An HLD Model for Tomato Bacterial Canker Focusing on Epidemics of the Pathogen Due to Cutting by Infected Scissors
Abstract
:1. Introduction
2. Results
2.1. Duration of Infection and Effect of Ethanol Disinfection of Infected Scissors
2.2. Populations of Cmm in Tomato Plants with Different TBC Symptoms and Probability of Infection
2.3. Development of HLD Model
3. Discussion
4. Materials and Methods
4.1. Duration of Infection and Effect of Ethanol Disinfection of Infected Scissors
4.2. Populations of Cmm with Different TBC Symptoms in Tomato Plants
4.3. Probability of Infection with TBC
4.4. Development of HLD Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De León, L.; Siverio, F.; López, M.M.; Rodríguez, A. Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: Healthy seeds are still the goal. Plant Dis. 2011, 95, 1328–1338. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Tanina, K.; Inoue, K. Molecular typing and spread of Clavibacter michiganensis subsp. michiganensis in greenhouses in Japan. Plant Pathol. 2010, 59, 76–83. [Google Scholar] [CrossRef]
- Gleason, M.L.; Gitaitis, R.D.; Ricker, M.D. Recent progress in understanding and controlling bacterial canker of tomato in Eastern North America. Plant Dis. 1993, 77, 1069–1076. [Google Scholar] [CrossRef]
- Jahr, H.; Bahro, R.; Bruger, A.; Ahlemeyer, J.; Eichenlaub, R. Interactions between Clavibacter michiganensis and its host plants. Environ. Microbiol. 1999, 1, 113–118. [Google Scholar]
- Peritore-Galve, F.C.; Tancos, M.A.; Smart, C.D. Bacterial canker of tomato: Revisiting a global and economically damaging seedborne pathogen. Plant Dis. 2021, 105, 1581–1595. [Google Scholar] [CrossRef]
- Fatmi, M.; Schaad, N.W. Survival of Clavibacter michiganensis ssp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol. 2002, 51, 149–154. [Google Scholar] [CrossRef]
- Grogan, R.G.; Kimble, K.A. The role of seed contamination in the transmission of Pseudomonas phaseolicola in Phaseolus vulgaris. Phytopathology 1967, 57, 28–31. [Google Scholar]
- Kawaguchi, A.; Tanina, K. Genetic groups of Clavibacter michiganensis subsp. michiganensis identified by DNA fingerprinting and the effects of inoculation methods on disease development. Euro. J. Plant Pathol. 2014, 140, 399–406. [Google Scholar] [CrossRef]
- Gitaitis, R.D. Bacterial canker. In Compendium of Tomato Diseases; Jones, J.B., Jones, J.P., Stall, R.E., Zitter, T.A., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 25–26. [Google Scholar]
- Kawaguchi, A.; Tanina, K.; Inoue, K. Spatiotemporal distribution of tomato plants naturally infected with bacterial canker in greenhouses. J. Gen. Plant Pathol. 2013, 79, 46–50. [Google Scholar] [CrossRef]
- Sharabani, G.; Manulis-Sasson, S.; Borenstein, M.; Shulhani, R.; Lofthouse, M.; Chalupowicz, L.; Shtienberg, D. The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathol. 2013, 62, 578–586. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A. 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Thompson, R.N.; Brooks-Pollock, E. Detection, forecasting and control of infectious disease epidemics: Modelling outbreaks in humans, animals, and plants. Philos. Trans. R. Soc. B. 2019, 374, 20190038. [Google Scholar] [CrossRef]
- Maki, K. An interpretation of COVID-19 in Tokyo using a combination of SIR models. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 87–92. [Google Scholar] [CrossRef]
- Kampmeijer, P.; Zadoks, J.C. Asimulatoroffoci and epidemics in mixtures, multilines, and mosaics of resistant and susceptible plants. In EPIMUL; Simulation Monograph; Pudoc: Wageningen, The Netherlands, 1997; p. 50. [Google Scholar]
- Madden, L.V. Botanical epidemiology: Some key advances and its continuing role in disease management. Eur. J. Plant Pathol. 2006, 115, 3–23. [Google Scholar] [CrossRef]
- Madden, L.V.; Van den Bosch, F. A population-dynamics approach to assess the threat of plant pathogens as biological weapons against annual crops. BioScience 2002, 52, 65–74. [Google Scholar]
- Gilligan, C.A.; Gubbins, S. Analysis and fitting of an SIR model with host response to infection load for a plant disease. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 353–364. [Google Scholar] [CrossRef]
- Kleczkowski, A.; Hoyle, A.; McMenemy, P. One model to rule them all? Modelling approaches across OneHealth for human, animal and plant epidemics. Phil. Trans. R. Soc. B. 2019, 374, 20180255. [Google Scholar] [CrossRef]
- Adam, D. A guide to R—The pandemic’s misunderstood metric. Nature 2020, 583, 346–348. [Google Scholar] [CrossRef]
- Fraser, C.; Donnelly, C.A.; Cauchemez, S.; Hanage, W.P.; Van Kerkhove, M.D.; Hollingsworth, T.D.; Griffin, J.; Baggaley, R.F.; Jenkins, H.E.; Lyons, E.J.; et al. The WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science 2009, 324, 1557–1561. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Nanaumi, T. Model-based forecasting of twig cankers incidence of bacterial spot of peach in Fukushima Prefecture. J. Gen. Plant Pathol. 2022, 88, 41–47. [Google Scholar] [CrossRef]
- Kawaguchi, A. Risk factors for bacterial spot on peach in Okayama Prefecture, Japan. J. Gen. Plant Pathol. 2014, 80, 435–442. [Google Scholar] [CrossRef]
- Kawaguchi, A. Risk factors and assessments for bacterial black node on barley. J. Gen. Plant Pathol. 2020, 86, 193–198. [Google Scholar] [CrossRef]
- Kawaguchi, A. Model-based forecasting of bacterial black node of barley by hierarchical Bayesian model. J. Gen. Plant Pathol. 2022, 88, 48–54. [Google Scholar] [CrossRef]
- Rich, J.T.; Neely, J.G.; Paniello, R.C.; Voelker, C.C.J.; Nussenbaum, B.; Wang, E.W. A practical guide to understanding Kaplan-Meier curves. Otolaryngol. Head Neck Surg. 2010, 143, 331–336. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Inoue, K.; Tanina, K. Evaluation of the nonpathogenic Agrobacterium vitis strain ARK-1 for crown gall control in diverse plant species. Plant Dis. 2015, 99, 409–414. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Inoue, K.; Tanina, K.; Nita, M. Biological control for grapevine crown gall using nonpathogenic Rhizobium vitis strain ARK-1. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 547–560. [Google Scholar] [CrossRef]
- Rosenberg, M.S.; Garrett, K.A.; Su, Z.; Bowden, R.L. Meta-analysis in plant pathology: Synthesizing research results. Phytopathology 2004, 94, 1013–1017. [Google Scholar] [CrossRef]
- Tanina, K.; Kawaguchi, A. Simplified method to isolate Clavibacter michiganensis subsp. michiganensis using ImmunoStripTM Cmm. Jpn. J. Phytopathol. 2011, 77, 287–290. [Google Scholar] [CrossRef]
- Shirakawa, T.; Sasaki, T. A selective medium for isolation of Corynebacterium michiganense pv. michiganense, the pathogen of tomato bacterial canker disease. Ann. Phytopathol. Soc. Jpn. 1988, 54, 540–543. [Google Scholar] [CrossRef] [Green Version]
Experiment | Inoculation | No. of Tomato Seedlings | Proportion of Diseased Plants (%) a | Period between Inoculation and Symptom Development (Days) | Mean of Survival (Days) b | p Value c |
---|---|---|---|---|---|---|
Experiment 1 | Disinfection of infected scissors | 18 | 0 | ≥60 | 60.0 | 9.0 × 10−10 |
Non-disinfection of infected scissors | 18 | 100 | 18 | 21.2 | ||
Experiment 2 | Disinfection of infected scissors | 45 | 11.1 | 11 | 54.3 | 2.0 × 10−16 |
Non-disinfection of infected scissors | 45 | 91.1 | 11 | 14.2 | ||
Experiment 3 | Disinfection of infected scissors | 45 | 4.4 | 14 | 56.1 | 2.0 × 10−16 |
Non-disinfection of infected scissors | 45 | 100 | 7 | 12.8 | ||
Experiment 4 | Disinfection of infected scissors | 45 | 11.1 | 41 | 56.1 | 2.0 × 10−16 |
Non-disinfection of infected scissors | 45 | 100 | 12 | 28.1 | ||
Average | Disinfection of infected scissors | - | 6.7 | 31.5 | 56.6 | 5.5 × 10−5 |
Non-disinfection of infected scissors | - | 97.8 | 12.0 | 19.1 | ||
Difference (days) | 19.5 | 37.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawaguchi, A.; Kitabayashi, S.; Inoue, K.; Tanina, K. An HLD Model for Tomato Bacterial Canker Focusing on Epidemics of the Pathogen Due to Cutting by Infected Scissors. Plants 2022, 11, 2253. https://doi.org/10.3390/plants11172253
Kawaguchi A, Kitabayashi S, Inoue K, Tanina K. An HLD Model for Tomato Bacterial Canker Focusing on Epidemics of the Pathogen Due to Cutting by Infected Scissors. Plants. 2022; 11(17):2253. https://doi.org/10.3390/plants11172253
Chicago/Turabian StyleKawaguchi, Akira, Shoya Kitabayashi, Koji Inoue, and Koji Tanina. 2022. "An HLD Model for Tomato Bacterial Canker Focusing on Epidemics of the Pathogen Due to Cutting by Infected Scissors" Plants 11, no. 17: 2253. https://doi.org/10.3390/plants11172253
APA StyleKawaguchi, A., Kitabayashi, S., Inoue, K., & Tanina, K. (2022). An HLD Model for Tomato Bacterial Canker Focusing on Epidemics of the Pathogen Due to Cutting by Infected Scissors. Plants, 11(17), 2253. https://doi.org/10.3390/plants11172253