Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe
Abstract
:1. Introduction
2. Results
2.1. Qualitative Phytochemical Screening
2.2. Qualitative Antioxidant Assay by DPPH and TLC Direct Bio-Autography Dot Blot Assay
2.3. Quantitative Antioxidant Assay by DPPH, Hydrogen Peroxide Free-Radical Scavenging Potential and Ferric Chloride (Fe3+–Fe2+) of South African Mistletoe Extracts
2.4. Qualitative Antimicrobial Assay by Direct Bio-Autography Dot Blot Assay of Mistletoe Tree Extracts
2.5. Quantitative Antimicrobial Evaluation by MIC Assay
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Preparation and Storage (Plant Material)
4.2. Extraction of the Plant Material
4.3. Qualitative Phytochemical Screening
4.4. Selected Biological Activity Assay
4.4.1. Qualitative and Quantitative Antioxidant Assay
4.4.2. DPPH Free-Radical Scavenging Activity of the Mistletoe Extracts
4.4.3. Ferric Chloride Reducing Power Assay
4.4.4. Hydrogen Peroxide Scavenging Assay
4.5. Qualitative and Quantitative Antimicrobial Assay
4.5.1. Test Organisms
4.5.2. Antibacterial Susceptibility Testing
4.5.3. Bio-Autography
4.5.4. Minimum Inhibition Concentration (MIC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tariq, A.; Reyaz, A. Full Length Original Research Paper. Int. J. Drug Dev. Res. 2014, 6, 231–238. [Google Scholar]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of Medicinal Plants. J. Pharmacogn. Phytochem. 2013, 1, 168–182. [Google Scholar]
- Spencer, J.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes Nutr. 2009, 4, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Loke, W.M.; Proudfoot, J.M.; Hodgson, J.M.; McKinley, A.; Hime, N.; Magat, M.; Stocker, R.; Croft, K.D. Specific Dietary Polyphenols Attenuate Atherosclerosis in Apolipoprotein E–Knockout Mice by Alleviating Inflammation and Endothelial Dysfunction. Arter. Thromb. Vasc. Biol. 2010, 30, 749–757. [Google Scholar] [CrossRef]
- Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar] [CrossRef]
- Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as Potential Geroprotectors. Antioxidants 2020, 9, 529. [Google Scholar] [CrossRef]
- Rao, A.V.; Sung, M.K. Saponins as anticarcinogens. J. Nutr. 1995, 125, 717S–724S. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Bartnik, M.; Facey, P.C. Glycosides. In Pharmacognosy: Fundamentals, Applications and Strategy; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Masoko, P.; Gololo, S.S.; Mokgotho, M.P.; Eloff, J.; Howard, R.; Mampuru, L.J. Evaluation of the Antioxidant, Antibacterial, and Antiproliferative Activities of the Acetone Extract of the Roots of Senna Italica (Fabaceae). Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 138–148. [Google Scholar] [CrossRef]
- van Wyk, B.E.; van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa, 2nd ed; Briza Publication: Pretoria, South Africa, 2017. [Google Scholar]
- Frederick, E.; Kayode, A.; Slyvester, U. Evaluation of the methanolic extract of mistletoe (Tapinanthus bangwensis) leaves grown on orange trees for the phytochemical properties and its physiological effects on streptozotocin induced diabetes mellitus in laboratory animals. World Appl. Sci. J. 2010, 9, 975–979. [Google Scholar]
- Lu, C.L.; Zhu, W.; Wang, M.; Xu, X.J.; Lu, C.J. Antioxidant and Anti-Inflammatory Activities of Phenolic-Enriched Extracts of Smilax glabra. Evid. Based Complementary Altern. Med. 2014, 2014, 910438. [Google Scholar] [CrossRef] [PubMed]
- Ngobeni, A. Isolation and Characterization of Bio-Active Compounds from Euphorbia Inaequilatera and Dicerocaryum Senecioides. Ph.D. Thesis, University of Limpopo: Sovenga, South Africa, 2012. [Google Scholar]
- Abba, C.C.; Nduka, I.; Eze, P.M.; Ujam, T.N.; Abonyi, D.O.; Okoye, F.B.C. Antimicrobial activity of secondary metabolites of endophytic Aspergillus species isolated from Loranthus micranthus. Afr. J. Pharma. Res. Dev. 2016, 8, 136–140. [Google Scholar]
- Jha, N.; Ryu, J.J.; Choi, E.H.; Kaushik, N.K. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry. Oxidative Med. Cell. Longev. 2017, 2017, 7542540. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Med. Cell. Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef]
- Mikkelsen, R.B.; Wardman, P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003, 22, 5734–5754. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
- Ebisch, I.; Thomas, C.; Peters, W.; Braat, D.; Steegers-Theunissen, R. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Updat. 2006, 13, 163–174. [Google Scholar] [CrossRef]
- Weidinger, A.; Kozlov, A.V. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015, 5, 472–484. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. Antioxidants 2019, 10, 1–29. [Google Scholar]
- Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef]
- Ogunmefun, O.T.; Fasola, T.R.; Saba, A.B.; Oridupa, O.A. The Ethnobotanical, Phytochemical and Mineral Analyses of Phragmanthera Incana (Klotzsch), A Species of Mistletoe Growing on Three Plant Hosts in South-Western Nigeria. Int. J. Biomed. Sci. 2013, 9, 33–40. [Google Scholar] [PubMed]
- Rostron, L.A. Investigations Into the Properties of Mistletoe Leaves, Phoradendron spp. (Viscaceae) and Geophagic Material Consumed by Ateles geoffroyi (Atelidae) at Sites within the Santa Rosa National Park, Costa Rica; Liverpool John Moores University: Liverpool, UK, 2014. [Google Scholar]
- Atewolara-Odule, O.C.; Oladosu, I.A. Comparison of chemical compositions of essential oils from the fresh and dried leaves of Tapinanthus bangwensis (Engl. and K. Krause) Danser [Loranthaceae]. Am. J. Essent. Oils Nat. Prod. 2016, 4, 31–33. [Google Scholar]
- Dostál, J. Two Faces of Alkaloids. J. Chem. Educ. 2000, 77, 993–998. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Silva, F.A.M.; Borges, F.; Guimarães, C.; Lima, J.L.F.C.; Matos, C.; Reis, S. Phenolic Acids and Derivatives: Studies on the Relationship among Structure, Radical Scavenging Activity, and Physicochemical Parameters. J. Agric. Food Chem. 2000, 48, 2122–2126. [Google Scholar] [CrossRef]
- Singh, K.; Dhakar, V.K.; Rai, V.K. Formulation and evaluation of floating tablet of rosiglitazone malate. Int. J. Pharm. Life Sci. 2012, 3, 1475–1489. [Google Scholar]
- Rupasinghe, V. Special Issue ‘Flavonoids and Their Disease Prevention and Treatment Potential’: Recent Advances and Future Perspective. Molecules 2020, 25, 4746. [Google Scholar] [CrossRef]
- Clark, J.; Zahradka, P.; Taylor, C.G. Efficacy of flavonoids in the management of high blood pressure. Nutr. Rev. 2015, 73, 799–822. [Google Scholar] [CrossRef]
- Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Experientia 2008, 65, 2979–2999. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Xiuling, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Gabriel, H.B.; Sussmann, R.A.; Kimura, E.A.; Rodriguez, A.A.M.; Verdaguer, I.B.; Leite, G.C.F.; Katzin, A.M. Terpenes as Potential Antimalarial Drugs. In Terpenes and Terpenoids; IntechOpen: London, UK, 2018. [Google Scholar]
- Niedermeyer, T.H.J.; Lindequist, U.; Mentel, R.; Gördes, D.; Schmidt, E.; Thurow, A.K.; Lalk, M. Antiviral Terpenoid Constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005, 68, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, I.; Peroulis, N.; Pantazis, P.; Hadzopoulou-Cladaras, M. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity. PLoS ONE 2011, 6, e20516. [Google Scholar] [CrossRef]
- El Barky, A.R.; Hussein, S.A.; Alm-Eldeen, A.A.; Hafez, Y.A.; Mohamed, T.M. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017, 7, 148–158. [Google Scholar]
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, T.; Zhou, F.; Xiao, X.; Ding, X.; He, H.; Rang, J.; Quan, M.; Wang, T.; Zuo, M.; et al. Anticancer Activity of Saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Ashokkumar, D.; Thamilselvan, V.; Gp, S.; Mazumder, U.K.; Gupta, M. Antioxidant and Free Radical Scavenging Effects of Lippia nodiflora. Pharm. Biol. 2008, 46, 762–771. [Google Scholar] [CrossRef]
- Eloff, J.N. A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Medica 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Upadhayay, A.; Singh, Y.; Kumar, B.K. Evaluation of Anti microbial Activity of Extracts of Pedalium murex. Int. J. Pharm. Med. Res. 2017, 5, 469–474. [Google Scholar]
- Taiga, A. Quantitative phytochemical properties of mistletoe (Viscum album) from five different plants. Res. J. Agric. Environ. Manag. 2013, 2, 150–153. [Google Scholar]
- Park, B.J.; Matsuta, T.; Samejima, H.; Park, C.H.; Sung, I.J.; Lee, B.D.; Onjo, M. Chemical constituents of mistletoe (Viscum album L. var. coloratum Ohwi). IOSR J. Pharm. Biol. Sci. 2017, 12, 19–23. [Google Scholar] [CrossRef]
- Kusi, M.; Shrestha, K.; Malla, R. Study on Phytochemical, Antibacterial, Antioxidant and Toxicity Profile of Viscum album Linn Associated with Acacia catechu. Nepal J. Biotechnol. 2015, 3, 60–65. [Google Scholar] [CrossRef]
- Oluwaseun, A.A.; Ganiyu, O. Antioxidant properties of methanolic extracts of mistletoes (Viscum album) from cocoa and cashew trees in Nigeria. Afr. J. Biotechnol. 2008, 7, 3138–3142. [Google Scholar]
- Pietrzak, W.; Nowak, R. Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Molecules 2021, 26, 3741. [Google Scholar] [CrossRef]
- Yusuf, L.; Oladunmoye, M.K.; Ogundare, A.O. In-vivo antibacterial activities of mistletoe (Viscum album) leaves extract growing on cocoa tree in Akure North, Nigeria. Eur. J. Biotechnol. Biosci. 2013, 1, 37–42. [Google Scholar]
- Hussain, M.A.; Khan, M.Q.; Hussain, N.; Habib, T. Antibacterial and antifungal potential of leaves and twigs of Viscum album L. J. Med. Plant Res. 2011, 5, 5545–5549. [Google Scholar]
- Johnson, M.; Maridass, M.; Irudayaraj, V. Preliminary phytochemical and anti-bacterial studies on Passiflora edulis. Ethnobot. Leafl. 2008, 2008, 51. [Google Scholar]
- Krishnaiah, D.; Devi, T.; Bono, A.; Sarbatly, R. Studies on phytochemical constituents of six Malaysian medicinal plants. J. Med. Plants Res. 2009, 3, 67–72. [Google Scholar]
- Opitz, S.E.W.; Müller, C. Plant chemistry and insect sequestration. Chemoecology 2009, 19, 117–154. [Google Scholar] [CrossRef]
- Priya, U.; Neelamegam, R. Phytochemical and antimicrobial evaluation of a hemiparasitic mistletoe plant, Dendrophthoe falcata (L. F.) Ettingsh, parasitize on Artocarpus heterophyllus host tree. J. Med. Plants Stud. 2016, 4, 1–7. [Google Scholar]
- Thoa, N.T.; Van Cuong, T. Phytochemical Components, Antioxidant and Cytotoxic Activities of Mulberry Mistletoe (Loranthus parasiticus Merr) Leaves Extracts. Asian J. Biotechnol. Bioresour. Technol. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Anulika, N.P.; Ignatius, E.O.; Raymond, E.S.; Osasere, O.I.; Abiola, A.H. The chemistry of natural product: Plant secondary metabolites. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2016, 4, 1–9. [Google Scholar]
- Wadood, A.; Ghufran, M.; Jamal, S.B.; Naeem, M.; Khan, A.; Ghaffar, R.; Asnad. Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem. Anal. Biochem. 2013, 2, 1–4. [Google Scholar] [CrossRef]
- Moyo, B.; Oyedemi, S.; Masika, P.; Muchenje, V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef]
- Olivier, M.; Muganza, F.; Shai, L.; Gololo, S.; Nemutavhanani, L. Phytochemical screening, antioxidant and antibacterial activities of ethanol extracts of Asparagus suaveolens aerial parts. S. Afr. J. Bot. 2017, 108, 41–46. [Google Scholar] [CrossRef]
- Mamabolo, M.P.; Muganza, F.M.; Olivier, M.T. Free radical scavenging and antibacterial activities of Helichrysum caespititium (DC) Harv. Extracts. Planta Med. 2017, 9, 417–422. [Google Scholar] [CrossRef]
- Valgas, C.; De Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef]
- Suleiman, M.; McGaw, L.; Naidoo, V.; Eloff, J. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 64–78. [Google Scholar] [CrossRef]
Phytochemicals | Mistletoe Extracts | |||
---|---|---|---|---|
Hexane | Dichloromethane | Acetone | Methanol | |
Alkaloids | +/− | + | + | ++ |
Glycosides | + | + | − | − |
Saponins | − | − | ++ | +++ |
Phenolic compounds | + | + | +++ | ++ |
Steroids | + | − | +/− | + |
Tannins | ++ | + | +++ | ++++ |
Terpenoids | + | − | ++ | ++ |
Mistletoe Tree Extracts | ||||
---|---|---|---|---|
Band No. | Hexane | Dichloromethane | ||
Rf-Value | Antioxidant | Rf-Value | Antioxidant | |
1 | 0.05 | ++ | 0.08 | +++ |
2 | 0.09 | _ | 0.12 | ++ |
3 | 0.25 | _ | 0.13 | + |
4 | 0.42 | ++ | 0.15 | − |
5 | 0.49 | − | 0.25 | ++ |
6 | 0.55 | − | 0.38 | + |
7 | 0.60 | − | 0.42 | ++ |
8 | 0.63 | − | 0.68 | − |
9 | 0.89 | +++ | 0.70 | − |
10 | Nc | Nd | 0.81 | − |
11 | Nc | Nd | 0.88 | + |
Mistletoe Tree Extracts | ||||
---|---|---|---|---|
Band No. | Acetone | Methanol | ||
Rf-Value | Antioxidant | Rf-Value | Antioxidant | |
1 | 0.01 | ++ | 0.05 | +++ |
2 | 0.05 | ++ | 0.10 | +++ |
3 | 0.50 | − | 0.15 | +++ |
4 | 0.60 | − | 0.20 | +++ |
5 | 0.68 | − | 0.25 | +++ |
6 | 0.79 | − | 0.30 | +++ |
7 | 0.81 | − | 0.35 | +++ |
8 | 0.82 | + | 0.40 | +++ |
9 | Nc | Nd | 0.45 | +++ |
10 | Nc | Nd | 0.50 | − |
11 | Nc | Nd | 0.53 | +++ |
12 | Nc | Nd | 0.65 | + |
13 | Nc | Nd | 0.87 | − |
Extracts and Standards | IC50 (mg/mL) | ||
---|---|---|---|
DPPH Scavenging | H2O2 Scavenging | Ferric Chloride Reducing Power | |
Hexane | 0.64 | >1 | 0.57 |
DCM | 0.95 | 0.47 | 0.56 |
Acetone | 0.33 | 0.51 | 0.59 |
Methanol | 0.11 | 0.12 | 0.73 |
Gallic acid | 0.19 | 0.79 | 0.36 |
Diosgenin | Nd | 0.59 | >1 |
BHT | >1 | >1 | >1 |
Bacteria Species | Antibacterial Analysis | Extracts of Solvents with Differing Polarities | |||
---|---|---|---|---|---|
n-Hexane | Dichloromethane | Acetone | Methanol | ||
6245 | Disc diffusion | X | X | X | X |
Bio-autography Rf value | - | - | 0.77 | - | |
MIC (mg/mL) | >1 | 0.75 | >1 | >1 | |
E. coli | Disc diffusion | X | √ | √ | X |
Bio-autography Rf value | - | 0.68 | 0.68 | - | |
MIC (mg/mL) | >1 | 0.75 | 0.75 | >1 | |
A baumani | Disc diffusion | X | √ | √ | √ |
Bio-autography Rf value | - | 0.74 | 0.74 | - | |
MIC (mg/mL) | 0.375 | 0.375 | 0.75 | 0.75 | |
K pneumonia | Disc diffusion | X | X | X | X |
Bio-autography Rf value | 0.00 | 0.00 | 0.00 | 0.00 | |
MIC | 0.75 | 0.375 | 0.375 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapfumari, S.; Nogbou, N.-D.; Musyoki, A.; Gololo, S.; Mothibe, M.; Bassey, K. Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. Plants 2022, 11, 2094. https://doi.org/10.3390/plants11162094
Mapfumari S, Nogbou N-D, Musyoki A, Gololo S, Mothibe M, Bassey K. Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. Plants. 2022; 11(16):2094. https://doi.org/10.3390/plants11162094
Chicago/Turabian StyleMapfumari, Sipho, Noel-David Nogbou, Andrew Musyoki, Stanley Gololo, Mmamosheledi Mothibe, and Kokoette Bassey. 2022. "Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe" Plants 11, no. 16: 2094. https://doi.org/10.3390/plants11162094
APA StyleMapfumari, S., Nogbou, N. -D., Musyoki, A., Gololo, S., Mothibe, M., & Bassey, K. (2022). Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. Plants, 11(16), 2094. https://doi.org/10.3390/plants11162094