Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Research
2.2. Pharmacological Activity
2.2.1. Anti-Inflammatory Activity
2.2.2. Acute Toxicity and Hepatoprotective Activity
3. Materials and Methods
3.1. Chemicals and General Experiments
3.2. Plant Material
3.3. Preparation of the Extract
3.4. Phytochemical Research
3.4.1. Monosaccharides
3.4.2. Amino Acids
3.4.3. Tannin Fragments
3.4.4. Hydroxycinnamic Acids and Flavonoids
3.4.5. Spectrophotometry Methods
Determination of the Quantitative Content of Total Flavonoids
Determination of the Quantitative Content of Hydroxycinnamic Acid Derivatives
Determination of the Quantitative Content of Tannins
Standard Solution
3.5. Pharmacological Activity
3.5.1. Anti-Inflammatory Activity
3.5.2. Acute Toxicity and Hepatoprotective Activity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lebeda, A.P. Inventory of the Flora of Ukraine; Academicperiodical: Kyiv, Ukraine, 2007. (In Ukrainian) [Google Scholar]
- Alekseev, I.S. Complete Atlas of Medicinal Plants; LLC Gloria Trade: Kyiv, Ukraine, 2013. (In Ukrainian) [Google Scholar]
- Huzio, N.M.; Grytsyk, A.R.; Budniak, L.I.; Bekus, I.R. Determination of flavonoids and hydroxycinnamic acids in the herb of A. eupatoria by HPLC method. Pharma Innov. 2020, 9, 43–46. [Google Scholar]
- Karlińska, E.; Romanowska, B.; Kosmala, M. The Aerial Parts of Agrimonia procera Wallr. and Agrimonia eupatoria L. as a source of polyphenols, and especially agrimoniin and flavonoids. Molecules 2021, 26, 7706. [Google Scholar] [CrossRef] [PubMed]
- Malheiros, J.; Simões, D.M.; Figueirinha, A.; Cotrim, M.D.; Fonseca, D.A. Agrimonia eupatoria L.: An integrative perspective on ethnomedicinal use, phenolic composition and pharmacological activity. J. Ethnopharmacol. 2022, 296, 115498. [Google Scholar] [CrossRef] [PubMed]
- Granica, S.; Kluge, H.; Horn, G.; Matkowski, A.; Kiss, A.K. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procera Wallr. as valid sources of Agrimoniae herba—The pharmacopoeial plant material. J. Pharm. Biomed. Anal. 2015, 114, 272–279. [Google Scholar] [CrossRef]
- Khadartsev, A.A.; Platonov, V.V.; Sukhikh, G.T. The chemical composition of the organic matter of the grass of the ordinary (ordinary love spell) (Argimonia eupatoria L. the family of pink -flowered ones—Rosaceae). Bull. New Med. Technol. 2018, 4, 127–136. [Google Scholar]
- Shin, W.J.; Lee, K.H.; Park, M.H.; Seong, B.L. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiol. Immunol. 2010, 54, 11–19. [Google Scholar] [CrossRef]
- Paluch, Z.; Biriczová, L.; Pallag, G.; Carvalheiro Marques, E.; Vargová, N.; Kmoníčková, E. The therapeutic effects of Agrimonia eupatoria L. Physiol Res. 2020, 69, 555–571. [Google Scholar] [CrossRef]
- Sohn, E.-H.; Kim, T.; Jeong, Y.; Han, H.-S.; Lea, Y.; Cho, Y.-M.; Kang, S.-C. Triglyceride control effect of Agrimonia eupatoria L. in oleic acid induced NAFLD-HepG2 model. Korean J. Plant. Res. 2015, 28, 635–640. [Google Scholar] [CrossRef]
- Kuczmannová, A.; Balažová, A.; Račanská, E. Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: Comparison of anti-diabetic activities. Molecules 2016, 21, 564. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Song, H. The potential beneficial effects of phenoliccompounds isolated from A. pilosa Ledeb on insulin-resistant hepatic HepG2 cells. Food Funct. 2016, 7, 4400–4409. [Google Scholar] [CrossRef]
- Na, B.; Nguyen, P.H.; Zhao, B.-T.; Vo, Q.-H.; Min, B.S.; Woo, M.H. Proteintyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharm. Biol. 2016, 54, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.S.; Koh, E.G.; Zee, O.P. Agrimonia eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem. Toxical. 2012, 50, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-Inflammatory Activity of Natural Products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef]
- Starchenko, G.; Hrytsyk, A.; Raal, A.; Koshovyi, O. Phytochemical profile and pharmacological activities of water and hydroethanolic dry extracts of Calluna vulgaris (L.) Hull. herb. Plants 2020, 9, 751. [Google Scholar] [CrossRef]
- Mohi-ud-din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr. Drug Metab. 2019, 20, 867–879. [Google Scholar] [CrossRef]
- Goryacha, O.V.; Ilyina, T.V.; Kovalyova, A.M.; Koshovyi, O.M.; Krivoruchko, O.V.; Vladimirova, I.M.; Komisarenko, A.M. A hepatoprotective activity of Galium verum L. extracts against carbon tetrachloride-induced injuri in rats. Der Pharma Chem. 2017, 7, 80–83. Available online: http://www.derpharmachemica.com/archive.html (accessed on 21 May 2020).
- Kovalenko, V.N. Compendium 2020-Medicines; MORION: Kiiv, Ukraine, 2020. (In Ukrainian) [Google Scholar]
- Gritsyk, A.R.; Huzio, N.M.; Ugrin, O.M. Method of Obtaining Herb Extract Steamed Ordinary with Hepatoprotective Activity. Ukraine Patent NO 108382, 27 August 2015. Bul. NO 8. [Google Scholar]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Komissarenko, A.N. Amino-Acid Composition of Galium salicifolium Herb. Chem. Nat. Comp. 2017, 53, 605–606. [Google Scholar] [CrossRef]
- Koshevoi, O.N. Amino-acid and monosaccharide compositions of Salvia officinalis leaves. Chem. Nat. Comp. 2011, 47, 492–493. [Google Scholar] [CrossRef]
- Yurchenko, N.S.; Il’Ina, T.V.; Kovaleva, A.M. Amino-Acid Composition of Asperula odorata Herb. Chem. Nat. Comp. 2013, 49, 401–402. [Google Scholar] [CrossRef]
- Koshovyi, O.; Raal, A.; Kireyev, I.; Tryshchuk, N.; Ilina, T.; Romanenko, Y.; Kovalenko, S.M.; Bunyatyan, N. Phytochemical and psychotropic research of motherwort (Leonurus cardiaca L.) modified dry extracts. Plants 2021, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Tsuji, M.; Yamasaki, T.R.; Pasinetti, G.M. Anti-aggregation effects of phenolic compounds on α-synuclein. Molecules 2020, 25, 2444. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, A.I.; Dobrovolnyi, O.O.; Shalamai, A.S. Comparative analysis of hydroxycinnamic acids of artichoke grown in Ukraine and France. Curr. Issues Pharm. Med. Sci. Pract. 2017, 1, 49–53. [Google Scholar]
- Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother. 2019, 111, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.C.; Fideles, S.O.M.; Reis, C.H.B.; Bellini, M.Z.; Pereira, E.S.B.M.; Pilon, J.P.G.; de Marchi, M.Â.; Detregiachi, C.R.P.; Flato, U.A.P.; Trazzi, B.F.M.; et al. Therapeutic effects of citrus flavonoids neohesperidin, hesperidin and uts aglycone, hesperetin on bone health. Biomolecules 2022, 12, 626. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.N.; Costa, G.; Ferreira, J.P.; Liberal, J.; Vera Francisco, V.; Paranhos, A.; Cruz, M.T.; Castelo-Branco, M.; Figueiredo, I.V.; Batista, M.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. infusion. Evid. Based Complementary Altern. Med. 2017, 2017, 8309894. [Google Scholar] [CrossRef]
- Stefanov, O.V. Preclinical Studies of Drugs; Avitsenna: Kyiv, Ukraine, 2001. (In Ukrainian) [Google Scholar]
- Koshovyi, O.N.; Vovk, G.V.; Akhmedov, E.Y.; Komissarenko, A.N. The study of the chemical composition and pharmacological activity of Salvia officinalis leaves extracts getting by complex processing. Azerbaijan Pharm. Pharm. J. 2015, 15, 30–34. [Google Scholar]
- Ivanova, D.; Vankova, D.; Nashar, M. Agrimonia eupatoria tea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch. Pysiol. Biochem. 2013, 119, 32–37. [Google Scholar] [CrossRef]
- Cho, Y.M.; Kwon, J.E.; Lee, M.; Lea, Y.; Jeon, D.-Y.; Kim, H.; Kang, S.C. Agrimonia eupatoria L. (Agrimony) extract alters liver health in subjects with elevated alanine transaminase levels: A controlled, randomized, and double-blind trial. J. Med. Food. 2018, 21, 282–288. [Google Scholar] [CrossRef]
- Kwon, D.H.; Kwon, H.Y.; Kim, H.J.; Chang, E.J.; Kim, M.B.; Yoon, S.K.; Song, E.Y.; Yoon, D.Y.; Lee, Y.H.; Choi, I.S. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother. Res. 2005, 19, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine, 2nd ed.; Science Dumka: Kiev, Ukraine, 1999. (In Russian) [Google Scholar]
- State Pharmacopoeia of Ukraine, 2nd ed.; Ukrainian Scientific Pharmacopoeial Center of Drugs Quality: Kharkiv, Ukraine, 2015. (In Ukrainian)
- Zabolotnyi, O.; Koshevoi, M. An effective method of bulk materials moisture measurement using capacitive sensors. J. Stored Prod. Res. 2020, 89, 101733. [Google Scholar] [CrossRef]
- Zabolotnyi, O.; Zabolotnyi, V.; Koshevoy, N. Oil products moisture measurement using adaptive capacitive instrument measuring transducers. Lect. Notes Netw. Syst. 2021, 188, 81–91. [Google Scholar] [CrossRef]
- Marchyshyn, S.; Parashchuk, E.; Dakhym, I.; Husak, L. Phenolic compounds from Pimpinella saxifraga L. Pharm. Innov. J. 2018, 7, 600–602. [Google Scholar]
- Shostak, L.G.; Marchyshyn, S.M.; Kozachok, S.S.; Karbovska, R.V. Investigation of phenolic compounds of Primula veris L. J. Educ. Health Sport 2016, 6, 424–432. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Bezruk, I.; Ivanauskas, L.; Lesyk, R.; Georgiyants, V. Characterization of phytochemical components of Crocus sativus leaves using HPLC-MS/MS and GC-MS: A new potential by-product. Sci. Pharm. 2021, 89, 28. [Google Scholar] [CrossRef]
- Sas, I.; Hrytsyk, A.; Koliadzhyn, T.; Koshovyi, O. Comparative study of phenolic compounds of the herb of Betonica, L. genus species of flora of Ukraine. Sci. Pharm. Sci. 2021, 1, 66–75. [Google Scholar] [CrossRef]
- Ilina, T.; Skowronska, W.; Kashpur, N.; Granica, S.; Bazylko, A.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Immunomodulatory xctivity and phytochemical profile of infusions from cleavers herb. Molecules 2020, 25, 3721. [Google Scholar] [CrossRef] [PubMed]
- Koshovyi, O.; Granica, S.; Piwowarski, J.P.; Stremoukhov, O.; Kostenko, Y.; Kravchenko, G.; Krasilnikova, O.; Zagayko, A. Highbush blueberry (Vaccinium corymbosum L.) leaves extract and its modified arginine preparation for the management of metabolic syndrome—Chemical analysis and bioactivity in rat model. Nutrients 2021, 13, 2870. [Google Scholar] [CrossRef]
- Chaika, N.; Koshovyi, O.; Raal, A.; Kireyev, I.; Zupanets, A.; Odyntsova, V. Phytochemical profile and pharmacological activity of the dry extract from Arctostaphylos uva-ursi leaves modified with phenylalanine. Sci. Pharm. Sci. 2020, 6, 74–78. [Google Scholar] [CrossRef]
- European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes. Strasbourg, France. 18 March 1986. Available online: https://zakon.rada.gov.ua/laws/show/994_137 (accessed on 21 May 2020).
- Procedure for Carrying out Experiments, Experiments on Animals by Scientific Institions: Order of the Ministry of Education and Science, Youth and Sports of Ukraine No. 249 dated 1 March 2012. Available online: http://zakon.rada.gov.ua/laws/show/z0416-12 (accessed on 21 May 2020).
- Svitlychnyi, O.; Berehelia, I. Administrative protection of animals used in scientific experiments, educational process and production of biological products from abuse. Entrep. Domest. Econ. Law 2017, 2, 150–154. [Google Scholar]
- Kovalenko, V.M. Preclinical research of medicinal products in Ukraine. Pharmacol. Med. Toxicol. 2009, 5, 56–61. [Google Scholar]
- Bondarenko, V.H.; Kanivska, I.Y.; Paramonova, S.M. Probability Theory and Mathematical Statistics. Part 1; NTUU KPI: Kiev, Ukraine, 2006. (In Ukrainian) [Google Scholar]
- Lapach, S.M.; Chubenko, A.V.; Babich, P.M. Statistical Methods in Biomedical Research Using Exel; MORION: Kiev, Ukraine, 2000. (In Ukrainian) [Google Scholar]
Name of Monosaccharide | Monosaccharide Content, mg/100 g | |
---|---|---|
Free | After Acid Hydrolysis | |
D-Rhamnose | 24.42 ± 0.27 | |
L-arabinose | 2.08 ± 0.03 | |
D-Xylose | 52.98 ± 1.17 | |
D-Mannose | 10.32 ± 0.27 | |
D-Glucose | 120.16 ± 1.63 | 238.8 ± 2.02 |
D-Galactose | 2.82 ± 0.04 | 74.97 ± 2.01 |
D-Mannitol | 4.49 ± 0.07 | |
Sorbitol | internal standard | |
D-Fructose | 116.11 | |
D-Dulcitol | 4.00 ± 0.05 |
Amino Acid | Content, mg/100 g | Amino Acid | Content, mg/100 g |
---|---|---|---|
Aspartic acid | 903 ± 21 | Methionine | 311 ± 9 |
Threonine | 309 ± 9 | Isoleucine | 426 ± 12 |
Serine | 621 ± 18 | Leucine | 461 ± 9 |
Glutamic acid | 115 ± 3 | Tyrosine | 213 ± 5 |
Proline | 472 ± 11 | Phenylalanine | 323 ± 11 |
Cystine | 82 ± 2 | Histidine | 213 ± 7 |
Glycine | 893 ± 27 | Lysine | 503 ± 10 |
Alanine | 569 ± 22 | Arginine | 155 ± 4 |
Valin | 619 ± 7 |
The Name of the Substance | Quantitative Content, mg/100 g |
---|---|
Tannin components | |
Gallic acid | 8.0 ± 0.3 |
Gallocatechin | 210.0 ± 4.2 |
Epigallocatechin | 970.0 ± 9.2 |
Catechin | 380.0 ± 7.6 |
Epicatechin | 1160.0 ± 12.7 |
Epicatechin gallate | 630.0 ± 9.4 |
Ellagic acid | 7 ± 0.02 |
Hydroxycinnamic acids | |
Hydroxyphenylacetate | 916.5 ± 11.4 |
Caffeic acid | 552.4 ± 10.3 |
Syringic acid | 172.6 ± 3.5 |
p-Coumaric acid | 82.7 ± 0.9 |
Ferulic acid | 738.8 ± 13.3 |
Synapic acid | 381.3 ± 7.2 |
Cynamic acid | 225.2 ± 4.1 |
Flavonoids | |
Isoquercitrin | 916.7 ± 10.7 |
Neohesperidin | 3850.9 ± 34.5 |
Naringenin | 308.2 ± 5.2 |
Luteolin | 332.1 ± 6.1 |
BAS group | Contents of BAS, %, , n = 6 |
Hydroxycinnamic acids | 6.21 ± 0.11 |
Flavonoids | 10.20 ± 0.33 |
Tannins | 17.16 ±0.37 |
Groups | Conditional Designation of the Drug | Dose, % | Increasing the Volume of the Foot, %, | ||
---|---|---|---|---|---|
After 1 h | After 3 h | After 5 h | |||
1 | Control | 27.00 ± 0.33 | 38.0 ± 0.28 | 46.00 ± 0.36 | |
2 | Dry extract of A. eupatoria | 0.1 mg/kg | 19.27 ± 0.23 * | 17.64 ± 0.05 | 14.63 ± 0.05 * |
3 | 1.0 mg/kg | 16.66 ± 0.29 * | 14.94 ± 0.04 | 12.45 ± 0.03 | |
4 | 5.0 mg/kg | 10.37 ± 0.08 * | 8.35 ± 0.06 | 6.22 ± 0.05 * | |
5 | 10.0 mg/kg | 9.13 ± 0.11 * | 6.11 ± 0.07 * | 5.44 ± 0.05 * | |
6 | 100.0 mg/kg | 15.36 ± 0.11 * | 10.82 ± 0.04 * | 6.00 ± 0.07 * | |
7 | Walnut tincture | 0.05 mL/0.1 kg | 8.51 ± 0.04 * | 9.68 ± 0.03 | 9.68 ± 0.04 * |
Groups | Drug | Dose | Inhibition Index of the Inflammatory Reaction, % | ||
---|---|---|---|---|---|
After 1 h | After 3 h | After 5 h | |||
2 | The dry extract of A. eupatoria | 0.1 mg/kg | 28.63 | 53.58 | 68.17 |
3 | 1.0 mg/kg | 38.30 | 60.68 | 72.96 | |
4 | 5.0 mg/kg | 61.59 | 78.03 | 86.48 | |
5 | 10.0 mg/kg | 66.19 | 83.92 | 88.17 | |
6 | 100.0 mg/kg | 43.11 | 71.52 | 86.96 | |
7 | Walnut tincture | 0.05 mL/0.1 kg | 68.48 | 74.53 | 78.96 |
Group | Object of the Study | AlAt, mmol/L | AsAt, mmol/L | LP, mmol/h*mL | ALP, mmol/h*mL |
---|---|---|---|---|---|
1 | Control | 5.22 ± 0.07 * | 4.07 ± 0.07 * | 257.55 ± 27.86 * | 789.91 ± 31.48 * |
2 | Extract, 50 mg/kg | 5.12 ± 0.16 * | 4.26 ± 0.19 * | 97.58 ± 16.81 */** | 414.04 ± 24.16 */** |
3 | Extract, 25 mg/kg | 4.78 ± 0.31 * | 3.31 ± 0.75 * | 230.77 ± 13.62 * | 341.14 ± 8.46 * |
4 | Extract, 10 mg/kg | 2.81 ± 0.14 */** | 2.41 ± 0.29 */** | 120.75 ± 7.86 */** | 359.85 ± 5.94 */** |
5 | Silibor | 4.27 ± 0.25 */** | 3.56 ± 0.12 */** | 105.16 ± 16.94 */** | 374.18 ± 45.48 */** |
6 | Intact animals | 1.08 ± 0.12 | 1.68 ± 0.19 | 57.29 ± 3.41 | 149.80 ± 11.34 |
Hydroxycinnamic Acids | ||||
---|---|---|---|---|
Time, min | 0 | 20 | 27 | 35 |
Eluent A, % (v/v) | 25 | 75 | 100 | 100 |
Eluent B, % (v/v) | 75 | 25 | 0 | 0 |
Flavonoids | ||||
Time, min | 0 | 20 | 22 | 30 |
Eluent A, % (v/v) | 30 | 70 | 100 | 100 |
Eluent B, % (v/v) | 70 | 30 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. Plants 2022, 11, 2371. https://doi.org/10.3390/plants11182371
Huzio N, Grytsyk A, Raal A, Grytsyk L, Koshovyi O. Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. Plants. 2022; 11(18):2371. https://doi.org/10.3390/plants11182371
Chicago/Turabian StyleHuzio, Natalia, Andriy Grytsyk, Ain Raal, Lyubov Grytsyk, and Oleh Koshovyi. 2022. "Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties" Plants 11, no. 18: 2371. https://doi.org/10.3390/plants11182371
APA StyleHuzio, N., Grytsyk, A., Raal, A., Grytsyk, L., & Koshovyi, O. (2022). Phytochemical and Pharmacological Research in Agrimonia eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. Plants, 11(18), 2371. https://doi.org/10.3390/plants11182371