A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima
Abstract
:1. Introduction
2. Main Pathogens and Insect Pests and Their Monitoring
2.1. Disease and Pest Species
2.2. Disease and Pest Monitoring
2.3. Control of Diseases and Pests
3. Iatrical Benefits and Any Other Functions
4. Industrial Production and Technology
4.1. Chestnut Products
4.2. Improvements in Industrial Technologies
5. Food Science
5.1. Beneficial Extractions from Chestnut
5.2. Postharvest Biology and Technology
6. Soil, Fertilizer, and Endophytic Fungi
6.1. Soil and Fertilizer Conditions
6.2. Endophytic Fungi of Chestnut Trees
7. Genetic Research with SSRs
8. Ecological Environment of Chestnut Orchards
9. China Has Abundant Chestnut Germplasm Resources
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguín, O.; Rial, C.; Piñón, P.; Sainz, M.J.; Mansilla, J.P.; Salinero, C. First report of Gnomoniopsis smithogilvyi causing chestnut brown rot on nuts and burrs of sweet chestnut in Spain. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ballester, A.; Corredoira, E.; Vieitez, A.M.; Agnanostakis, S.; Costa, R.; Bounous, G.; Botta, R.; Beccaro, G.L.; Kubisiak, T.L.; et al. Chestnut. In Fruit Breeding. Handbook of Plant Breeding; Badenes, M., Byrne, D., Eds.; Springer: Boston, MA, USA, 2012; Volume 8, pp. 729–769. [Google Scholar] [CrossRef]
- Rosario, N.; Gabriele, L.B.; Agnieszka, S.; Chiara, C.; Claudio, D. Endophytic Fungi and Ecological Fitness of Chestnuts. Plants 2021, 10, 542. [Google Scholar] [CrossRef]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Rosa, E.A.S.; Cardoso, J.V.F. Primary and Secondary Metabolite Composition of Kernels from Three Cultivars of Portuguese Chestnut (Castanea sativa Mill.) at Different Stages of Industrial Transformation. J. Agric. Food Chem. 2007, 559, 3508–3516. [Google Scholar] [CrossRef]
- Fen, T.; Xie, C.Y.; Li, H.N.; Lei, S.C.; Li, J.; Huang, X.W.; Yang, F. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem. 2021, 363, 130277. [Google Scholar]
- Tanja, G.; Željko, K.; Mojca, Š. Hydrothermal hydrolysis of sweet chestnut (Castanea sativa) tannins. J. Serb. Chem. Soc. 2019, 84, 1–14. [Google Scholar]
- Li, H.Y.; Wang, Y.X.; Wang, C.; Zhang, S.H.; Li, S.H.; Zhou, G.Q.; Wang, S.X.; Zhang, J.C. Extraction, selenylation modification and antitumor activity of the glucan from Castanea mollissima Blume. Glycoconj. J. 2017, 34, 207–217. [Google Scholar] [CrossRef]
- Dong, X.D.; Feng, Y.Y.; Liu, Y.N.; Ji, H.Y.; Yu, S.S.; Liu, A.J.; Yu, J. A novel polysaccharide from Castanea mollissima Blume: Preparation, characteristics and antitumor activities in vitro and in vivo. Carbohydr. Polym. 2020, 240, 116323. [Google Scholar] [CrossRef]
- Morana, M.; Squillaci, G.; Paixão, S.M.; Alves, L.; Cara, F.L.; Moura, P. Development of an Energy Biorefinery Model for Chestnut (Castanea sativa Mill.) Shells. Energies 2017, 10, 1504. [Google Scholar] [CrossRef]
- Zha, J.J.; Fan, B.; He, J.R.; He, C.Y.; Ma, C.L. Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone-Water-Sodium Chloride System. Applied Biochemistry and Biotechnology. Appl. Biochem. Biotech. 2022, 194, 2021–2035. [Google Scholar] [CrossRef]
- González-Montelongo, C.; Pérez-Vargas, I. Is an invasive alien tree able to sustain a similar lichen diversity as the native forest? The case of the sweet chestnut (Castanea sativa Mill.) and the laurel forest in Macaronesia. Forest Ecol. Manag. 2021, 488, 119009. [Google Scholar] [CrossRef]
- Conedera, M.; Krebs, P.; Gehring, E.; Wunder, J.; Hülsmann, L.; Abegg, M.; Maringer, J. How future-proof is Sweet chestnut (Castanea sativa) in a global change context? Forest Ecol. Manag. 2021, 494, 119320. [Google Scholar] [CrossRef]
- Paletto, A.; Focacci, M.; De Meo, I. Farmers’ opinions on chestnut (Castanea sativa Mill.) supply chain development strategies: A case study in Central Italy. Forest Syst. 2018, 27, eSC02. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.T.; Fu, Y.J.; Jiang, J.C. Bioactive constituents, nutritional benefits and woody food applications of Castanea mollissima: A comprehensive review. Food Chem. 2022, 393, 133380. [Google Scholar] [CrossRef]
- Battisti, A.; Benvegnù, I.; Colombari, B.; Haack, R.A. Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production. Agr. Forest Entomol. 2014, 16, 75–79. [Google Scholar] [CrossRef]
- Kovács, G.E.; SzÕke, L.; Tóth, B.; Kovács, B.; Bojtor, C.; Illés, Á.; Jr, L.R.; Moloi, M.J.; Radócz, L. The Physiological and Biochemical Responses of European Chestnut (Castanea sativa L.) to Blight Fungus (Cryphonectria parasitica (Murill) Barr). Plants 2021, 10, 2136. [Google Scholar] [CrossRef]
- Saiz-Fernández, I.; Milenković, I.; Berka, M.; Černý, M.; Tomšovský, M.; Brzobohatý, B.; Kerchev, P. Integrated Proteomic and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular Reprogramming Proximal to the Infection Site and Away from It. Int. J. Mol. Sci. 2020, 21, 8525. [Google Scholar] [CrossRef]
- Pavese, V.; Moglia, A.; Gonthier, P.; Marinoni, D.T.; Cavalet-Giorsa, E.; Botta, R. Identification of Susceptibility Genes in Castanea sativa and Their Transcription Dynamics following Pathogen Infection. Plants 2021, 10, 913. [Google Scholar] [CrossRef] [PubMed]
- Camisón, Á.; Martín, M.Á.; Oliva, J.; Elfstrand, M.; Solla, A. Increased tolerance to Phytophthora cinnamomi in offspring of ink-diseased chestnut (Castanea sativa Miller) trees. Ann. Forest Sci. 2019, 76, 119. [Google Scholar] [CrossRef]
- Anagnostakis, S.L. Chestnut blight: The classical problem of an introduced pathogen. Mycologia 1987, 79, 23–37. [Google Scholar] [CrossRef]
- Gündüz, G.; Akyuz, M.; Aydemir, D.; Yaman, B.; Asik, N.; Bulbul, A.S.; Allahverdiyev, S. Investigation on Some Physical, Morphological Properties And Raman Spectroscopy of Chestnut Blight Infected Castanea sativa Mill. Wood. Cerne. 2016, 22, 43–58. [Google Scholar] [CrossRef]
- Maresi, G.; Longa, C.M.O.; Turchetti, T. Brown rot on nuts of Castanea sativa Mill: An emerging disease and its causal agent. iForest 2013, 6, 294–301. [Google Scholar] [CrossRef]
- Tziros, G.T. First report of nut rot caused by Gnomoniopsis castaneae on Castanea sativa in Greece. J. Plant Pathol. 2019, 101, 211. [Google Scholar] [CrossRef]
- Labbate, L.; McCullough, D.G. Phenology, Density and Parasitism of Asian Chestnut Gall Wasp (Dryocosmus kuriphilus) (Hymenoptera: Cynipidae) in Recently Invaded Chestnut (Castanea spp.) Orchards in Michigan. Environ. Entomol 2022. [Google Scholar] [CrossRef]
- Vollmeier, R.; Osterc, G.; Luthar, Z. Preservation of sweet chestnut genetic resources (Castanea sativa Mill.) against attack by chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu, 1951). Acta Agric. Slov. 2018, 111, 209–217. [Google Scholar] [CrossRef]
- Nugnes, F.; Gualtieri, L.; Bonsignore, C.P.; Parillo, R.; Annarumma, R.; Griffo, R.; Bernardo, U. Resistance of a Local Ecotype of Castanea sativa to Dryocosmus kuriphilus (Hymenoptera: Cynipidae) in Southern Italy. Forests-Basel 2018, 9, 94. [Google Scholar] [CrossRef]
- Balsa, C.; Bento, A.; Paparella, F. Biological control of the Asian chestnut gall wasp in Portugal: Insights from a mathematical model. PLoS ONE 2016, 7, e0254193. [Google Scholar]
- Zhebentyayeva, T.; Sisco, P.H.; Georgi, L.L.; Jeffers, S.N.; Perkins, M.T.; James, J.B.; Hebard, F.V.; Saski, C.; Nelson, C.D.; Abbott, A.G. Dissecting Resistance to Phytophthora cinnamomi in Interspecific Hybrid Chestnut Crosses Using Sequence-Based Genotyping and QTL Mapping. Phytopathology 2019, 109, 1594–1604. [Google Scholar] [CrossRef]
- Santos, C.; Zhebentyayeva, T.; Serrazina, S.; Nelson, C.D.; Costa, R. Development and characterization of EST-SSR markers for mapping reaction to Phytophthora cinnamomi in Castanea spp. Sci. Hortic.-Amst. 2015, 194, 181–187. [Google Scholar] [CrossRef]
- Barakat, A.; Staton, M.; Cheng, C.H.; Park, J.; Yassin, N.B.M.; Ficklin, S.; Yeh, C.C.; Hebard, F.; Baier, K.; Powell, W.; et al. Chestnut resistance to the blight disease: Insights from transcriptome analysis. BMC Plant Biol. 2012, 12, 38. [Google Scholar] [CrossRef]
- Ježić, M.; Krstin, L.; Poljak, I.; Liber, Z.; Idžojtić, M.; Jelić, M.; Meštrović, J.; Zebec, M.; Ćurković-Perica, M. Castanea sativa: Genotype-dependent recovery from chestnut blight. Tree Genet. Genomes. 2014, 10, 101–110. [Google Scholar] [CrossRef]
- Müller, M.; Nelson, C.D.; Gailing, O. Analysis of Environment-Marker Associations in American Chestnut. Forests 2018, 9, 695. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, D.D.; Xue, C.H. Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume. Int. J. Biol. Macromol. 2019, 129, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yao, X.; Xu, J.; Wu, Y.; Yang, Y.J.; Jin, Y.; Xie, H.F.; Liu, Y.C.; Yang, Y.F.; Zheng, X.W. One New Phenolic Compound from Castanea mollissima Shells and its Suppression of HepatomaCell Proliferation and Inflammation by Inhibiting NF-κB Pathway. Int. J. Mol. Sci. 2019, 20, 466. [Google Scholar]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, I.C.F.R.; et al. Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants-Basel 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Mencherini, T.; Sansone, F.; Auriemma, G.; Gazzerro, P.; Puca, R.V.; Iandoli, R.; Aquino, R.P. Development, Characterization, and Clinical Investigation of a New Topical Emulsion System Containing a Castanea sativa Spiny Burs Active Extract. Pharmaceutics 2021, 13, 1634. [Google Scholar]
- Carocho, M.; Barreira, J.C.M.; Barros, L.; Bento, A.; Cámara, M.; Morales, P.; Ferreira, I.C.F.R. Traditional pastry with chestnut flowers as natural ingredients: An approach of the effects on nutritional value and chemical composition. J. Food Compos. Anal. 2015, 44, 93–101. [Google Scholar] [CrossRef]
- Carocho, M.; Barreira, J.C.M.; Morales, P.; Ferreira, I.C.F.R. Chestnut flowers as functionalizing agents to enhance the antioxidant properties of highly appreciated traditional pastry. Food Funct. 2014, 5, 2989–2995. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, C.; Barros, J.C.M.; Soković, M.; Calhelha, R.C.; Bento, A.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Castanea sativa male flower extracts as an alternative additive in the Portuguese pastry delicacy “pastel de nata”. Food Funct. 2022, 11, 2208–2217. [Google Scholar] [CrossRef]
- Biagi, M.; Noto, D.; Corsini, M.; Baini, G.; Cerretani, D.; Cappellucci, G.; Moretti, E. Antioxidant Effect of the Castanea sativa Mill. Leaf Extract on Oxidative Stress Induced upon Human Spermatozoa. Oxid. Med. Cell. Longev. 2019, 1, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, P.; Ferreira, T.; Nascimento-Gonçalves, E.; Seixas, F.; Costa, R.M.G.; Martins, T.; Neuparth, M.J.; Pires, M.J.; Lanzarin, G.; Félix, L.; et al. Dietary Supplementation with Chestnut (Castanea sativa) Reduces Abdominal Adiposity in FVB/n Mice: A Preliminary Study. Biomedicines 2020, 8, 75. [Google Scholar] [CrossRef]
- Mathers, J.C.; Elliott, F.; Macrae, F.; Mecklin, J.-P.; Möslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; Gerdes, A.-M.; Ho, J.W.; et al. Cancer Prevention with Resistant Starch in Lynch Syndrome Patients in the CAPP2-Randomized Placebo Controlled Trial: Planned 10-Year Follow-up. Cancer Prev. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Mihailović, M.; Uskoković, A.; Jovanović, J.A.; Grdović, N.; Dinić, S.; Poznanović, G.; Franić, A.; Đorđević, M.; Vidaković, M. Treatment of streptozotocin-induced diabetic rats with Castanea sativa and Lactarius deterrimus extracts decreases liver damage by initiating activation of the Akt prosurvival kinase. Arch. Biol. Sci. 2020, 72, 233–242. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Silva, A.M.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Chapter 6-Chestnut. In Valorization of Fruit Processing Byproducts; Academic Press: Cambridge, MA, USA, 2020; pp. 128–141. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2020, 334, 127521. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shi, X.; Zhao, Q.; Cui, Y.; Ouyang, J.; Xu, F. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume). Food Chem. 2016, 201, 80–86. [Google Scholar] [CrossRef]
- De Vasconcelos, M.D.C.B.M.; Nunes, F.; Viguera, C.G.; Bennett, R.N.; Rosa, E.A.S.; Ferrira-Cardoso, J.V. Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. Int. J. Food Sci. Techn. 2010, 45, 496–505. [Google Scholar] [CrossRef]
- Bao, X.L.Y. Determination of six mineral elements in chestnut in Chengde by atomic absorption spectrometry. China Food Nutr. 2015, 21, 62–63. [Google Scholar]
- Hu, Z.P.; Zhao, H.; Chen, C.; Yuan, Z.Y. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catal. Today 2018, 316, 214–222. [Google Scholar] [CrossRef]
- Alaya, I.; Pereira, E.; Dias, M.I.; Pinela, J.; Calhelha, R.C.; Soković, M.; Kostić, M.; Prieto, M.A.; Essid, F.; Caleja, C.; et al. Development of a Natural Preservative from Chestnut Flowers: Ultrasound-Assisted Extraction Optimization and Functionality Assessment. Chemosensors 2021, 9, 141. [Google Scholar] [CrossRef]
- Hao, H.N.; Bao, W.J.; Wu, Y.W.; Ouyang, J. Relationship between physicochemical characteristics and in vitro digestibility of chestnut (Castanea mollissima) starch. Food Hydrocoll. 2018, 84, 193–199. [Google Scholar] [CrossRef]
- Yang, Z.L.; Zhang, Y.Y.; Wu, Y.W.; Ouyang, J. The role of drying methods in determining the in vitro digestibility of starch in whole chestnut flour. LWT-Food Sci. Technol. 2022, 153, 112583. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.K.; Kouba, M.; López-Alonso, M.; et al. Safety and efficacy of DSP® (Na2EDTA, tannin-rich extract of Castanea sativa, thyme oil and origanum oil) for pigs for fattening. EFSA J. 2020, 18, 6163. [Google Scholar]
- Echegaray, N.; Pateiro, M.; Zhang, W.G.; Domínguez, R.; Campagnol, P.C.B.; Carballo, J.; Lorenzo, J.M. Influence of the Inclusion of Chestnut (Castanea sativa Miller) in the Finishing Diet and Cooking Technique on the Physicochemical Parameters and Volatile Profile of Biceps femoris Muscle. Foods 2020, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Delgado, T.; Ramalhosa, E.; Pereira, J.A.; Casal, S. Organic acid profile of chestnut (Castanea sativa Mill.) as affected by hot air convective drying. Int. J. Food Prop. 2018, 21, 557–565. [Google Scholar] [CrossRef]
- Wang, H.X.; Hu, D.Y.; Ma, Q.Y.; Wang, L.J. Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. LWT-Food Sci. Technol. 2016, 71, 33–39. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Reddy, C.K.; Du, B.; Xu, B.J. Pasting, thermal, and functional properties of wheat flour and rice flour formulated with chestnut flour. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100290. [Google Scholar] [CrossRef]
- Dong, S.; Li, H.; Gasco, L.; Xiong, Y.; Guo, K.J.; Zoccarato, I. Antioxidative activity of the polyphenols from the involucres of Castanea mollissima Blume and their mitigating effects on heat stress. Poult. Sci. 2015, 94, 1096–1104. [Google Scholar] [CrossRef]
- An, J.Y.; Wang, L.T.; Lv, M.J.; Wang, J.D.; Cai, Z.H.; Wang, Y.Q.; Zhang, S.; Yang, Q.; Fu, Y.J. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchem. J. 2020, 160, 105616. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, H.Y.; Baba, M.; Okada, Y.; Okuyama, T.; Wu, L.J.; Zhan, L.B. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complem Altern Med. 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Morales, A.; Gullón, B.; Dávila, I.; Eibes, G.; Labidi, J.; Gullón, P. Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Ind. Crop. Prod. 2018, 124, 582–592. [Google Scholar] [CrossRef]
- You, T.T.; Zhou, S.K.; Wen, J.L.; Ma, C.; Xu, F. Chemical Composition, Properties, and Antimicrobial Activity of the Water-Soluble Pigments from Castanea mollissima Shells. J. Agric. Food Chem. 2014, 62, 1936–1944. [Google Scholar] [CrossRef]
- Pino-Hernández, E.; Pinto, C.A.; Abrunhosa, L.; Teixeira, J.A.; Saraiva, J.A. Hydrothermal and high-pressure processing of chestnuts-Dependence on the storage conditions. Postharvest Biol. Tec. 2022, 185, 111773. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, E.L.; Fidalgo, M.C.; Gomes, A.; Ramalhosa, E. Physicochemical properties and microbial control of chestnuts (Castanea sativa) coated with whey protein isolate, chitosan and alginate during storage. Sci. Hortic.-Amst. 2020, 263, 109105. [Google Scholar] [CrossRef]
- Guo, X.H.; Chu, L.J.; Gu, T.T.; Purohit, S.; Kou, L.P.; Zhang, B. Long-term quality retention and decay inhibition of chestnut using thymol loaded chitosan nanoparticle. Food Chem. 2022, 374, 131781. [Google Scholar] [CrossRef] [PubMed]
- Bounous, G.; Marinoni, D.T. Chestnut: Botany, horticulture, and utilization. Hort. Rev. 2005, 31, 291–347. [Google Scholar]
- Toprak, S. The macro and micro nutrition status of Anatolian chestnut in Inegol (Bursa-Turkey). Eurasian J. For. Sci. 2019, 7, 121–132. [Google Scholar] [CrossRef]
- Ribeiro, S.L.; Fonseca, T.F.; Pires, A.L. Influence of fertilization on growth of young chestnut trees (Castanea sativa Mill.) managed for wood production. Cerne 2019, 25, 357–364. [Google Scholar] [CrossRef]
- Toprak, S. Balanced Basic Fertilization in Sweet Chestnut (Castanea Sativa Mill.): Vertical Distribution of Plant Nutrients in Different Soil Textures. Alinteri J. Agric. Sci. 2021, 36, 7–13. [Google Scholar] [CrossRef]
- Toprak, S.; Ateş, Ö.; Yalçin, G.; Taşpinar, K. How Does N: P: K Fertilizer Applications in Different Levels Affect The Nutrition of Anatolian Chestnut (Castanea sativa Mill.)? Int. J. Anatolia Agric. Eng. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Raimundo, S.; Pereira, A.; Arrobas, M. Large Chestnut Trees (Castanea sativa) Respond Poorly to Liming and Fertilizer Application. J. Soil Sci. Plant Nut. 2020, 20, 1261–1270. [Google Scholar] [CrossRef]
- Carneiro-Carvalho, A.; Anjos, R.; Aires, A.; Marques, T.; Pinto, T.; Gomes-Laranjo, J. Ecophysiological study of the impact of SiK® fertilization on Castanea sativa Mill. seedling tolerance to high temperature. Photosynthetica 2019, 57, 1165–1175. [Google Scholar] [CrossRef]
- Portela, E.M.A.C.; Louzada, J.L.P. Early diagnosis of boron deficiency in chestnut. J. Plant Nutr. 2012, 35, 304–310. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, J.J.; Chang, S.X.; Jiang, P.K.; Zhou, G.M.; Shen, Z.M.; Wu, J.S.; Lin, L.; Wang, Z.S.; Shen, M.C. Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools. For. Ecol. Manag. 2014, 312, 161–169. [Google Scholar] [CrossRef]
- Aryal, P.; Meiners, S.J.; Carlsward, B.S. Ectomycorrhizae determine chestnut seedling growth and drought response. Agrofor. Syst. 2021, 95, 1251–1260. [Google Scholar] [CrossRef]
- Chen, H.Y.; Quan, W.X.; Liu, H.Y.; Ding, G.J. Effects of Suillus luteus and S. bovinus on the physiological response and nutrient absorption of Pinus massoniana seedlings under phosphorus deficiency. Plant Soil. 2022, 471, 577–590. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Schlaeppi, K.; López-García, Á.; Ondoño, S.; Prieto, I.; Heijden, M.G.A.; Alguacil, M.M. Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. New Phytol. 2021, 232, 1399–1413. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.M.; Keiffer, C.H.; Hiremath, S.; McCarthy, B.C. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut (Castanea dentata) establishment in coal mine restoration. J. App. Ecol. 2013, 50, 721–729. [Google Scholar] [CrossRef]
- Bauman, J.M.; Adamson, J.; Brisbin, R.; Cline, E.T.; Keiffer, C.H. Soil metals and ectomycorrhizal fungi associated with American chestnut hybrids as reclamation trees on formerly coal mined land. Int. J. Agron. 2017, 2017, 12. [Google Scholar] [CrossRef]
- Twieg, B.D.; Durall, D.M.; Simard, S.W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 2007, 176, 437–447. [Google Scholar] [CrossRef]
- Martins, A.; Marques, G.; Borges, O.; Portela, E.; Lousada, J.; Raimundo, F.; Madeira, M. Management of chestnut plantations for a multifunctional land use under Mediterranean conditions: Effects on productivity and sustainability. Agrofor. Syst. 2011, 81, 175–189. [Google Scholar] [CrossRef]
- Bauman, J.M.; Francino, S.; Santas, A. Interactions between ectomycorrhizal fungi and chestnut blight (Cryphonectria parasitica) on American chestnut (Castanea dentata) used in coal mine restoration. AIMS Microbiol. 2018, 4, 104–122. [Google Scholar] [CrossRef]
- Maarten, B.J. Dissertation. Sweet Chestnut (Castanea sativa Mill) Mycorrhzas: The Composition of Their Communities over a Wide Geographical Range in Europe; University of Wales: Bangor, ME, USA, 2009. [Google Scholar]
- Luoma, D.L.; Eberhart, J.L. Relationships between Swiss needle cast and ectomycorrhizal fungus diversity. Mycorrhiza 2014, 4, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Yamamoto, T.; Terakami, S.; Sawamura, Y.; Takada, N.; Saito, T. Genetic diversity of Japanese chestnut cultivars assessed by SSR markers. Breeding Sci. 2011, 61, 109–120. [Google Scholar] [CrossRef]
- Jiang, X.B.; Tang, D.; Gong, B.C. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) cultivars based on SSR markers. Braz. J. Bot. 2017, 40, 235–246. [Google Scholar] [CrossRef]
- Bouffartigue, C.; Debille, S.; Fabreguettes, O.; Cabrer, A.R.; Pereira-Lorenzo, S.; Flutre, T.; Harvengt, L. Two main genetic clusters with high admixture between forest and cultivated chestnut (Castanea sativa Mill.) in France. Ann. Forest Sci. 2020, 77, 74. [Google Scholar] [CrossRef]
- Inoue, E.; Ning, L.; Hara, H. Development of Simple Sequence Repeat Markers in Chinese Chestnut and Their Characterization in Diverse Chestnut Cultivars. J. Amer. Soc. Hort. Sci. 2009, 134, 610–617. [Google Scholar] [CrossRef]
- Alessandri, S.; Krznar, M.; Ajolfi, D.; Cabrer, A.M.R.; Pereira-Lorenzo, S.; Dondini, L. Genetic Diversity of Castanea sativa Mill. Accessions from the T uscan-Emilian Apennines and Emilia Romagna Region (Italy). Agronomy-Basel 2020, 10, 1319. [Google Scholar] [CrossRef]
- Marinoni, D.T.; Akkak, A.; Beltramo, C.; Guaraldo, P.; Boccacci, P.; Bounous, G.; Ferrara, A.M.; Ebone, A.; Viotto, E.; Botta, R. Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy). Tree Genet. Genomes. 2013, 9, 1017–1030. [Google Scholar] [CrossRef]
- Nie, X.H.; Wang, Z.H.; Liu, N.W.; Song, L.; Yan, B.Q.; Xing, Y.; Zhang, Q.; Fang, K.F.; Zhao, Y.L.; Chen, X.; et al. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. J. Integ. Agr. 2021, 20, 1277–1286. [Google Scholar] [CrossRef]
- Cuestas, M.I.; Mattioni, C.M.; Martín, L.M.; Vargas-Osuna, E.; Cherubini, M.; Martín, M.A. Functional genetic diversity of chestnut (Castanea sativa Mill.) populations from southern Spain. For. Syst. 2017, 26, eSC06. [Google Scholar] [CrossRef]
- Lang, P.; Dane, F.; Kubisiak, T.L. Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data. Tree Genet. Genomes. 2006, 2, 132–139. [Google Scholar] [CrossRef]
- Abdelhamid, S.; Omri, A.; Araouiki, A.; Sghair, A. Molecular Characterization of Swiss Chestnut Cultivars (Castanea Sativa Mill.) Using RAPD, AFLP and ISSR Markers. Int. J. Adv. Res. Bot. 2016, 2, 31–41. [Google Scholar] [CrossRef]
- Jarman, R.; Mattioni, C.; Russell, K.; Chambers, F.M.; Bartlett, D.; Martin, M.A.; Cherubini, M.; Villani, F.; Webb, J. DNA analysis of Castanea sativa (sweet chestnut) in Britain and Ireland: Elucidating European origins and genepool diversity. PLoS ONE 2019, 14, e0222936. [Google Scholar] [CrossRef]
- Skender, A.; Kurtović, M.; Pojskić, N.; Stroil, B.K.; Hadžiabulić, S.; Gaši, F. Genetic Structure and Diversity of European chestnut (Castanea sativa mill.) Populations in Western Balkans: On a Crossroad between East and West. Genetika-Belgrade 2017, 49, 613–626. [Google Scholar] [CrossRef]
- Alcaide, F.; Solla, A.; Mattioni, C.; Castellana, S.; Martín, M.Á. Adaptive diversity and drought tolerance in Castanea sativa assessed through EST-SSR genic markers. Forestry 2019, 92, 287–296. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Teslyuk, M. Variability of Morphological Parameters and Determination of Volatile Organic Compounds of Sweet Chestnut (Castanea sativa mill.) genotypes fruits. Plant Introd. 2018, 2, 74–83. [Google Scholar] [CrossRef]
- Mota, M.; Marques, T.; Pinto, T.; Raimundo, F.; Borges, A.; Caço, J.; Gomes-Laranjo, J. Relating plant and soil water content to encourage smart watering in chestnut trees. Agric. Water Manag. 2018, 203, 30–36. [Google Scholar] [CrossRef]
- Warmund, M.R. Nutrient status and fruiting response of young Chinese chestnut trees following application of nitrogen. J. Am. Pomol. Soc. 2018, 72, 12–20. [Google Scholar]
- Mellano, M.G.; Beccaro, G.L.; Donno, D.; Marinoni, T.D.; Boccacci, P.; Canterino, S.; Cerutti, A.K.; Bounous, G. Castanea spp. Biodiversity conservation: Collection and characterization of the genetic diversity of an endangered species. Gen. Res. Crop Evol. 2012, 59, 1727–1741. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Han, N.; Feng, T.; Hou, X.; An, X.N.; Chang, G. Effects of mast seeding and insect infestation on predation and dispersal of Castanea mollissima nuts by rodents in the Qinling Mountains of China. Forest Ecol. Manag. 2021, 499, 119630. [Google Scholar] [CrossRef]
- Laport, R.G.; Brookover, Z.S.; Christman, B.D.; Ng, J.; Philley, K.; Craddock, J.H. Environmental niche and demographic modeling of American chestnut near its southwestern range limit. bioRxiv 2021. [Google Scholar] [CrossRef]
- Mattioni, C.; Martin, M.A.; Chiocchini, F.; Cherubini, M.; Gaudet, M.; Pollegioni, P.; Velichkov, I.; Jarman, R.; Chambers, F.M.; Damian, V.L.; et al. Landscape genetics structure of European sweet chestnut (Castanea sativa Mill): Indications for conservation priorities. Tree Genet. Genomes. 2017, 13, 39. [Google Scholar] [CrossRef]
- Usta, A.; Yılmaz, M. Spatio-temporal change of anatolian chestnut (Castanea sativa Mill.) forests under climate change, NORTHEASTERN TURKEY. Environ.Eng. Manag. J. 2020, 19, 1167–1179. [Google Scholar]
- Odalović, A.; Prenkić, R.; Dubak, D.; Jovančević, M.; Čizmović, M.; Radunović, M. Effect of ecological conditions on expression of biopomological characteristics of chestnut (Castanea sativa Mill.) in natural populations of montenegro. Genetika-Basel 2013, 45, 251–260. [Google Scholar] [CrossRef]
- Míguez-Soto, B.; Fernández-Cruz, J.; Fernández-López, J. Mediterranean and Northern Iberian gene pools of wild Castanea sativa Mill. are two differentiated ecotypes originated under natural divergent selection. PLoS ONE 2019, 14, e0211315. [Google Scholar] [CrossRef]
- Sevarika, M.; Stacconi, V.R.; Romani, R. Fine Morphology of Antennal and Ovipositor Sensory Structures of the Gall Chestnut Wasp, Dryocosmus kuriphilus. Insects 2021, 12, 231. [Google Scholar] [CrossRef]
- Bounous, G. Perspectives and future of the chestnut industry in Europe and all over the world. In: Proceedings of the second European congress on chestnut. Acta Hortic. 2014, 1043, 19–22. [Google Scholar] [CrossRef]
- Dini, F.; Sartor, C.; Botta, R. Detection of a hypersensitive reaction in the chestnut hybrid ‘Bouche de Betizac’ infested by Dryocosmus kuriphilus Yasumatsu. Plant Physiol. Bioch. 2012, 60, 67–73. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, C.; Fang, Z.; Wu, Q.; Xu, Y.; Gong, B.; Jiang, X.; Lai, J.; Fan, J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. Plants 2022, 11, 2111. https://doi.org/10.3390/plants11162111
Wang Y, Liu C, Fang Z, Wu Q, Xu Y, Gong B, Jiang X, Lai J, Fan J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. Plants. 2022; 11(16):2111. https://doi.org/10.3390/plants11162111
Chicago/Turabian StyleWang, Yanpeng, Cuiyu Liu, Zhou Fang, Qiang Wu, Yang Xu, Bangchu Gong, Xibing Jiang, Junsheng Lai, and Jingen Fan. 2022. "A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima" Plants 11, no. 16: 2111. https://doi.org/10.3390/plants11162111
APA StyleWang, Y., Liu, C., Fang, Z., Wu, Q., Xu, Y., Gong, B., Jiang, X., Lai, J., & Fan, J. (2022). A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. Plants, 11(16), 2111. https://doi.org/10.3390/plants11162111