Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study
Abstract
:1. Introduction
2. Results
2.1. Composition of Arthropod Communities
2.2. The biodiversity Indices of Arthropods
2.3. The Community Similarity Index of Arthropods
3. Discussion
3.1. The Effects of Different Maize Traits on Arthropods
3.2. The Effects of GM Maize on Arthropods
3.3. The Effects of GM Maize on the Food Web
4. Materials and Methods
4.1. Maize Materials
4.2. Planting Plot Design
4.3. Investigation of Arthropods
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucht, J.M. Public Acceptance of Plant Biotechnology and GM Crops. Viruses 2015, 7, 4254–4281. [Google Scholar] [CrossRef]
- Albajes, R.; Lumbierres, B.; Pons, X.; Comas, J. Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bull. Entomol. Res. 2013, 103, 724–733. [Google Scholar] [CrossRef]
- Carpenter, J.E. Impact of GM crops on biodiversity. GM Crops 2011, 2, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Truter, J.; Van Hamburg, H.; Van Den Berg, J. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa. Environ. Entomol. 2014, 43, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Eckert, J.; Schuphan, I.; Hothorn, L.; Gathmann, A. Arthropods on maize ears for detecting impacts of Bt maize on nontarget organisms. Environ. Entomol. 2006, 35, 554–560. [Google Scholar] [CrossRef]
- Comas, C.; Lumbierres, B.; Pons, X.; Albajes, R. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: A meta-analysis of 26 arthropod taxa. Transgenic Res. 2014, 23, 135–143. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 2010, 8, 1879. [Google Scholar] [CrossRef]
- Ahmad, A.; Negri, I.; Oliveira, W.; Brown, C.; Asiimwe, P.; Sammons, B.; Horak, M.; Jiang, C.; Carson, D. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res. 2016, 25, 1–17. [Google Scholar] [CrossRef]
- Al-Deeb, M.A.; Wilde, G.E. Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. Environ. Entomol. 2003, 32, 1164–1170. [Google Scholar] [CrossRef]
- Svobodová, Z.; Shu, Y.; Habuštová, O.S.; Romeis, J.; Meissle, M. Stacked Bt maize and arthropod predators: Exposure to insecticidal Cry proteins and potential hazards. Proc. R. Soc. B-Biol. Sci. 2017, 284, 20170440. [Google Scholar] [CrossRef] [Green Version]
- Wolfenbarger, L.L.; Naranjo, S.E.; Lundgren, J.G.; Bitzer, R.J.; Watrud, L.S. Bt crop effects on functional guilds of non-target arthropods: A meta-analysis. PLoS ONE 2008, 3, e2118. [Google Scholar] [CrossRef]
- Szénási, A.; Pálinkás, Z.; Zalai, M.; Schmitz, O.J.; Balog, A. Short-term effects of different genetically modified maize varieties on arthropod food web properties: An experimental field assessment. Sci. Rep. 2014, 4, 5315. [Google Scholar] [CrossRef]
- De la Poza, M.; Pons, X.; Farinós, G.P.; López, C.; Ortego, F.; Eizaguirre, M.; Castañera, P.; Albajes, R. Impact of farm-scale Bt maize on abundance of predatory arthropods in Spain. Crop Prot. 2005, 24, 677–684. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wu, Y.; He, K.L.; Bai, S.X. Effects of transgenic Bt maize pollen on longevity and fecundity of Trichogramma ostriniae in laboratory conditions. Bull. Insectol. 2007, 60, 49–53. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, Y.; Ge, Y.; Tetreau, G.; Chen, X.; Dong, X.; Shi, W. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. PLoS ONE 2014, 9, e114228. [Google Scholar] [CrossRef]
- Devos, Y.; De Schrijver, A.; De Clercq, P.; Kiss, J.; Romeis, J. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res. 2012, 21, 1191–1214. [Google Scholar] [CrossRef]
- Arias-Martín, M.; García, M.; Castañera, P.; Ortego, F.; Farinós, G.P. Farm-scale evaluation of the impact of Cry1Ab Bt maize on canopy nontarget arthropods: A 3-year study. Insect Sci. 2018, 25, 87–98. [Google Scholar] [CrossRef]
- Xing, Y.; Qin, Z.; Feng, M.; Li, A.; Zhang, L.; Wang, Y.; Dong, X.; Zhang, Y.; Tan, S.; Shi, W. The impact of Bt maize expressing the Cry1Ac protein on non-target arthropods. Environ. Sci. Pollut. Res. Int. 2019, 26, 5814–5819. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, Y.; Cao, K.; Qin, Z.; Zhao, X.; Dong, X.; Shi, W. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods. Environ. Sci. Pollut. Res. Int. 2020, 27, 21552–21559. [Google Scholar] [CrossRef]
- Nickson, T.E.; McKee, M.J. Ecological assessment of crops derived through biotechnology. In Biotechnology and Safety Assessment; Thomas, J.A., Fuchs, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 233–252. [Google Scholar]
- Nickson, T.E.; Horak, M.J. Assessing familiarity: The role of plant characterization. In Proceedings of the 9th International Symposium on the Biosafety of Genetically Modified Organisms, Jeju Island, Korea, 24–29 September 2006; Roberts, A., Ed.; International Society for Biosafety Research: Saskatoon, SK, Canada, 2006; pp. 76–80. [Google Scholar]
- Nakai, S.; Hoshikawa, K.; Shimono, A.; Ohsawa, R. Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops. Transgenic Res. 2015, 24, 929–944. [Google Scholar] [CrossRef] [Green Version]
- Horak, M.J.; Rosenbaum, E.W.; Woodrum, C.L.; Martens, A.B.; Mery, R.F.; Cothren, J.T.; Burns, J.A.; Nickson, T.E.; Pester, T.A.; Jiang, C.; et al. Characterization of roundup ready flex cotton, ‘MON 88913′, for use in ecological risk assessment: Evaluation of seed germination, vegetative and reproductive growth, and ecological interactions. Crop Sci. 2007, 47, 268–277. [Google Scholar] [CrossRef]
- Raybould, A.; Higgins, L.S.; Horak, M.J.; Layton, R.J.; Storer, N.P.; De La Fuente, J.M.; Herman, R.A. Assessing the ecological risks from the persistence and spread of feral populations of insect-resistant transgenic maize. Transgenic Res. 2012, 21, 655–664. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar]
- Whittaker, R.H. Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution. Science 1965, 147, 250–260. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Carstens, K.; Anderson, J.; Bachman, P.; De Schrijver, A.; Dively, G.; Federici, B.; Hamer, M.; Gielkens, M.; Jensen, P.; Lamp, W.; et al. Genetically modified crops and aquatic ecosystems: Considerations for environmental risk assessment and non-target organism testing. Transgenic Res. 2012, 21, 813–842. [Google Scholar] [CrossRef]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef]
- Duan, J.J.; Marvier, M.; Huesing, J.; Dively, G.; Huang, Z.Y. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 2008, 3, e1415. [Google Scholar] [CrossRef]
- Obrist, L.; Dutton, A.; Albajes, R.; Bigler, F. Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol. Entomol. 2006, 31, 143–154. [Google Scholar] [CrossRef]
- Díaz, O.H.; Meza, J.L.A.; Baltazar, B.M.; Bojórquez, G.B.; Espinoza, L.C.; Madrid, J.L.C.; de la Fuente Martínez, J.M.; Pompa, H.A.D.; Escobedo, J.A.; Banda, A.E.; et al. Plant characterization of genetically modified maize hybrids MON-89Ø34-3× MON-88Ø17-3, MON-89Ø34-3× MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: Alternatives for maize production in Mexico. Transgenic Res. 2017, 26, 135–151. [Google Scholar] [CrossRef]
- Torres, J.B.; Ruberson, J.R. Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res. 2008, 17, 345–354. [Google Scholar] [CrossRef]
- Meissle, M.; Knecht, S.; Waldburger, M.; Romeis, J. Sensitivity of the cereal leaf beetle Oulema melanopus (Coleoptera: Chrysomelidae) to Bt maize-expressed Cry3Bb1 and Cry1Ab. Arthropod-Plant Interact. 2012, 6, 203–211. [Google Scholar] [CrossRef]
- Meissle, M.; Kloos, S.; Romeis, J. Fate of multiple Bt proteins from stacked Bt maize in the predatory lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Environ. Pollut. 2021, 268, 115421. [Google Scholar] [CrossRef]
- Zhang, G.F.; Wan, F.H.; Lövei, G.L.; Liu, W.X.; Guo, J.Y. Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ. Entomol. 2006, 35, 143–150. [Google Scholar] [CrossRef]
- Schünemann, R.; Knaak, N.; Fiuza, L.M. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol. 2014, 8, 135675. [Google Scholar] [CrossRef]
- García, M.; Ortego, F.; Castañera, P.; Farinós, G.P. Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol. Control. 2010, 55, 225–233. [Google Scholar] [CrossRef]
- Knecht, S.; Nentwig, W. Effect of Bt maize on the reproduction and development of saprophagous Diptera over multiple generations. Basic Appl. Ecol. 2010, 11, 346–353. [Google Scholar] [CrossRef]
- Zwahlen, C.; Hilbeck, A.; Howald, R.; Nentwig, W. Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Mol. Ecol. 2003, 12, 1077–1086. [Google Scholar] [CrossRef]
- Romeis, J.; Meissle, M. Stacked Bt proteins pose no new risks to nontarget arthropods. Trends Biotechnol. 2020, 38, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Leslie, T.W.; Hoheisel, G.A.; Biddinger, D.J.; Rohr, J.R.; Fleischer, S.J. Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems. Environ. Entomol. 2014, 36, 234–244. [Google Scholar] [CrossRef]
- Rose, R.; Dively, G.P. Effects of insecticide-treated and lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environ. Entomol. 2007, 36, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Farinós, G.P.; de la Poza, M.; Hernández-Crespo, P.; Ortego, F.; Castañera, P. Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in Central Spain. Biol. Control. 2008, 44, 362–371. [Google Scholar] [CrossRef]
- Habuštová, O.S.; Svobodová, Z.; Spitzer, L.; Doležal, P.; Hussein, H.; Sehnal, F. Communities of ground-dwelling arthropods in conventional and transgenic maize: Background data for the post-market environmental monitoring. J. Appl. Entomol. 2015, 139, 31–45. [Google Scholar] [CrossRef]
- Twardowski, J.P.; Beres, P.K.; Hurej, M.; Klukowski, Z.; Dabrowski, Z.T.; Sowa, S.; Warzecha, R. The quantitative changes of ground beetles (Col., Carabidae) in Bt and conventional maize crop in southern Poland. J. Plant Prot. Res. 2012, 52, 404–409. [Google Scholar] [CrossRef]
- Balog, A.; Kiss, J.; Szekeres, D.; Szenasi, A.; Marko, V. Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. Crop Prot. 2010, 29, 567–571. [Google Scholar] [CrossRef]
- Szekeres, D.; Kádár, F.; Kiss, J. Activity density, diversity and seasonal dynamics of ground beetles (Coleoptera: Carabidae) in Bt-(MON810) and in isogenic maize stands. Entomol. Fennica 2006, 17, 269–275. [Google Scholar] [CrossRef]
- Guo, J.; He, K.; Hellmich, R.L.; Bai, S.; Zhang, T.; Liu, Y.; Ahmed, T.; Wang, Z. Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies. Sci. Rep. 2016, 6, 22102. [Google Scholar] [CrossRef]
- Arpaia, S.; Di Leo, G.M.; Fiore, M.C.; Schmidt, J.E.U.; Scardi, M. Composition of arthropod species assemblages in Bt-expressing and near isogenic eggplants in experimental fields. Environ. Entomol. 2014, 36, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Motyka, J.; Dobrzanski, B.; Zawadzki, S. Preliminary studies on meadows in the south-east of the province Lublin. Ann. Univ. Mariae Curie-Sklodowska 1950, 5, 367–447. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Yang, M.; He, H.; Ma, Y.; Zhou, Y.; Liu, B.; Xue, K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. Plants 2022, 11, 2254. https://doi.org/10.3390/plants11172254
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. Plants. 2022; 11(17):2254. https://doi.org/10.3390/plants11172254
Chicago/Turabian StyleRen, Zhentao, Muzhi Yang, Haopeng He, Yanjie Ma, Yijun Zhou, Biao Liu, and Kun Xue. 2022. "Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study" Plants 11, no. 17: 2254. https://doi.org/10.3390/plants11172254
APA StyleRen, Z., Yang, M., He, H., Ma, Y., Zhou, Y., Liu, B., & Xue, K. (2022). Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. Plants, 11(17), 2254. https://doi.org/10.3390/plants11172254