Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review
Abstract
:1. Introduction
2. Brief Morphological Description and Uses of Moringa
3. Brief Overview of Plant Growth Regulators and MLE as a Natural Biostimulant
4. Methods and Preparation of MLE
4.1. Preparation of Aqueous Moringa Extracts
4.2. Pressurized Hot Water Extraction (PHWE) of Moringa Leaves
4.3. Preparation of MLE Using Chemical-Based Solvents
5. Preservation Methods of Moringa Leaves
6. Moringa Leaf Extract as a Plant Growth Enhancer
6.1. Effect of MLE on Studied Cereals
6.1.1. Effect of MLE on Growth, Yield and Quality of Wheat
6.1.2. Moringa Leaf Extract on Maize and Sorghum Crops
6.2. Effect of MLE on Legumes
6.3. Effect of MLE on Tomato
6.4. Effect of MLE on Citrus
6.5. Effect of MLE on Other Plant Species
7. Potential of MLE to Induce Plant Tolerance to Abiotic Stress
7.1. Heat and Low-Temperature Stress
7.2. Drought Stress
7.3. Salinity and Heavy-Metal Stress
8. Potential Benefits of Introducing MLE to Smallholder Farmers
9. Considerations, Knowledge Gaps and Recommendations
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, M.; Gao, S.; Liu, H.; Huang, S.; Wang, B. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems. Sci. Rep. 2016, 6, 33611. [Google Scholar] [CrossRef] [PubMed]
- Savci, S. Investigation of effect of chemical fertilizers on environment. Procedia PCBEE 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Phiri, C. Influence of Moringa oleifera leaf extracts on germination and early seedling development of major cereals. Agric. Biol. J. N. Am. 2010, 1, 774–777. [Google Scholar] [CrossRef]
- Abdalla, M.M. Boosting the growth of rocket plants in response to the application of Moringa oleifera extracts as a biostimulant. Life Sci. J. 2014, 11, 1113–1121. [Google Scholar]
- Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–679. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.S.A.; Faragallah, M.A.; Abdel-Kader, A.A.S. Growth, yield and chemical composition of Foeniculum vulgare, Mill. as affected by nitrogen, dry yeast and tryptophan application. Assiut J. Agric. Sci. 2008, 39, 115–134. [Google Scholar]
- Jhilik, N.Z.; Hoque, T.S.; Moslehuddin, A.Z.M.; Abedin, M.A. Effect of foliar application of moringa leaf extract on growth and yield of late sown wheat. Asian J. Med. Biol. Res. 2017, 3, 323–329. [Google Scholar] [CrossRef]
- Jardin, P.D. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Pizzale, L.; Bortolomeazzi, R.; Vichi, S.; Überegger, E.; Conte, L.S. Antioxidant activity of sage and oregano extracts related to their phenolic compound content. J. Sci. Food. Agric. 2002, 82, 1645–1651. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Wahid, A. Screening of moringa landraces for leaf extract as biostimulant in wheat. Int. J. Agric. Biol. 2017, 19, 999–1006. [Google Scholar] [CrossRef]
- Hassan, F.G.; Ibrahim, M.A. Moringa oleifera: Nature is most nutritious and multipurpose tree. Sudan. Int. J. Sci. Res. Publ. 2013, 3, 2250–3153. [Google Scholar]
- El Sohaimy, S.A.; Hamad, G.M.; Mohamed, S.E.; Amar, M.H.; Al-Hindi, R.R. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 188–199. [Google Scholar]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.M.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘kinnow’ mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Yasmeen, A. Exploring the Potential of Moringa (Moringa oleifera) Leaf Extract as Natural Plant Growth Enhancer. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan, 2011. [Google Scholar]
- Batool, S.; Khan, S.; Basra, S.M.A. Foliar application of moringa leaf extract improves the growth of moringa seedlings in winter. S. Afr. J. Bot. 2020, 129, 347–353. [Google Scholar] [CrossRef]
- Yasmeen, A.; Basra, S.M.A.; Wahid, A.; Nouman, W.; Rehman, H. Exploring the potential of Moringa oleifera leaf extract (MLE) as a seed priming agent in improving wheat performance. Turk. J. Bot. 2013, 37, 512–520. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.S.A.; Abdel-Kader, A.A.S. Response of Fennel (Foeniculum vulgare, Mill) plants to foliar application of moringa leaf extract and benzyladenine (BA). S. Afr. J. Bot. 2020, 129, 113–122. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Ahmed, M.E.; Maswada, H.F.; Xuan, T.D. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 2017, 63, 687–699. [Google Scholar] [CrossRef]
- Amaglo, N.K.; Bennett, R.N.; Lo Curto, R.B.; Rosa, E.A.S.; Turco, V. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera Lam. in Ghana. Food Chem. 2010, 122, 1047–1054. [Google Scholar] [CrossRef]
- Foidl, N.; Makkar, H.P.S.; Becker, K. The potential of Moringa oleifera for agricultural and industrial uses. Proceedings of the International Workshop. What Dev. Potential Moringa Prod. 2001, 20, 45–76. [Google Scholar]
- Sanchez, N.R.; Ledin, S.; Ledin, I. Biomass production and chemical composition of Moringa oleifera under different management regimes in Nicaragua. Agrofor. Syst. 2006, 66, 231–242. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Dar, W.D. Challenges in the industrialization of moringa in the Philippines. Acta Hortic. 2017, 1158, 15–18. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, H.; Liu, M.; Liao, X.; Sahu, S.K.; Fu, Y.; Song, B.; Cheng, S.; Kariba, R.; Muthemba, S.; et al. The draft genomes of five agriculturally important African orphan crops. GigaScience 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Mashamaite, C.V. Unravelling the Conflict Associated with Moringa oleifera—Super Food or Agricultural Weed? Ph.D. Thesis, Stellenbosch University, South Africa, 2021. [Google Scholar]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Mvumi, C.; Tagwira, F.; Chiteka, A.Z. Effect of moringa extract on growth and yield of maize and common beans. Greener J. Agric. Sci. 2013, 3, 59–62. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, A.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Pervez, K.; Ullah, F.; Mehmood, S.; Khattak, A. Effect of Moringa oleifera Lam. leaf aqueous extract on growth attributes and cell wall bound phenolics accumulation in maize (Zea mays L.) under drought stress. Kuwait J. Sci. 2017, 44, 110–118. [Google Scholar]
- Jiang, K.; Asami, T. Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci. Biotechnol. Biochem. 2018, 82, 1265–1300. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Kapoor, H.C. Review: Antioxidants in fruits and vegetables the millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.M.A.; Malik, A.U. Improvement in growth, productivity and quality of ‘kinnow’ mandarin fruit after exogenous application of Moringa oleifera leaf extract. S. Afr. J. Bot. 2020, 129, 263–271. [Google Scholar] [CrossRef]
- Abdalla, M.M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Glodowska, M.; Husk, B.; Schwinghamer, T.; Smith, D. Biochar is a growth-promoting alternative to peatmoss for the inoculation of corn with a pseudomonad. Agron. Sustain. Dev. 2016, 36, 21. [Google Scholar] [CrossRef]
- Sakr, W.R.A.; El-Sayed, A.A.; Hammouda, A.M.; El Deen, F.S.A. Effect of NPK, aloe gel and moringa extracts on geranium plants. J. Hortic. Sci. Ornam. Plants 2018, 10, 1–16. [Google Scholar]
- Yaseen, A.A.; Takacs-Hajos, M. Evaluation of moringa (Moringa oleifera Lam.) leaf extract on bioactive compounds of lettuce (Lactuca sativa L.) grown under glasshouse environment. J. King Saud Univ.–Sci. 2022, 34, 101916. [Google Scholar] [CrossRef]
- Merwad, A.R.M. Using Moringa oleifera extract as biostimulant enhancing the growth, yield and nutrients accumulation of pea plants. J. Plant Nutr. 2018, 41, 425–431. [Google Scholar] [CrossRef]
- Iqbal, J.; Irshad, J.; Bashir, S.; Khan, S.; Yousaf, M.; Shah, A.N. Comparative study of water extracts of moringa leaves and roots to improve the growth and yield of sunflower. S. Afr. J. Bot. 2020, 129, 221–224. [Google Scholar] [CrossRef]
- Ngcobo, B.L.; Bertling, I. Influence of foliar Moringa oleifera leaf extract (MLE) application on growth, fruit yield and nutritional quality of cherry tomato. Acta Hortic. 2021, 1306, 249–254. [Google Scholar] [CrossRef]
- Phiri, C.; Mbewe, D.N. Influence of Moringa oleifera leaf extracts on germination and seedling survival of three common legumes. Int. J. Agric. Biol. 2010, 12, 315–317. [Google Scholar]
- Soliman, A.S.; Shanan, N.T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 2017, 19, 35–45. [Google Scholar] [CrossRef]
- Price, M.L. The Moringa Tree. Echo Technical Note. New York, USA. 2007. Available online: http://wwwmiracletrees.org./Moringa-doc/ebookMoringapdf (accessed on 15 January 2022).
- Merwad, A.R.M.; Abdel-Fattah, M.K. Improving productivity and nutrients uptake of wheat plants using Moringa oleifera leaf extract in sandy soil. J. Plant Nutr. 2017, 40, 1397–1403. [Google Scholar] [CrossRef]
- Rehman, H.U.; Basra, S.M.A.; Rady, M.M.; Ghoneim, A.M.; Wang, Q. Moringa leaf extract improves wheat growth and productivity by delaying senescence and source-sink relationship. Int. J. Agric. Biol. 2017, 19, 479–484. [Google Scholar] [CrossRef]
- Yap, Y.K.; El-Sherif, F.; Habib, E.S.; Khattab, S. Moringa oleifera leaf extract enhanced growth, yield, and Silybin content while mitigating salt-induced adverse effects on the growth of Silybum marianum. Agronomy 2021, 11, 2500. [Google Scholar] [CrossRef]
- Alkuwayti, M.A.; El-Sherif, F.; Yapa, Y.K.; Khattab, S. Foliar application of Moringa oleifera leaves extract altered stress-responsive gene expression and enhanced bioactive compounds composition in Ocimum basilicum. S. Afr. J. Bot. 2020, 129, 291–298. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Khan, R.U.; Khan, A.; Naz, S.; Ullah, Q.; Laudadio, V.; Tufarelli, V.; Ragni, M. Potential applications of Moringa oleifera in poultry health and production as alternative to antibiotics: A review. Antibiotics 2021, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, A.; Basra, S.M.A.; Farooq, M.; Rehman, H.; Hussain, N.; Athar, H.R. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013, 69, 225–233. [Google Scholar] [CrossRef]
- Yasmeen, A.; Nouman, W.; Basra, S.M.A.; Wahid, A.; Hussain, N.; Afzal, I. Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: A comparative study. Acta Physiol. Plant 2014, 36, 3147–3155. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. Moringa oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 2013, 13, 212. [Google Scholar] [CrossRef]
- Brockman, H.G.; Brennan, R.F. The effect of foliar application of moringa leaf extract on biomass, grain yield of wheat and applied nutrient efficiency. J. Plant Nutr. 2017, 40, 2728–2736. [Google Scholar] [CrossRef]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, G.V.; Lalas, I.S. Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: A comparative study with other extraction techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef]
- Abel, S.; Tesfaye, J.L.; Nagaprasad, N.; Shanmugam, R.; Dwarampudi, L.P.; Krishnaraj, R. Synthesis and characterization of zinc oxide nanoparticles using moringa leaf extract. J. Nanomater. 2021, 2021, 4525770. [Google Scholar] [CrossRef]
- Nuapia, Y.; Cukrowska, E.; Tutu, H.; Chimuka, L. Statistical comparison of two modelling methods on pressurized hot water extraction of vitamin C and phenolic compounds from Moringa oleifera leaves. S. Afr. J. Bot. 2020, 129, 9–16. [Google Scholar] [CrossRef]
- Matshediso, P.G.; Cukrowska, E.; Chimuka, L. Development of pressurized hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chem. 2015, 172, 423–427. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC Trends Analyt. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Makkar, H.A.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 63, 211–228. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Fotouo-M, H.; Vorster, J.; Du Toit, E.S.; Robbertse, P.J. The effect of natural long term packaging methods on antioxidant components and malondialdehyde content and seed viability Moringa oleifera oilseed. S. Afr. J. Bot. 2020, 129, 17–24. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Xiangyang, L.; Zhang, L.; Lei, H.; Zhang, H.; Cheng, Y.; Zhu, R.; Ruan, R. Effect of drying technologies on quality of green tea. Int. Agric. Eng. J. 2010, 19, 30–37. [Google Scholar]
- Foline, O.; Emenike, A.F.; Eunice, B.I. Comparative analysis of the nutritional composition of three different drying methods of Moringa oleifera leaves. Int. J. Appl. Agric. Res. 2011, 6, 131–138. [Google Scholar]
- Saini, R.K.; Shetty, N.P.; Prakash, M.; Giridhar, P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food Sci. Technol. 2014, 51, 2176–2182. [Google Scholar] [CrossRef]
- Yang, R.Y.; Chang, L.C.; Hsu, J.C.; Weng, B.B.; Palada, M.C.; Chadha, M.L.; Levasseur, V. Nutritional and functional properties of moringa leaves—From germplasm, to plant, to food, to health. In Proceedings of the Moringa and Other Highly Nutritious Plant Resources: Strategies, Standards and Markets for a Better Impact on Nutrition in Africa, Accra, Ghana, 16–18 November 2006. [Google Scholar]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Nawaz, M.; Rehman, H.U. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environ. Sci. Pollut. Res. 2017, 24, 27601–27612. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.J.; Kofranek, A.M.; Rubatzky, V.E. Hartmann’s Plant Science: Growth, Development and Utilization of Cultivated Plants; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Khan, S.; Basra, S.M.A.; Nawaz, M.; Hussain, I.; Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (Triticum aestivum L.). S. Afr. J. Bot. 2020, 129, 74–81. [Google Scholar] [CrossRef]
- Biswas, A.K.; Hoque, T.S.; Abedin, M.A. Effects of moringa leaf extract on growth and yield of maize. Prog. Agric. 2016, 27, 136–143. [Google Scholar] [CrossRef]
- Bashir, K.A.; Musa, D.D.; Mohammed, I. Exploring the potential of drumstick (Moringa oleifera) leaf extract as vegetative growth enhancer of guinea corn (Sorghum bicolor L.). Int. J. Curr. Sci. Stud. 2017, 1, 9–12. [Google Scholar]
- Mvumi, C.; Marais, D.; Ngadze, E.; du Toit, A.S.; Tsindi, A. Effect of moringa extract on the leaf anatomy and yield potential of tomato infected by Alternaria solani. S. Afr. J. Plant Soil 2018, 35, 389–392. [Google Scholar] [CrossRef]
- Hoque, T.S.; Abedin, A.; Kibria, M.G.; Jahan, I.; Hossain, M.A. Application of moringa leaf extract improves growth and yield of tomato (Solanum lycopersicum) and Indian Spinach (Basella alba). Plant Sci. Today 2022, 9, 137–143. [Google Scholar] [CrossRef]
- Ndubuaku, U.M.; Ndubuaku, T.C.N.; Ike, E.; Ezeaku, P.L. Effects of Moringa oleifera leaf extract on morphological and physiological growth of cassava and its efficacy in controlling Zonocerus variegatus. Afr. J. Biotechnol. 2015, 14, 2494–2500. [Google Scholar] [CrossRef]
- Hegazi, A.Z.; Ismaiel, A.Y.; Anany, T.G. Improving growth and seed yield of squash by foliar applications with moringa leaves extract, ascorbic acid or benzyladenine. Egypt J. Hort. 2015, 42, 579–590. [Google Scholar]
- Abou El-Nour, H.H.; Ewais, N.A. Effect of Moringa oleifera leaf extract (MLE) on pepper seed germination, seedlings improvement, growth, fruit yield and its quality. Middle East J. Agric. Res. 2017, 6, 448–463. [Google Scholar]
- Prasad, R.; Hochmuch, G.J. Environmental nitrogen losses from commercial crop production systems in the Suwannee River Basin of Florida. PLoS ONE 2016, 11, e0167558. [Google Scholar] [CrossRef]
- Unagwu, B.O.; Asadu, C.L.A.; Ezeaku, P.I. Maize response to organic (poultry manure) and inorganic fertilizers (NPK 15-15-15) at different soil pH levels. Int. J. Eng. Sci. 2012, 1, 126–134. [Google Scholar]
- Adamas, H.; Gebrekidan, H.; Bedadi, B.; Adgo, E. Effects of organic and inorganic fertilizers on yield and yield components of maize at Wujiraba Watershed, Northwestern Highlands of Ethiopia. Am. J. Plant Nutr. Fertil. Technol. 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Otto, W.M. Inheritance of Nitrogen Use Efficiency Components in South African Irrigated Wheat. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2007. [Google Scholar]
- Hassan, M.A.; Fuertes, M.M.; Sanchez, F.J.R.; Vicente, O.; Boscaiu, M. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not. Bot. Horti. Agrobot. Cluj-Napoca 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Mvumi, C.; Tagwira, F.; Chiteka, A.Z. Effect of moringa extract on growth and yield of tomato. Greener J. Agric. Sci. 2012, 2, 207–211. [Google Scholar]
- Farber, M.; Attia, Z.; Weiss, D. Cytokinin activity increases stomatal density and transpiration rate in tomato. J. Exp. Bot. 2016, 67, 6351–6362. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Citrus Fruit Statistical Compendium 2020; United Nations: Rome, Italy, 2021. [Google Scholar]
- Foidl, N.; Paull, R. Moringa oleifera. In The Encyclopedia of Fruit and Nuts; CABI: Wallingford, UK, 2008. [Google Scholar]
- Ashraf, M.Y.; Yaqub, M.; Akhtar, J.; Khan, M.A.; Khan, M.A.; Ebert, G. Control of excessive fruit drop and improvement in yield and juice quality of kinnow (Citrus deliciosa × Citrus nobilis) through nutrient management. Pak. J. Bot. 2012, 44, 259–265. [Google Scholar]
- Hussain, A.; Hasnain, S. Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res. 2009, 3, 704–712. [Google Scholar]
- Balakumbahan, R.; Rjamani, K. Effect of biostimulants on growth and yield of senna (Cassia angustifolia var. KKM.1). J. Hortic. Sci. Ornam. Plants 2010, 2, 16–18. [Google Scholar]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Afzal, I.; Akrama, M.W.; Rehmana, H.U.; Rashidb, S.; Basra, S.M.A. Moringa leaf and sorghum water extracts and salicylic acid to alleviate impacts of heat stress in wheat. S. Afr. J. Bot. 2020, 129, 169–174. [Google Scholar] [CrossRef]
- Janmohammadi, M. Metabolomic analysis of low temperature responses in plants. Curr. Opin. Agric. 2012, 1, 1–6. [Google Scholar]
- Yasmeen, A.; Basra, S.M.A.; Wahid, A.; Farooq, M.; Nouman, W.; Rehman, H.; Hussain, N. Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. Int. J. Agric. Biol. 2013, 15, 1307–1312. [Google Scholar]
- Rady, M.M.; Sadak, S.M.; El-Lethy, S.R.; Abd Elhamid, E.M.; Abdelhamid, M.T. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J. Hortic. Sci. Biotechnol. 2015, 90, 195–202. [Google Scholar]
- Khalofah, A.; Bokhari, N.A.; Migdadi, H.M.; Alwahibi, M.S. Antioxidant responses and the role of Moringa oleifera leaf extract for mitigation of cadmium stressed Lepidium sativum L. S. Afr. J. Bot. 2020, 129, 341–346. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.H. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 2004, 44, 1737–1745. [Google Scholar] [CrossRef]
- Odhiambo, J.O.; Mag, V.N. An assessment of the use of mineral and organic fertilizers by smallholder farmers in Vhembe district, Limpopo Province, South Africa. Afr. J. Agric. Res. 2008, 3, 357–360. [Google Scholar]
- Akande, M.O.; Oluwatoyinbo, F.I.; Makinde, E.A.; Adepoju, A.S.; Adepoju, I.S. Response of okra to organic and inorganic fertilization. Nat. Sci. 2010, 8, 261–266. [Google Scholar]
- Savitha, H.N.; Madalageri, M.B.; Prakash, M.; Kumara, B.R. Mineral composition of different parts of drumstick (Moringa oleifera L.) genotypes. Environ. Ecol. 2015, 33, 1172–1176. [Google Scholar]
- EBIC (European Biostimulants Industry Council). EBIC and Biostimulants in Brief. 2012. Available online: http://www.biostimulants.eu/ (accessed on 12 January 2022).
- Popa, V.I.; Dumitru, M.; Volf, I.; Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 2008, 27, 144–149. [Google Scholar] [CrossRef]
- Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizosphere soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 2013, 13, 638–649. [Google Scholar]
- Mashamaite, C.V.; Dube, Z.P.; Phiri, E.E. Chemical root-pruning of Moringa oleifera for improved seedling growth. S. Afr. J. Bot. 2020, 129, 155–160. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O. Does nature make provision for backups in the modification of bacterial community structures? Biotechnol. Genet. Eng. Rev. 2014, 30, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, A.F.A.; Ahlström, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scharenbroch, B.C.; Jumpponen, A.; Anderegg, W.R.L.; Randerson, J.T.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef]
Component | Value (mg·100 g−1) | Reference |
---|---|---|
Calcium | 440–2800 | [6,50,51,52] |
Potassium | 259–2510 | [6,50,52] |
Magnesium | 42.0–670 | [23,51,52] |
Phosphorus | 70.0–390 | [6,51] |
Copper | 4.00–14.0 | [6,52] |
Zinc | 5.00–27.0 | [6,53] |
Nitrogen | 1240 | [6] |
Sulfur | 137 | [50] |
Manganese | 84.0–396 | [6,52] |
Sodium | 75.0 | [52] |
Iron | 37.0–160 | [6,23,52] |
Vitamin A (β-carotene) | 6.78–20.0 | [51,53] |
Vitamin B1 (Thiamine) | 0.21–2.60 | [50,53] |
Vitamin B2 (Riboflavin) | 0.05–21.0 | [50,51] |
Vitamin B3 (Nicotinic acid) | 0.80 | [53] |
Vitamin C (Ascorbic acid) | 220–847 | [6,50] |
Vitamin E (Tocopherol acetate) | 77.0–448 | [23,45,51] |
Protein | 6700–27,300 | [50,51] |
Fiber | 900 | [50] |
Carbohydrate | 12,500 | [23] |
Fat | 1700 | [23] |
Component | Value (mg·100 g−1) | Reference |
---|---|---|
Calcium | 1721–2185 | [23,32,50] |
Potassium | 1324–2770 | [32,41,45,50] |
Magnesium | 334–448 | [23,32] |
Phosphorus | 70.0–550 | [23,32,50,54] |
Copper | 0.49–21.0 | [23,41,53,55] |
Zinc | 3.10–45.0 | [41,55] |
Iron | 25.6–189 | [23,41,45,50] |
Nitrogen | 31.3 | [41] |
Sulfur | 268–870 | [41,50] |
Manganese | 4.90–97.0 | [41,56] |
Sodium | 31.0 | [32] |
Vitamin A (β-carotene) | 6.78–16.3 | [45,54,56] |
Vitamin B1 (Thiamine) | 2.02–2.64 | [5,23] |
Vitamin B2 (Riboflavin) | 20.5–21.3 | [5,23,56] |
Vitamin B3 (Nicotinic acid) | 7.60–8.20 | [23,56] |
Vitamin C (Ascorbic acid) | 15.8–220 | [5,23,45,54] |
Vitamin E (Tocopherol acetate) | 113 | [5,45,56] |
Protein | 27 100–29 400 | [45,50] |
Fiber | 12 500–19 200 | [23,50] |
Carbohydrate | 12 500–41 200 | [23,54] |
Fat | 1700–5300 | [23,54] |
Component | Value | Reference | |
---|---|---|---|
Fresh Leaves | Phytohormones (μg·g−1) | ||
Indole acetic acid | 0.44–0.83 | [6,25,52] | |
Zeatin | 5.00–200 | [16,27,54] | |
Gibberellins | 0.65–0.74 | [6,52,53] | |
Abscisic acid | 0.13–0.29 | [6,52] | |
Salicylic acid | 1.87 | [6] | |
Trans-jasmonic acid | 0.22 | [25] | |
Osmoprotectants (mg·g−1) | |||
Total amino acid | 106–388 | [6,52] | |
Proline | 21.0–33.7 | [6,52] | |
Total soluble sugars | 249–352 | [6,52] | |
Dried leaves | Phytohormones (mg·g−1) | ||
Indole acetic acid | 0.83 | [52] | |
Zeatin | 0.03–0.96 | [52,54] | |
Gibberellins | 0.003–0.054 | [41,54] | |
Abscisic acid | 0.29 | [52] | |
Salicylic acid | 0.082 | [41] | |
Osmoprotectants (mg·g−1) | |||
Total amino acids | 300 | [41] | |
Proline | 30.0 | [41] | |
Total soluble sugars | 170 | [41] |
Crop | Key Findings of the MLE Effect | References |
---|---|---|
Triticum aestivum L. | Improved plant height, fresh and dry root mass, above-ground biomass, 1000-grain weight and straw and grain yield | [9,52,75,77] |
Zea mays L. | Increased plant height, fresh and dry shoot mass, number of grains, 100-grain mass and grain mass/plant | [34,78] |
Sorghum bicolor L. | Improved germination, plant height, biomass and grain yield | [4,79] |
Glycine max L. | Increased fruit size and sugar concentration | [27] |
Phaseolus vulgaris L. | Increased vegetative growth, photosynthetic pigments, dry shoot mass, pod yield and phytohormonal concentrations of leaves | [25,34] |
Vigna unguiculata (L) Walp. | Improved germination and seedling survival | [48] |
Arachis hypogaea L. | Improved germination and seedling survival | [48] |
Solanum lycopersicum L. | Increased plant height, leaf number, number of branches, dry shoot biomass, dry root mass, leaf lamina thickness, stomatal density, stomatal size, fruit yield and fruit quality | [47,80,81] |
Citrus nobilis Lour × C. deliciosa Tenora | Reduced fruit drop, increased fruit set, fruit size and fruit yield | [19,39] |
Manihot utilissima Pohl. | Increased plant height and leaf number | [82] |
Helianthus annuus L. | Increased germination %, seedling emergence and survival, plant height, dry shoot mass, dry root mass and yield | [46] |
Basella alba cv. Red Malabar | Increased plant growth and yield | [81] |
Cucurbita pepo L. | Produced better growth and seed yield | [83] |
Capsicum annuum L. | Increased seed germination %, germination index, germination velocity, plant growth, fruit yield and fruit nutrient concentration | [84] |
Foeniculum vulgare Mill. | Improved vegetative growth and yield characteristics | [24] |
Pelargonium graveolens L. | Increased plant height, branch number, leaf area, overall plant biomass, volatile oil content and geraniol and citronellol | [6] |
Ocimum basilicum L. | Improved growth and yield | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashamaite, C.V.; Ngcobo, B.L.; Manyevere, A.; Bertling, I.; Fawole, O.A. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants 2022, 11, 2214. https://doi.org/10.3390/plants11172214
Mashamaite CV, Ngcobo BL, Manyevere A, Bertling I, Fawole OA. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants. 2022; 11(17):2214. https://doi.org/10.3390/plants11172214
Chicago/Turabian StyleMashamaite, Chuene Victor, Bonga Lewis Ngcobo, Alen Manyevere, Isa Bertling, and Olaniyi Amos Fawole. 2022. "Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review" Plants 11, no. 17: 2214. https://doi.org/10.3390/plants11172214
APA StyleMashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., & Fawole, O. A. (2022). Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants, 11(17), 2214. https://doi.org/10.3390/plants11172214