Chemical Profiling and Biological Activities of Pelargonium graveolens Essential Oils at Three Different Phenological Stages
Abstract
:1. Introduction
2. Results & Discussion
2.1. Chemical Composition
2.2. Antibacterial Activity
2.2.1. Disc Diffusion Method
2.2.2. MIC and MBC Determination
2.3. Antioxidant Activity
2.4. Anti-Diabetic Activity
2.5. Anti-Inflammatory Activity
2.6. Dermatoprotective Activity
3. Material and Methods
3.1. Plant Collection and Extraction
3.2. GC-MS Analysis of Essential Oils
3.3. Antibacterial Activity
3.3.1. Bacterial Strains and Growth Conditions
3.3.2. Disc Diffusion Assay
3.3.3. Determination of MIC and MBC
3.4. Antioxidant Activity
3.5. In Vitro Anti-Diabetic Assay
3.6. Lipoxygenase (5-LOX) Inhibition Assay
3.7. Dermatoprotective Activity
3.8. Statistical Analysis
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balahbib, A.; El Omari, N.; Sadak, A.; Bakri, Y.; Bouyahya, A. Antileishmanial properties of moroccan medicinal plants and mechanism insights of their main compounds. Biointerface Res. Appl. Chem. 2020, 10, 7162–7176. [Google Scholar]
- Ćavar, S.; Maksimović, M. Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.-E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, toxicology, and pharmacological properties of Origanum elongatum. Evid. Based Complementary Altern. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. J. Ethnopharmacol. 2021, 265, 113318. [Google Scholar] [CrossRef] [PubMed]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Belmehdi, O.; Kounnoun, A.; Zahli, R.; Abrini, J. Evaluation of antimicrobial activity of four organic acids used in chicks feed to control Salmonella typhimurium: Suggestion of amendment in the search standard. Int. J. Microbiol. 2018, 2018, 7352593. [Google Scholar] [CrossRef]
- Khouchlaa, A.; Talbaoui, A.; El Idrissi, A.E.Y.; Bouyahya, A.; Ait Lahsen, S.; Kahouadji, A.; Tijane, M. Determination of Phenol content and evaluation of In Vitro litholytic effects on urolithiasis of Moroccan Zizyphus lotus L. Extract. Phytothérapie 2017, 16, 14–19. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N.C.; Bouyahya, A.; Vitalini, S. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front. Pharmacol. 2021, 12, 600139. [Google Scholar] [CrossRef] [PubMed]
- Ben ElHadj Ali, I.; Tajini, F.; Boulila, A.; Jebri, M.-A.; Boussaid, M.; Messaoud, C.; Sebaï, H. Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-Amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind. Crops Prod. 2020, 158, 112951. [Google Scholar] [CrossRef]
- Ghannadi, A.; Bagherinejad, M.; Abedi, D.; Jalali, M.; Absalan, B.; Sadeghi, N. Antibacterial Activity and composition of essential oils from Pelargonium graveolens L’Her and Vitex agnus-castus L. Iran. J. Microbiol. 2012, 4, 171–176. [Google Scholar]
- Mnif, W.; Dhifi, W.; Jelali, N.; Baaziz, H.; Hadded, A.; Hamdi, N. Characterization of leaves essential oil of Pelargonium Graveolens originating from Tunisia: Chemical composition, antioxidant and biological activities. J. Essent. Oil Bear. Plants 2011, 14, 761–769. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Bakri, Y.; Dakka, N. Essential oils as anticancer agents: News on mode of action. Phytothérapie 2016, 16, 254–267. [Google Scholar]
- Bouyahya, A.; Abrini, J.; Bakri, Y.; Dakka, N. Phytochemical screening and evaluation of antioxidant and antibacterial activities of origanum compactum extracts. Phytothérapie 2017, 15, 379–383. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakri, Y.; Khay, E.O.; Edaoudi, F.; Talbaoui, A.; Et-Touys, A.; Abrini, J.; Dakka, N. Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: A review. Asian Pac. J. Trop. Dis. 2017, 7, 57–64. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical composition of Mentha suaveolens and Pinus halepensis essential oils and their antibacterial and antioxidant activities. Asian Pac. J. Trop. Med. 2019, 12, 117. [Google Scholar] [CrossRef]
- Atailia, I.; Djahoudi, A. Composition chimique et activité antibactérienne de l’huile essentielle de géranium rosat (Pelargonium graveolens L’Hér.) cultivé en Algérie. Phytothérapie 2015, 13, 156–162. [Google Scholar] [CrossRef]
- Fayed, S.A. Antioxidant and anticancer activities of Citrus reticulate (Petitgrain Mandarin) and Pelargonium graveolens (Geranium) essential oils. Res. J. Agric. Biol. Sci. 2009, 5, 740–747. [Google Scholar]
- Boukhris, M.; Simmonds, M.S.J.; Sayadi, S.; Bouaziz, M. Chemical Composition and biological activities of polar extracts and essential oil of rose-scented geranium, Pelargonium graveolens: Chemical composition and biological activities of geranium. Phytother. Res. 2013, 27, 1206–1213. [Google Scholar] [CrossRef]
- 18. Dimitrova, M.; Mihaylova, D.; Popova, A.; Alexieva, J.; Sapundzhieva, T.; Fidan, H. Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves’ extracts. Sci. Bull. Ser. F Biotechnol. 2015, 19, 130–135. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis. 2012, 11, 167. [Google Scholar] [CrossRef]
- Bouzenna, H.; Krichen, L. Pelargonium graveolens L’Her. and Artemisia arborescens L. essential oils: Chemical composition, antifungal activity against Rhizoctonia solani and insecticidal activity against Rhysopertha dominica. Nat. Prod. Res. 2013, 27, 841–846. [Google Scholar] [CrossRef]
- Boukhris, M.; Bouaziz, M.; Feki, I.; Jemai, H.; El Feki, A.; Sayadi, S. Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. in alloxan induced diabetic rats. Lipids Health Dis. 2012, 11, 81. [Google Scholar] [CrossRef]
- Bastani, M.; Mousavi, Z.; Asgarpanah, J.; Assar, N. Biochemical and histopathological evidence for beneficial effects of Pelargonium graveolens essential oil on the rat model of inflammatory bowel disease. Res. J. Pharmacogn. 2019, 6, 77–84. [Google Scholar]
- Sharopov, F.S.; Zhang, H.; Setzer, W.N. Composition of geranium (Pelargonium graveolens) Essential oil from Tajikistan. Am. J. Essent. Oils Nat. Prod. 2014, 2, 13–16. [Google Scholar]
- Boukhatem, M.N.; Kameli, A.; Saidi, F. Essential oil of Algerian rose-scented geranium (Pelargonium graveolens): Chemical composition and antimicrobial activity against food spoilage pathogens. Food Control 2013, 34, 208–213. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Grujić, S.M.; Mileski, K.S.; Marin, P.D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. J. App. Pharm. Sci. 2013, 4, 1–5. [Google Scholar] [CrossRef]
- Hatami, M.; Ghafarzadegan, R.; Ghorbanpour, M. Essential oil compositions and photosynthetic pigments content of Pelargonium graveolens in response to nanosilver application. J. Med. Plants 2014, 13, 5–14. [Google Scholar]
- Kardan-Yamchi, J.; Mahboubi, M.; Kazemian, H.; Hamzelou, G.; Feizabadi, M.M. The chemical composition and anti-mycobacterial activities of Trachyspermum copticum and Pelargonium graveolens essential oils. PRI 2020, 15, 68–74. [Google Scholar] [CrossRef]
- Mousavi, E.S.; Dehghanzadeh, H.; Abdali, A. Chemical composition and essential oils of Pelargonium graveolens (Geraniaceae) by gas chromatography—mass spectrometry (GC/MS). Bull. Environ. Pharmacol. Life Sci. 2014, 3, 182–184. [Google Scholar]
- Verma, R.S.; Rahman, L.; Verma, R.K.; Chauhan, A.; Singh, A. Essential oil composition of Pelargonium graveolens L’Her Ex Ait. cultivars harvested in different seasons. J. Essent. Oil Res. 2013, 25, 372–379. [Google Scholar] [CrossRef]
- Lalli, J.; Viljoen, A.; Van, V. Potential interaction between the volatile and non-volatile fractions on the In Vitro antimicrobial activity of three South African Pelargonium (Geraniaceae) species. Nat. Prod. Commun. 2010, 5, 1395–1400. [Google Scholar] [CrossRef]
- Moreira, M.R.; Ponce, A.G.; del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- EFSA. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- EUCAST. EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 4 March 2022).
- Baaboua, A.E.; Maadoudi, M.E.; Bouyahya, A.; Abrini, J. Intestinal infections of campylobacter: A review. Microbiol. Res. J. Int. 2017, 18, 1–8. [Google Scholar] [CrossRef]
- El Baaboua, A.; El Maadoudi, M.; Bouyahya, A.; Kounnoun, A.; Bougtaib, H.; Belmehdi, O.; Senhaji, N.S.; Abrini, J. Prevalence and antimicrobial profiling of campylobacter spp. Isolated from meats, animal, and human feces in Northern of Morocco. Int. J. Food Microbiol. 2021, 349, 109202. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; El Jemli, M.; Marmouzi, I.; Bourais, I.; Abrini, J.; Faouzi, M.E.A.; Dakka, N.; Bakri, Y. Chemical variability of Centaurium erythraea essential oils at three developmental stages and investigation of their In Vitro antioxidant, antidiabetic, dermatoprotective and antibacterial activities. Ind. Crops Prod. 2019, 132, 111–117. [Google Scholar] [CrossRef]
- Nogueira, J.C.R.; Diniz, M.D.F.M.; Lima, E.O. In Vitro antimicrobial activity of plants in acute Otitis Externa. Braz. J. Otorhinolaryngol. 2008, 74, 118–124. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- Sadiki, F.Z.; Idrissi, M.E.; Sbiti, M.; Sbiti, M. Antibacterial properties of the essential oil of Pelargonium graveolens L’Hér. RHAZES: Green Appl. Chem. 2019, 4, 17–23. [Google Scholar] [CrossRef]
- Bouyahya, A.; Dakka, N.; Talbaoui, A.; Et-Touys, A.; El-Boury, H.; Abrini, J.; Bakri, Y. Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic oregano (Origanum compactum Benth). Ind. Crops Prod. 2017, 108, 729–737. [Google Scholar] [CrossRef]
- Boukhris, M.; Hadrich, F.; Chtourou, H.; Dhouib, A.; Bouaziz, M.; Sayadi, S. Chemical composition, biological activities and DNA damage protective effect of Pelargonium graveolens L’Hér. Essential oils at different phenological stages. Ind. Crops Prod. 2015, 74, 600–606. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Kafa, A.H.T.; Aslan, R.; Celik, C.; Hasbek, M. Antimicrobial synergism and antibiofilm activities of Pelargonium graveolens, Rosemary officinalis, and Mentha piperita essential oils against extreme drug-resistant Acinetobacter baumannii clinical isolates. Z. Für. Nat. C 2022, 77, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Azarafshan, M.; Peyvandi, M.; Abbaspour, H.; Noormohammadi, Z.; Majd, A. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L′Her. Physiol. Mol. Biol. Plants 2020, 26, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Olszowy, M.; Dawidowicz, A. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-Carotene bleaching methods. Mon. Für. Chem.—Chem. Mon. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Hajri, A.; Selmi, S.; Rtibi, K.; Lamjed Marzouki, M.; Sebai, H. Protective effect of Pelargonium graveolens essential oil against alloxan-induced diabetes and oxidative stress in rats. J. Biol. Act. Prod. Nat. 2016, 6, 299–314. [Google Scholar]
- Fadwa, E.-O.; Amthaghri, S.; Akdad, M.; El-Haidani, A.; Eddouks, M. Effect of Pelargonium graveolens on glucose metabolism in Streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets 2022. [Google Scholar] [CrossRef] [PubMed]
- Kasabri, V.; Abu-Dahab, R.; Afifi, F.U.; Naffa, R.; Majdalawi, L.; Shawash, H. In Vitro effects of Geranium graveolens, Sarcopoterium spinosum and Varthemia iphionoides extracts on pancreatic MIN6 proliferation and insulin secretion and on extrapancreatic glucose diffusion. Int. J. Diabetes Dev. Ctries. 2013, 33, 170–177. [Google Scholar] [CrossRef]
- Afifi, F.U.; Kasabri, V.; Abu-Dahab, R.; Abaza, I.M. Chemical composition and In Vitro studies of the essential oil and aqueous extract of Pelargonium graveolens growing in Jordan for hypoglycaemic and hypolipidemic properties. Eur. J. Med. Plants 2014, 4, 220–233. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S. Chemical characterization and antidiabetic activity of essential oils from Pelargonium graveolens leaves. ARO-Sci. J. Koya Univ. 2021, 9, 109–113. [Google Scholar]
- Muruganathan, U.; Srinivasan, S.; Vinothkumar, V. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-Cell apoptosis in Streptozotocin–Nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomed. Pharmacother. 2017, 92, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Özbek, H.; Yılmaz, B.S. Anti-inflammatory and hypoglycemic activities of alpha-pinene. Acta Pharm. Sci. 2017, 55, 7. [Google Scholar] [CrossRef]
- Bouyahya, A.; Guaouguaou, F.-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, In Vitro and In Vivo investigations, mechanism insights, clinical evidences and perspectives. J. Pharm. Anal. 2022, 12, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, B.; Shafaroodi, H.; Asgarpanah, J.; Sharifi, Z.N. The anti-inflammatory effect of Pelargonium graveolens methanolic extract in acetic acid-induced ulcerative colitis in rat model. Clin. Ther. 2015, 37, e51. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Sudha, T.; Darwish, N.H.; Nada, H.G.; Mousa, S.A. Rose-scented geranium essential oil from Algeria (Pelargonium graveolens L’Hérit.): Assessment of antioxidant, anti-inflammatory and anticancer properties against different metastatic cancer cell lines. Ann. Pharm. Fr. 2022, 80, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Juergens, U.R.; Stöber, M.; Vetter, H. The anti-inflammatory activity of L-menthol compared to mint oil in human monocytes In Vitro: A novel Perspective for its therapeutic use in inflammatory diseases. Eur. J. Med. Res. 1998, 3, 539–545. [Google Scholar] [PubMed]
- Rozza, A.L.; Meira de Faria, F.; Souza Brito, A.R.; Pellizzon, C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef]
- Zaia, M.G.; Cagnazzo, T.O.; Feitosa, K.A.; Soares, E.G.; Faccioli, L.H.; Allegretti, S.M.; Afonso, A.; Anibal, F.F. Anti-inflammatory properties of menthol and menthone in Schistosoma mansoni infection. Front. Pharmacol. 2016, 7, 170. [Google Scholar] [CrossRef]
- Ghori, S.S.; Ahmed, M.I.; Arifuddin, M.; Khateeb, M.S. Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol. Int. J. Pharm. Pharm. Sci. 2016, 8, 271–274. [Google Scholar]
- Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod. 2014, 77, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.; Lee, B.S.; Kim, S.-H. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-ΚB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Yang, Y.-J.; Li, Y.-S.; Zhang, W.K.; Tang, H.-B. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of Frankincense by inhibiting COX-2. J. Ethnopharmacol. 2016, 179, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Khoshnazar, M.; Parvardeh, S.; Bigdeli, M.R. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J. Stroke Cerebrovasc. Dis. 2020, 29, 104977. [Google Scholar] [CrossRef] [PubMed]
- Khoshnazar, M.; Bigdeli, M.R.; Parvardeh, S.; Pouriran, R. Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat. J. Pharm. Pharmacol. 2019, 71, 1725–1733. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, E.; Invidia, L.; Lescai, F.; Salvioli, S.; Tieri, P.; Castellani, G.; Franceschi, C. Human models of aging and longevity. Expert Opin. Biol. Ther. 2008, 8, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Mechchate, H.; El Allam, A.; El Omari, N.; El Hachlafi, N.; Shariati, M.A.; Wilairatana, P.; Mubarak, M.S.; Bouyahya, A. Vegetables and their bioactive compounds as anti-aging drugs. Molecules 2022, 27, 2316. [Google Scholar] [CrossRef] [PubMed]
- Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical potential of geranium and calendula essential oil: Determination of antioxidant activity and In Vitro sun protection factor. J. Cosmet. Dermatol. 2019, 18, 550–557. [Google Scholar] [CrossRef]
- El Aanachi, S.; Gali, L.; Nacer, S.N.; Bensouici, C.; Dari, K.; Aassila, H. Phenolic contents and In Vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. Biocatal. Agric. Biotechnol. 2020, 29, 101819. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A.; et al. Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef] [PubMed]
- Ed-Dra, A.; Nalbone, L.; Filali, F.R.; Trabelsi, N.; El Majdoub, Y.O.; Bouchrif, B.; Giarratana, F.; Giuffrida, A. Comprehensive evaluation on the use of Thymus vulgaris essential oil as natural additive against different serotypes of Salmonella enterica. Sustainability 2021, 13, 4594. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakri, Y.; Et-Touys, A.; Assemian, I.C.C.; Abrini, J.; Dakka, N. In Vitro antiproliferative activity of selected medicinal plants from the north-west of Morocco on several cancer cell lines. Eur. J. Integr. Med. 2018, 18, 23–29. [Google Scholar] [CrossRef]
- Naceiri Mrabti, H.; Doudach, L.; Kachmar, M.R.; Ed-Dra, A.; Khalil, Z.; Naceiri Mrabti, N.; Benrahou, K.; Harraqui, K.; Zengİn, G.; Bouyahya, A.; et al. Phenolic content, antibacterial, antioxidant, and toxicological investigations of Erodium guttatum (Geraniaceae) collected from the northeast of Morocco. Turk. J. Bot. 2021, 45, 739–749. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Sayah, K.; Jaradat, N.; Kichou, F.; Ed-Dra, A.; Belarj, B.; Cherrah, Y.; Faouzi, M.E.A. Antidiabetic and protective effects of the aqueous extract of Arbutus unedo L. in Streptozotocin-Nicotinamide-induced diabetic mice. J. Complementary Integr. Med. 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Cui, F.; Yin, F.; Zeng, X.; Sun, Y.; Li, Y. Caffeoylquinic acids competitively inhibit Pancreatic Lipase through binding to the catalytic triad. Int. J. Biol. Macromol. 2015, 80, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Ferreres, F.; Gomes, N.G.M.; Duangsrisai, S.; Srisombat, N.; Vajrodaya, S.; Pereira, D.M.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P. Phenolic profiling and biological potential of Ficus curtipes corner leaves and stem bark: 5-Lipoxygenase inhibition and interference with NO levels in LPS-stimulated RAW264.7 macrophages. Biomolecules 2019, 9, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Kovats Index (NIST) | Compounds | Phenological Stages (%) | ||
---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | ||
940 | α-Pinene | 5.72 | 5.64 | 4.28 |
951 | Camphene | 0.39 | 0.44 | 0.38 |
1010 | 3-Carene | 3.88 | 3.31 | 1.52 |
1022 | δ-Carene | 0.27 | 0.23 | 0.17 |
1030 | Limonene | 0.14 | Nd | nd |
1030 | p-Menthene | 7.87 | 6.7 | 9.97 |
1039 | cis-Ocimene | 1.24 | 1.37 | 1.07 |
1046 | 1,8-Cineole | nd | 0.14 | nd |
1050 | trans-β-Ocimene | 0.11 | Nd | nd |
1060 | cis-Sabinene | 0.2 | 0.16 | 0.17 |
1101 | α-Thujone | 0.3 | 0.32 | 0.24 |
1115 | trans-Rose oxide | 0.3 | 0.33 | 1.29 |
1134 | cis-Rose oxide | 0.11 | 0.12 | 0.59 |
1134 | cis-Limonene oxide | nd | Nd | nd |
1143 | Camphor | 0.51 | 0.44 | 0.43 |
1151 | Citronellal | nd | Nd | 0.29 |
1154 | p-Menthone | 0.1 | Nd | 0.27 |
1159 | Isoborneol | 5.19 | 4.02 | 6.96 |
1173 | Menthol | 15.8 | 14.06 | 20.57 |
1178 | Naphthalene | 0.2 | 0.26 | 0.2 |
1182 | Isomenthol | nd | 0.14 | 0.15 |
1186 | Cryptone | 0.18 | nd | nd |
1242 | Z-Citral | 0.67 | 0.41 | 0.52 |
1253 | Linalyl acetate | 3.38 | 3.9 | 2.97 |
1273 | Isogeraniol | 15.47 | 15.05 | 9.14 |
1284 | trans-Anethole | 0.12 | 0.15 | nd |
1296 | Azulene | 0.82 | 0.52 | 0.23 |
1305 | Geranyl formate | 1.56 | 2.06 | 1.65 |
1318 | Iso-menthyl acetate | 0.12 | 0.21 | 0.44 |
1349 | α-Cubebene | 0.57 | 0.71 | 0.39 |
1373 | Isoledene | 0.19 | 0.16 | 0.12 |
1376 | α-Copaene | nd | nd | 0.13 |
1378 | Copaene | 0.25 | 0.38 | 0.34 |
1388 | β-Cubebene | 3.46 | 4.25 | 2.05 |
1390 | Isolongifolene | 1.78 | 2.05 | 1.49 |
1402 | Junipene | 0.2 | 1.23 | 0.37 |
1409 | α-Bourbonene | nd | 2.71 | 1.72 |
1412 | β-Bourbonene | 1.95 | nd | 0.2 |
1423 | trans-Caryophyllene | 0.97 | 1.05 | 0.98 |
1426 | Calarene | 0.42 | 0.41 | 0.37 |
1431 | Aromadendrene | 1.05 | 1.48 | 1.53 |
1442 | Dehydroaromadendrene | 1.07 | 0.55 | 0.51 |
1444 | α-Guaiene | 0.88 | 1.06 | 1.2 |
1451 | Germacrene-D | 0.23 | 0.23 | 0.13 |
1456 | α-Caryophyllene | 0.42 | 0.35 | 0.32 |
1456 | Seychellene | 0.39 | 0.76 | 0.42 |
1457 | α-Humulene | 0.57 | 0.67 | 0.4 |
1480 | Ω-Cadinene | 1.06 | 1.16 | 0.98 |
1482 | Ledene | 0.44 | 0.61 | 0.82 |
1491 | Valencene | 0.63 | 0.82 | 0.83 |
1500 | ẟ-Himachalene | nd | nd | 0.13 |
1503 | Eremophilene | 8.34 | 9.02 | 8.19 |
1511 | β-bisabolene | 0.54 | 0.53 | 0.49 |
1537 | Elemol | 1.86 | 2.3 | 2.32 |
1541 | α-calacorene | nd | nd | 0.14 |
1618 | trans-Longipinocarveol | nd | 0.25 | 0.6 |
1643 | Cubenol | 0.3 | 0.35 | 0.46 |
1890 | Ledene oxide | 0.17 | 0.28 | 0.18 |
2038 | Humulene oxide | 0.27 | 0.28 | 1.2 |
Octahydro-naphthalene | 0.51 | 0.39 | 1.01 | |
Phenyl tiglate | 1.67 | 1.64 | 1.97 | |
Total identified compounds% | 92.98 | 92.89 | 93.02 | |
Monoterpene hydrocarbons% | 20.84 | 18.63 | 17.99 | |
Oxygenated monoterpenes % | 39.08 | 35.1 | 41.31 | |
Sesquiterpenes hydrocarbons% | 25.41 | 30.19 | 24.25 |
Microorganisms/Gram (+ or −) | P. graveolens EOs | Chloramphenicol (30 µg) | ||
---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | ||
Escherchia coli ATCC 25922 (−) | 11.00 ± 0.17 | 12.47 ± 0.06 | 13.43 ± 0.21 | 22.47 ± 0.21 |
Proteus mirabilis ATCC 25933 (−) | 11.03 ± 0.11 | 12.73 ± 0.15 | 14.57 ± 0.21 | 21.27 ± 0.21 |
Salmonella Typhimurium ATCC700408 (−) | 8.27 ± 0.11 | 9.93 ± 0.15 | 11.10 ± 0.20 | 13.17 ± 0.25 |
Bacillus subtilis ATCC 6633 (+) | 14.13 ± 0.11 | 15.23 ± 0.15 | 16.17 ± 0.15 | 15.87 ± 0.21 |
Staphylococus aureus ATCC 29213 (+) | 14.97 ± 0.15 | 16.10 ± 0.20 | 16. 53 ± 0.15 | 26. 53 ± 0.30 |
Listeria monocytogenes ATCC 13932 (+) | 15.23 ± 0.15 | 16.83 ± 0.25 | 17.30 ± 0.17 | 29.07 ± 0.58 |
Microorganisms/Gram (+ or −) | P. graveolens EOs in % (v/v) | Chloramphenicol (µg/mL) | |||||
---|---|---|---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | |||||
MIC | MBC | MIC | MBC | MIC | MBC | ||
Escherchia coli ATCC 25922 (−) | 1 | 2 | 1 | 2 | 0.5 | 1 | 4 |
Proteus mirabilis ATCC 25933 (−) | 2 | 2 | 1 | 2 | 1 | 1 | 4 |
Salmonella Typhimurium ATCC700408 (−) | 2 | 4 | 2 | 4 | 2 | 2 | 64 |
Bacillus subtilis ATCC 6633 (+) | 0.5 | 0.5 | 0.25 | 0.5 | 0.25 | 0.5 | 32 |
Staphylococus aureus ATCC 29213 (+) | 0.5 | 0.5 | 0.25 | 0.5 | 0.25 | 0.5 | 4 |
Listeria monocytogenes ATCC 13932 (+) | 0.5 | 0.5 | 0.12 | 0.5 | 0.25 | 0.25 | 2 |
Method | P. graveolens EOs | Positive Controls | |||
---|---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | Ascorbic Acid | Trolox | |
DPPH | 138.23 ± 0.16 c | 119.49 ± 2.01 d | 83.26 ± 0.01 e | 15.13 ± 0.04 a | 24.31 ± 0.02 b |
FRAP | 151.21 ± 0.08 c | 139.35 ± 0.12 d | 116.42 ± 0.07 e | 31.47 ± 1.07 a | 48.25 ± 0.05 b |
ABTS | 174.95 ± 1.14 c | 153.09 ± 0.05 d | 132.25 ± 0.11 e | 42.22 ± 0.05 a | 61.48 ± 1.32 b |
H2O2 | 77.35 ± 0.04 b | 64.81 ± 1.14 c | 48.67 ± 0.04 d | 23.34 ± 0.03 a | - |
Assays | Pelargonium graveolens EOs | Positive Controls | |||
---|---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | Acarbose | Orlistat | |
α-Amylase IC50 (µg/mL) | 95.24 ± 0.03 a | 69.31 ± 0.08 b | 43.33 ± 0.01 c | 27.21± 0.08 d | - |
α-Glucosidase IC50 (µg/mL) | 49.21 ± 0.05 a | 26.37 ± 0.02 b | 19.04 ± 0.01 c | 10.01 ± 0.03 d | - |
Lipase IC50 (µg/mL) | 63.27 ± 0.01 a | 47.62 ± 1.03 b | 24.33 ± 0.05 c | - | 18.27 ± 0.03 d |
Assays | Pelargonium graveolens EOs | Positive Control | ||
---|---|---|---|---|
Vegetative Stage | Beginning Flowering Stage | Full Flowering Stage | Quercetin | |
5-Lipoxygenase | 84.21 ± 0.08 a | 61.54 ± 0.07 b | 39.31 ± 0.01 c | 24.89 ± 0.02 d |
Tyrosinase | 187.29 ± 0.03 a | 152.39 ± 0.02 b | 124.49 ± 0.07 c | 97.29 ± 0.03 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mijalli, S.H.; Mrabti, H.N.; Assaggaf, H.; Attar, A.A.; Hamed, M.; Baaboua, A.E.; Omari, N.E.; Menyiy, N.E.; Hazzoumi, Z.; Sheikh, R.A.; et al. Chemical Profiling and Biological Activities of Pelargonium graveolens Essential Oils at Three Different Phenological Stages. Plants 2022, 11, 2226. https://doi.org/10.3390/plants11172226
Al-Mijalli SH, Mrabti HN, Assaggaf H, Attar AA, Hamed M, Baaboua AE, Omari NE, Menyiy NE, Hazzoumi Z, Sheikh RA, et al. Chemical Profiling and Biological Activities of Pelargonium graveolens Essential Oils at Three Different Phenological Stages. Plants. 2022; 11(17):2226. https://doi.org/10.3390/plants11172226
Chicago/Turabian StyleAl-Mijalli, Samiah Hamad, Hanae Naceiri Mrabti, Hamza Assaggaf, Ammar A. Attar, Munerah Hamed, Aicha EL Baaboua, Nasreddine El Omari, Naoual El Menyiy, Zakaria Hazzoumi, Ryan A Sheikh, and et al. 2022. "Chemical Profiling and Biological Activities of Pelargonium graveolens Essential Oils at Three Different Phenological Stages" Plants 11, no. 17: 2226. https://doi.org/10.3390/plants11172226
APA StyleAl-Mijalli, S. H., Mrabti, H. N., Assaggaf, H., Attar, A. A., Hamed, M., Baaboua, A. E., Omari, N. E., Menyiy, N. E., Hazzoumi, Z., Sheikh, R. A., Zengin, G., Sut, S., Dall’Acqua, S., & Bouyahya, A. (2022). Chemical Profiling and Biological Activities of Pelargonium graveolens Essential Oils at Three Different Phenological Stages. Plants, 11(17), 2226. https://doi.org/10.3390/plants11172226