Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites
Abstract
:1. Introduction
2. Primary metabolites
2.1. Sugars
2.2. Amino Acids
2.3. Organic Acids
2.4. Fatty Acids
3. Secondary Metabolites
3.1. Terpenoids
3.2. Alkaloids
3.3. Phenolics
3.4. Saponins
3.5. Mechanisms of AMF Symbiosis on the Production of Secondary Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, D.; Thapa, S.; Mahawar, H.; Kumar, D.; Geat, N.; Singh, S.K. Prospecting Potential of Endophytes for Modulation of Biosynthesis of Therapeutic Bioactive Secondary Metabolites and Plant Growth Promotion of Medicinal and Aromatic Plants. Antonie Van Leeuwenhoek 2022, 115, 699–730. [Google Scholar] [CrossRef] [PubMed]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Kallscheuer, N.; Classen, T.; Drepper, T.; Marienhagen, J. Production of Plant Metabolites with Applications in the Food Industry Using Engineered Microorganisms. Curr. Opin. Biotechnol. 2019, 56, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of Different Fertilizer Sources and Harvesting Time on the Growth Characteristics, Nutrient Uptakes, Essential Oil Productivity and Composition of Mentha × piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Rezaei-Chiyaneh, E.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Evaluation of Common Bean (Phaseolus vulgaris L.) Seed Yield and Quali-Quantitative Production of the Essential Oils from Fennel (Foeniculum vulgare Mill.) and Dragonhead (Dracocephalum moldavica L.) in Intercropping System under Humic Acid Application. J. Clean. Prod. 2019, 235, 112–122. [Google Scholar] [CrossRef]
- Strzemski, M.; Dzida, K.; Dresler, S.; Sowa, I.; Kurzepa, J.; Szymczak, G.; Wójciak, M. Nitrogen Fertilisation Decreases the Yield of Bioactive Compounds in Carlina acaulis L. Grown in the Field. Ind. Crops Prod. 2021, 170, 113698. [Google Scholar] [CrossRef]
- Javanmard, A.; Ashrafi, M.; Morshedloo, M.R.; Amani Machiani, M.; Rasouli, F.; Maggi, F. Optimizing Phytochemical and Physiological Characteristics of Balangu (Lallemantia iberica) by Foliar Application of Chitosan Nanoparticles and Myco-Root Inoculation under Water Supply Restrictions. Horticulturae 2022, 8, 695. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 01068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selosse, M.A.; Strullu-Derrien, C.; Martin, F.M.; Kamoun, S.; Kenrick, P. Plants, Fungi and Oomycetes: A 400-Million Year Affair That Shapes the Biosphere. New Phytol. 2015, 206, 501–506. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Janmohammadi, M.; Maggi, F. Funneliformis Mosseae Application Improves the Oil Quantity and Quality and Eco-Physiological Characteristics of Soybean (Glycine max L.) under Water Stress Conditions. J. Soil Sci. Plant Nutr. 2021, 21, 3076–3090. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Aghaee, A.; Maggi, F. Funneliformis Mosseae Inoculation under Water Deficit Stress Improves the Yield and Phytochemical Characteristics of Thyme in Intercropping with Soybean. Sci. Rep. 2021, 11, 15279. [Google Scholar] [CrossRef] [PubMed]
- Battini, F.; Grønlund, M.; Agnolucci, M.; Giovannetti, M.; Jakobsen, I. Facilitation of Phosphorus Uptake in Maize Plants by Mycorrhizosphere Bacteria Article. Sci. Rep. 2017, 7, 4686. [Google Scholar] [CrossRef] [PubMed]
- Grümberg, B.C.; Urcelay, C.; Shroeder, M.A.; Vargas-Gil, S.; Luna, C.M. The Role of Inoculum Identity in Drought Stress Mitigation by Arbuscular mycorrhizal Fungi in Soybean. Biol. Fertil. Soils 2014, 51, 1–10. [Google Scholar] [CrossRef]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of Arbuscular mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Sadeghpour, A.; Maggi, F.; Nouraein, M.; Morshedloo, M.R.; Hano, C.; Lorenzo, J.M. Co-Application of TiO2 Nanoparticles and Arbuscular mycorrhizal Fungi Improves Essential Oil Quantity and Quality of Sage (Salvia officinalis L.) in Drought Stress Conditions. Plants 2022, 11, 1659. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, B.; Chai, H.; Yang, X.; Song, W.; Li, S.; Lu, A.; Zhang, T.; Sun, W. Arbuscular mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Front. Plant Sci. 2019, 10, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulenstein, F.; Tauschke, M.; Behrendt, A.; Monk, J.; Schindler, U.; Lana, M.A.; Monk, S. The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops. Horticulturae 2017, 3, 8. [Google Scholar] [CrossRef]
- Rashidi, S.; Yousefi, A.R.; Pouryousef, M.; Goicoechea, N. Effect of Arbuscular mycorrhizal Fungi on the Accumulation of Secondary Metabolites in Roots and Reproductive Organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem. Biol. Technol. Agric. 2022, 9, 23–34. [Google Scholar] [CrossRef]
- Al-Arjani, A.B.F.; Hashem, A.; Abd_Allah, E.F. Arbuscular mycorrhizal Fungi Modulates Dynamics Tolerance Expression to Mitigate Drought Stress in Ephedra foliata Boiss. Saudi J. Biol. Sci. 2020, 27, 380–394. [Google Scholar] [CrossRef]
- Moradtalab, N.; Hajiboland, R.; Aliasgharzad, N.; Hartmann, T.E.; Neumann, G. Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy 2019, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Bago, B.; Pfeffer, P.E.; Shachar-Hill, Y. Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiol. 2000, 124, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keymer, A.; Pimprikar, P.; Wewer, V.; Huber, C.; Brands, M.; Bucerius, S.L.; Delaux, P.M.; Klingl, V.; von Röpenack-Lahaye, E.; Wang, T.L.; et al. Lipid Transfer from Plants to Arbuscular Mycorrhiza Fungi. eLife 2017, 6, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Suseela, V. Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites 2020, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.L.; Belval, L.; Martin, I.R.; Roth, L.; Laloue, H.; Deglène-Benbrahim, L.; Valat, L.; Bertsch, C.; Chong, J. Arbuscular mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together with Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis vinifera. Front. Plant Sci. 2021, 12, 721614. [Google Scholar] [CrossRef]
- Li, Y.-L.; Jin, Z.-X.; Luo, G.-Y.; Chen, C.; Sun, Z.-S.; Wang, X.-Y. Effects of Arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Heptacodium miconioides under drought stress. J. Appl. Ecol. 2022, 33, 963–971. [Google Scholar]
- Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz, L.; et al. Deciphering the Role of Trehalose in Tripartite Symbiosis among Rhizobia, Arbuscular mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front. Microbiol. 2020, 11, 509919. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Zhang, Q.; Li, S.; Sun, Y.; Lu, W.; Ma, C. Response of Alfalfa Growth to Arbuscular mycorrhizal Fungi and Phosphate-Solubilizing Bacteria under Different Phosphorus Application Levels. AMB Express 2020, 10, 200–213. [Google Scholar] [CrossRef]
- Yooyongwech, S.; Samphumphuang, T.; Tisarum, R.; Theerawitaya, C.; Cha-Um, S. Arbuscular mycorrhizal Fungi (AMF) Improved Water Deficit Tolerance in Two Different Sweet Potato Genotypes Involves Osmotic Adjustments via Soluble Sugar and Free Proline. Sci. Hortic. 2016, 198, 107–117. [Google Scholar] [CrossRef]
- Gupta, S.; Thokchom, S.D.; Kapoor, R. Arbuscular Mycorrhiza Improves Photosynthesis and Restores Alteration in Sugar Metabolism in Triticum aestivum L. Grown in Arsenic Contaminated Soil. Front. Plant Sci. 2021, 12, 640379. [Google Scholar] [CrossRef]
- Wu, Q.S.; Xia, R.X.; Zou, Y.N.; Wang, G.Y. Osmotic Solute Responses of Mycorrhizal Citrus (Poncirus trifoliata) Seedlings to Drought Stress. Acta Physiol. Plant. 2007, 29, 543–549. [Google Scholar] [CrossRef]
- Schliemann, W.; Ammer, C.; Strack, D. Metabolite Profiling of Mycorrhizal Roots of Medicago truncatula. Phytochemistry 2008, 69, 112–146. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, W.; Heinemann, B.; Rugen, N.; Nunes-Nesi, A.; Araújo, W.L.; Braun, H.P.; Hildebrandt, T.M. The Role of Amino Acid Metabolism during Abiotic Stress Release. Plant Cell Environ. 2019, 42, 1630–1644. [Google Scholar] [CrossRef] [Green Version]
- Meena, M.; Divyanshu, K.; Kumar, S.; Swapnil, P.; Zehra, A.; Shukla, V.; Yadav, M.; Upadhyay, R.S. Regulation of L-Proline Biosynthesis, Signal Transduction, Transport, Accumulation and Its Vital Role in Plants during Variable Environmental Conditions. Heliyon 2019, 5, e02952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, M.D.; Garcia, M.O.; Treseder, K.K. Amino Acid Uptake in Arbuscular mycorrhizal Plants. PLoS ONE 2012, 7, e47643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metwally, R.A.; Soliman, S.A.; Abdel Latef, A.A.H.; Abdelhameed, R.E. The Individual and Interactive Role of Arbuscular mycorrhizal Fungi and Trichoderma viride on Growth, Protein Content, Amino Acids Fractionation, and Phosphatases Enzyme Activities of Onion Plants Amended with Fish Waste. Ecotoxicol. Environ. Saf. 2021, 214, 112072. [Google Scholar] [CrossRef]
- Cartabia, A.; Tsiokanos, E.; Tsafantakis, N.; Lalaymia, I.; Termentzi, A.; Miguel, M.; Fokialakis, N.; Declerck, S. The Arbuscular mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 Modulates Metabolites Production of Anchusa Officinalis L. under Semi-Hydroponic Cultivation. Front. Plant Sci. 2021, 12, 724352. [Google Scholar] [CrossRef]
- Rivero, J.; Gamir, J.; Aroca, R.; Pozo, M.J.; Flors, V. Metabolic transition in mycorrhizal tomato roots. Front. Microbiol. 2015, 6, 598–611. [Google Scholar] [CrossRef]
- Shtark, O.Y.; Puzanskiy, R.K.; Avdeeva, G.S.; Yemelyanov, V.V.; Kliukova, M.S.; Shavarda, A.L.; Kirpichnikova, A.A.; Afonin, A.M.; Tikhonovich, I.A.; Zhukov, V.A.; et al. Metabolic Alterations in Pea Leaves and Roots during Arbuscular Mycorrhiza Development. PeerJ Comput. Sci. 2020, 7, e7495. [Google Scholar] [CrossRef] [Green Version]
- Vahedi, R.; Rasouli-Sadaghiani, M.H.; Barin, M.; Vetukuri, R.R. Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes 2022, 10, 343. [Google Scholar] [CrossRef]
- Andrino, A.; Guggenberger, G.; Kernchen, S.; Mikutta, R.; Sauheitl, L.; Boy, J. Production of Organic Acids by Arbuscular mycorrhizal Fungi and Their Contribution in the Mobilization of Phosphorus Bound to Iron Oxides. Front. Plant Sci. 2021, 12, 661842. [Google Scholar] [CrossRef]
- Ma, J.; Wang, W.; Yang, J.; Qin, S.; Yang, Y.; Sun, C.; Pei, G.; Zeeshan, M.; Liao, H.; Liu, L.; et al. Mycorrhizal Symbiosis Promotes the Nutrient Content Accumulation and Affects the Root Exudates in Maize. BMC Plant Biol. 2022, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Chiyaneh, E.; Battaglia, M.L.; Sadeghpour, A.; Shokrani, F.; Nasab, A.D.M.; Raza, M.A.; von Cossel, M. Optimizing Intercropping Systems of Black Cumin (Nigella sativa L.) and Fenugreek (Trigonella foenum-graecum L.) through Inoculation with Bacteria and Mycorrhizal Fungi. Adv. Sustain. Syst. 2021, 5, 2000269. [Google Scholar] [CrossRef]
- Zhao, Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 2022, 32, 221–256. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Gezici, S. Review Article Plant Secondary Metabolites, Their Separation, Identification and Role in Human Disease Prevention. Ann. Int. J. 2018, 7, 13–24. [Google Scholar] [CrossRef]
- Thokchom, S.D.; Gupta, S.; Kapoor, R. Arbuscular Mycorrhiza Augments Essential Oil Composition and Antioxidant Properties of Ocimum tenuiflorum L.—A Popular Green Tea Additive. Ind. Crops Prod. 2020, 153, 112418. [Google Scholar] [CrossRef]
- Rydlová, J.; Jelínková, M.; Dušek, K.; Dušková, E.; Vosátka, M.; Püschel, D. Arbuscular Mycorrhiza Differentially Affects Synthesis of Essential Oils in Coriander and Dill. Mycorrhiza 2016, 26, 123–131. [Google Scholar] [CrossRef]
- Carreón-Abud, Y.; Torres-Martínez, R.; Farfán-Soto, B.; Hernández-García, A.; Ríos-Chávez, P.; Bello-González, M.Á.; Martínez-Trujillo, M.; Salgado-Garciglia, R. Arbuscular mycorrhizal Symbiosis Increases the Content of Volatile Terpenes and Plant Performance in Satureja macrostema (Benth.) Briq. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 273–279. [Google Scholar]
- da Cruz, R.M.S.; da Cruz, G.L.S.; Dragunski, D.C.; Junior, A.C.G.; Alberton, O.; de Souza, S.G.H. Inoculation with Arbuscular mycorrhizal Fungi Alters Content and Composition of Essential Oil of Sage (Salvia officinalis) under Different Phosphorous Levels. Aust. J. Crop Sci. 2019, 13, 1617–1624. [Google Scholar] [CrossRef]
- Golubkina, N.; Logvinenko, L.; Novitsky, M.; Zamana, S.; Sokolov, S.; Molchanova, A.; Shevchuk, O.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, Essential Oil and Quality Performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as Affected by Arbuscular mycorrhizal Fungi under Organic Management. Plants 2020, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Song, M.C.; Kim, E.J.; Kim, E.; Rathwell, K.; Nam, S.J.; Yoon, Y.J. Microbial Biosynthesis of Medicinally Important Plant Secondary Metabolites. Nat. Prod. Rep. 2014, 31, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128164556. [Google Scholar]
- Pandey, D.K.; Malik, T.; Dey, A.; Singh, J.; Banik, R.M. Improved Growth and Colchicine Concentration in Gloriosa superba on Mycorrhizal Inoculation Supplemented with Phosphorus-Fertilizer. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Andrade, R.; Cerda-García-Rojas, C.M.; Frías-Hernández, J.T.; Dendooven, L.; Olalde-Portugal, V.; Ramos-Valdivia, A.C. Changes in the Concentration of Trigonelline in a Semi-Arid Leguminous Plant (Prosopis laevigata) Induced by an Arbuscular mycorrhizal Fungus during the Presymbiotic Phase. Mycorrhiza 2003, 13, 49–52. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Wallis, C.M.; Galarneau, E.R.A. Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Front. Plant Sci. 2020, 11, 580753. [Google Scholar] [CrossRef]
- Muniz, B.C.; Falcão, E.L.; de Paula Monteiro, R.; dos Santos, E.L.; Bastos Filho, C.J.A.; da Silva, F.S.B. Acaulospora Longula Spain & N.C. Schenck: A Low-Cost Bioinsumption to Optimize Phenolics and Saponins Production in Passiflora alata Curtis. Ind. Crops Prod. 2021, 167, 113498. [Google Scholar] [CrossRef]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular mycorrhizal Fungi Improve Tolerance of the Medicinal Plant Eclipta prostrata (L.) and Induce Major Changes in Polyphenol Profiles under Salt Stresses. Front. Plant Sci. 2021, 11, 612299. [Google Scholar] [CrossRef]
- Santos, E.L.; Silva, W.A.V.; Ferreira, M.R.A.; Soares, L.A.; Sampaio, E.V.S.B.; Silva, F.A.; Silva, F.S.B. Acaulospora longula Increases the Content of Phenolic Compounds and Antioxidant Activity in Fruits of Libidibia ferrea. Open Microbiol. J. 2020, 14, 132–139. [Google Scholar] [CrossRef]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Quan, S.; Xiao, H. Towards Efficient Terpenoid Biosynthesis: Manipulating IPP and DMAPP Supply. Bioresour. Bioprocess. 2019, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Anand, G.; Gupta, P.; Mandal, S. Insight into the Mechanisms of Enhanced Production of Valuable Terpenoids by Arbuscular Mycorrhiza. Phytochem. Rev. 2017, 16, 677–692. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Liao, D.; Wang, S.; Cui, M.; Liu, J.; Chen, A.; Xu, G. Phytohormones Regulate the Development of Arbuscular mycorrhizal Symbiosis. Int. J. Mol. Sci. 2018, 19, 3146. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sharma, R.A. Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Q.; Zhu, H.H.; Zhao, H.Q.; Yao, Q. Arbuscular mycorrhizal Fungal Inoculation Increases Phenolic Synthesis in Clover Roots via Hydrogen Peroxide, Salicylic Acid and Nitric Oxide Signaling Pathways. J. Plant Physiol. 2013, 170, 74–79. [Google Scholar] [CrossRef]
Sugars | AMF Species | Plant Organs | Plant Species | Environmental Conditions | Changes | Reference |
---|---|---|---|---|---|---|
Total sugars | Funneliformis mosseae | Leaves | Medicago sativa L. | - | Increase | [27] |
Total sugars | Glomus sp. | Roots + leaves | Ipomoea batatas L. | Drought stress | Increase | [28] |
Total sugars | Rhizophagus intraradices | Leaves | Triticum aestivum L. | Arsenic contaminated soil | Increase | [29] |
Glucose | Glomus versiforme | Roots | Poncirus trifoliata L. | Well-watered | Increase | [30] |
Sucrose, glucose | Glomus versiforme | Roots | Poncirus trifoliata L. | Drought stress | Increase | [30] |
Fructose, Sucrose | Glomus versiforme | Leaves | Poncirus trifoliata L. | Drought stress | Increase | [30] |
Trehalose | Glomus intraradices | Roots | Medicago truncatula | - | Increase | [31] |
Terpenes | AMF Species | Plant Species | Changes | Reference |
---|---|---|---|---|
β-elemene, β-caryophyllene, germacrene A, germacrene D | Rhizophagus intraradices | Ocimum tenuiflorum L. | Increase | [45] |
Thymol, P-cymene, γ-terpinene | Funneliformis mosseae | Thymus vulgaris L. | Increase | [11] |
β-caryophyllene, p-cymene, geraniol | Glomus hoi | Coriandrum sativum L. | Increase | [46] |
Linalool, menthone, pulegone, verbenol acetate | Rhizophagus irregularis | Satureja Macrostema (Benth.) Briq. | Increase | [47] |
camphor, α-humulene, viridiflorol, manool, α-thujone, β-thujone | Rhizophagus clarus | Salvia officinalis L. | Increase | [48] |
Linalyl acetate | Rhizophagus intraradices, Trichoderma harzianum, Bacillus subtilis | Lavandula angustifolia Mill. | Increase | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amani Machiani, M.; Javanmard, A.; Habibi Machiani, R.; Sadeghpour, A. Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants 2022, 11, 2183. https://doi.org/10.3390/plants11172183
Amani Machiani M, Javanmard A, Habibi Machiani R, Sadeghpour A. Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants. 2022; 11(17):2183. https://doi.org/10.3390/plants11172183
Chicago/Turabian StyleAmani Machiani, Mostafa, Abdollah Javanmard, Reyhaneh Habibi Machiani, and Amir Sadeghpour. 2022. "Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites" Plants 11, no. 17: 2183. https://doi.org/10.3390/plants11172183
APA StyleAmani Machiani, M., Javanmard, A., Habibi Machiani, R., & Sadeghpour, A. (2022). Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants, 11(17), 2183. https://doi.org/10.3390/plants11172183