticum carthamoides and Their Hypolipidemic Activity. Chem. Nat. Compd. 1999, 35, 155–158. [Google Scholar] [CrossRef]
- Havlik, J.; Budesinsky, M.; Kloucek, P.; Kokoska, L.; Valterova, I.; Vasickova, S.; Zeleny, V. Norsesquiterpene Hydrocarbon, Chemical Composition and Antimicrobial Activity of Rhaponticum carthamoides Root Essential Oil. Phytochemistry 2009, 70, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Skała, E.; Rijo, P.; Garcia, C.; Sitarek, P.; Kalemba, D.; Toma, M.; Szemraj, J.; Pytel, D.; Wysokińska, H.; Śliwiński, T. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities. Oxid. Med. Cell. Longev. 2016, 2016, 8505384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Geszprych, A.; Weglarz, Z. Composition of Essential Oil from Underground and Aboveground Organs of Rhaponticum carthamoides [Willd.] Iljin. Herba Pol. 2002, 4, 188–192. [Google Scholar]
- Tardif, J.C.; Conciatori, F. Microscopic Examination of Wood: Sample Preparation and Techniques for Light Microscopy. In Plant Microtechniques and Protocols; Yeung, E.C.T., Stasolla, C., Sumner, M.J., Huang, B.Q., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Chapter 22; pp. 373–416. [Google Scholar]
- Yeung, E.C. A guide to the study of plant structure with emphasis on living specimens. In Plant Microtechniques and Protocols; Yeung, E.C.T., Stasolla, C., Sumner, M.J., Huang, B.Q., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Chapter 1; pp. 3–22. [Google Scholar]
- Linstrom, P. NIST Chemistry WebBook, NIST Standard Reference Database 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997. [CrossRef]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publish: Carol Stream, IL, USA, 2007. [Google Scholar]
- Zubek, S.; Stefanowicz, A.M.; Błaszkowski, J.; Niklińska, M.; Seidler-Łożykowska, K. Arbuscular Mycorrhizal Fungi and Soil Microbial Communities under Contrasting Fertilization of Three Medicinal Plants. Appl. Soil Ecol. 2012, 59, 106–115. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and Phosphorus Levels Affected Plant Growth, Essential Oil Composition and Antioxidant Status of Lavender Plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Cam, I.B.; Tontul, I.; Gokturk, R.S.; Ay, S.T. A Comparative Study on Phenolic Composition, Antioxidant Activity and Essential Oil Content of Wild and Cultivated Sage (Salvia fruticosa Miller) as Influenced by Storage. Ind. Crops Prod. 2012, 39, 170–176. [Google Scholar] [CrossRef]
No | Compound | RI | Formula | Class of Compound | % of Total in WP | % of Total in CP |
---|---|---|---|---|---|---|
1 | α-Pinene | 924 | C10H16 | MH | 0.15 | - |
2 | p-Cymene | 1007 | C10H14 | MH | 0.3 | - |
3 | Limonene | 1012 | C10H16 | MH | 0.10 | - |
4 | p-Menth-1-en-9-al | 1057 | C10H16O | MO | tr | - |
5 | p-Cymenene | 1074 | C10H14 | MH | 0.76 | - |
6 | β-Linalool | 1088 | C10H18O | MO | 0.42 | - |
7 | Thujone | 1102 | C10H16O | MO | 0.10 | - |
8 | cis-Pinocarveol | 1129 | C10H16O | MO | tr | - |
9 | (-)-Camphor | 1130 | C10H16O | MO | 0.40 | - |
10 | Borneol | 1159 | C10H18O | MO | 0.10 | - |
11 | Terpinen-4-ol | 1169 | C10H18O | MO | 1.94 | - |
12 | p-Cymen-8-ol | 1177 | C10H14O | MO | 1.02 | - |
13 | α-Terpineol | 1186 | C10H18O | MO | 0.41 | - |
14 | Estragole | 1189 | C10H12O | MO | 6.32 | - |
15 | cis-Carveol | 1211 | C10H16O | MO | tr | - |
16 | D-carvone | 1236 | C10H14O | MO | 6.37 | - |
17 | p-Menth-1-en-3-one | 1247 | C10H18O | MO | tr | - |
18 | Anethole | 1280 | C10H12O | MO | 1.93 | - |
19 | Thymol | 1288 | C10H14O | MO | 0.10 | - |
20 | Carvacrol | 1297 | C10H14O | MO | 1.79 | - |
21 | α-Copaene | 1369 | C15H24 | SH | tr | - |
22 | δ-Elemene | 1380 | C15H24 | SH | 2.35 | 19.08 |
23 | β-Elemene | 1389 | C15H24 | SH | 2.35 | 10.76 |
24 | Longifolene | 1390 | C15H24 | SH | - | 0.10 |
25 | Cyperene | 1394 | C15H24 | SH | 8.78 | - |
26 | α-Gurjunene | 1398 | C15H24 | SH | 0.10 | - |
27 | Methyleugenol | 1399 | C11H14O2 | O | tr | - |
28 | β-Caryophyllene | 1413 | C15H24 | SH | - | 1.16 |
29 | α-Bergamotene | 1428 | C15H24 | SH | 0.10 | 2.29 |
30 | γ-Elemene | 1430 | C15H24 | SH | 1.23 | 0.38 |
31 | Humulene | 1448 | C15H24 | SH | 0.10 | 7.68 |
32 | Aromandrene | 1450 | C15H24 | SH | 0.63 | - |
33 | Rotundene | 1459 | C15H24 | SH | 1.29 | - |
34 | cis-Thujopsene | 1473 | C15H24 | SH | 0.36 | 1.83 |
35 | α-Selinene | 1475 | C15H24 | SH | - | 1.23 |
36 | β-Selinene | 1476 | C15H24 | SH | 4.77 | 0.49 |
37 | α-Bulnesene | 1490 | C15H24 | SH | 1.19 | - |
38 | β-Guaiene | 1497 | C15H24 | SH | 3.71 | - |
39 | β-Bisabolene | 1502 | C15H24 | SH | - | 0.10 |
40 | Myristicine | 1508 | C11H12O3 | O | 1.40 | - |
41 | γ-Cadinene | 1532 | C15H24 | SH | 1.27 | - |
42 | (+)-Spathulenol | 1556 | C15H24O | SO | 1.29 | - |
43 | Caryophyllene oxide | 1560 | C15H24O | SO | 0.84 | 3.13 |
44 | Humulene-1,2-epoxide | 1592 | C15H24O | SO | - | 11.55 |
45 | β-Eudesmol | 1604 | C15H26O | SO | 0.37 | - |
46 | Isoaromandrene epoxide | 1620 | C15H24O | SO | 0.66 | - |
47 | Humulene-1,6-dien-3-ol | 1621 | C15H26O | SO | 0.97 | - |
48 | Apiole | 1640 | C12H14O4 | O | 1.37 | - |
49 | Isoshyobunone | 1650 | C15H24O | SO | - | 4.38 |
50 | Allo aromadendrene oxide | 1660 | C15H24O | SO | 1.42 | - |
51 | β-Santalol | 1670 | C15H24O | SO | - | 0.21 |
52 | Cubenol | 1672 | C15H26O | SO | - | 1.06 |
53 | Bergamotol | 1679 | C15H24O | SO | - | 0.10 |
54 | Bisabolene epoxide | 1680 | C15H24O | SO | - | 0.59 |
55 | Ledene oxide | 1682 | C15H24O | SO | 11.52 | 13.50 |
56 | Palmitic acid | 1890 | C16H32O2 | O | - | 1.79 |
57 | Linoleic acid | 2110 | C18H32O2 | O | 6.18 | 0.23 |
58 | Arachidonic acid | 2224 | C20H32O2 | O | - | tr |
59 | 11, 14, 17-Eicosatrienoic acid, methyl ester | 2240 | C20H34O2 | O | - | 4.84 |
Terpene classes | ||||||
Monoterpene hydrocarbons (MH) | 1.31 | - | ||||
Oxygenated monoterpenes (MO) | 20.90 | - | ||||
Sesquiterpene hydrocarbons (SH) | 28.23 | 45.10 | ||||
Oxygenated sesquiterpenes (SO) | 17.07 | 34.52 | ||||
Others (O) | 8.95 | 6.86 | ||||
Total identified | 76.46 | 86.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorova, V.; Ivanova, S.; Georgieva, Y.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Benbassat, N.; Savova, M.S.; Georgiev, M.I.; Ivanov, K. Chemical Composition and Histochemical Localization of Essential Oil from Wild and Cultivated Rhaponticum carthamoides Roots and Rhizomes. Plants 2022, 11, 2061. https://doi.org/10.3390/plants11152061
Todorova V, Ivanova S, Georgieva Y, Nalbantova V, Karcheva-Bahchevanska D, Benbassat N, Savova MS, Georgiev MI, Ivanov K. Chemical Composition and Histochemical Localization of Essential Oil from Wild and Cultivated Rhaponticum carthamoides Roots and Rhizomes. Plants. 2022; 11(15):2061. https://doi.org/10.3390/plants11152061
Chicago/Turabian StyleTodorova, Velislava, Stanislava Ivanova, Yoana Georgieva, Vanya Nalbantova, Diana Karcheva-Bahchevanska, Niko Benbassat, Martina S. Savova, Milen I. Georgiev, and Kalin Ivanov. 2022. "Chemical Composition and Histochemical Localization of Essential Oil from Wild and Cultivated Rhaponticum carthamoides Roots and Rhizomes" Plants 11, no. 15: 2061. https://doi.org/10.3390/plants11152061
APA StyleTodorova, V., Ivanova, S., Georgieva, Y., Nalbantova, V., Karcheva-Bahchevanska, D., Benbassat, N., Savova, M. S., Georgiev, M. I., & Ivanov, K. (2022). Chemical Composition and Histochemical Localization of Essential Oil from Wild and Cultivated Rhaponticum carthamoides Roots and Rhizomes. Plants, 11(15), 2061. https://doi.org/10.3390/plants11152061