Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses
Abstract
:1. Introduction
2. Results
2.1. AvPR1 Sequence Analysis
2.2. Phylogenetic Analysis of AvPR-1
2.3. Gene Ontology and KEGG Annotation
2.4. Interaction Network of AvPR-1 Protein
2.5. Predicted Secondary and 3D Structures of the AvPR-1 Protein
2.6. Differential Expression of AvPR-1 Gene under Various Stress Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Material and Stress Treatments
4.2. Isolation of the cDNA AvPR1.2
4.3. Sequence Analysis of AvPR1
4.4. Secondary and Tertiary Structure Analyses
4.5. Gene Ontology (GO) Analysis
4.6. Interaction Network of AvPR-1 Proteins
4.7. RNA Extraction and Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kattupalli, D.; Srinivasan, A.; Soniya, E.V. A Genome-Wide Analysis of Pathogenesis-Related Protein-1 (PR-1) Genes from Piper nigrum Reveals Its Critical Role during Phytophthora capsici Infection. Genes 2021, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.C.; Pierpont, W.S.; Boller, T.; Conejero, V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 1994, 12, 245–264. [Google Scholar] [CrossRef]
- Okushima, Y.; Koizumi, N.; Kusano, T.; Sano, H. 2000 Secreted proteins of tobacco cultured BY2 cells: Identification of a new member of pathogenesis-related proteins. Plant Mol. Biol. 2000, 42, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, O.K.; Shchennikova, A.V.; Kochieva, E.Z.; Filyushin, M.A. Pathogenesis-Related Genes of PR1,PR2, PR4 and PR5 Families Are Involved in the Response to Fusarium Infection in Garlic (Allium sativum L.). Int. J. Mol. Sci. 2021, 22, 6688. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K. Genetic engineering of plants to enhance resistance to fungal pathogens—A review of progress and future prospects. Can. J. Plant Pathol. 2001, 23, 216–235. [Google Scholar] [CrossRef]
- Bozbuga, R. Expressions of Pathogenesis related 1 (PR1) Gene in Solanumlycopersicum and Influence of Salicylic Acid Exposures on Host-Meloidogyne incognita Interactions. Dokl. Biochem. Biophys. 2020, 494, 266–269. [Google Scholar] [CrossRef]
- Ghorbel, M.; Zribi, I.; Missaoui, K.; Drira-Fakhfekh, M.; Brini, F. Differential regulation of the durum wheat Pathogenesis-related protein (PR1) by Calmodulin TdCaM1.3 protein. Mol. Biol. Rep. 2021, 48, 347–362. [Google Scholar] [CrossRef]
- Campos, M.A.; Rosa, D.D.; Teixeira, J.E.C.; Targon, M.L.P.; Souza, A.A.; Paiva, L.V.; Stach-Machado, D.R.; Machado, M.A. PR gene families of citrus: Their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach. Genet. Mol. Biol. 2007, 30, 917–930. [Google Scholar] [CrossRef]
- Zribi, I.; Ghorbel, M.; Brini, F. Pathogenesis related proteins (PRs): From cellular mechanisms to plant defense. Curr. Protein Pept. Sci. 2021, 22, 396–412. [Google Scholar] [CrossRef]
- Chand, S.K.; Nanda, S.; Mishra, R.; Joshi, R.K. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. cepae. Plant Sci. 2017, 257, 9–21. [Google Scholar] [CrossRef]
- Cooper, B.; Clarke, J.D.; Budworth, P.; Kreps, J.; Hutchison, D.; Park, S.; Guimil, S.; Dunn, M.; Luginbühl, P.; Ellero, C.; et al. A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. USA 2003, 100, 4945–4950. [Google Scholar] [CrossRef]
- Sels, J.; Mathys, J.; De Coninck, B.M.; Cammue, B.P.; De Bolle, M.F. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem. 2008, 46, 941–950. [Google Scholar] [CrossRef]
- Singh, T.P. Current overview of allergens of plant pathogenesis related protein families. Sci. World J. 2014, 2014, 543195. [Google Scholar] [CrossRef]
- Van Loon, L.C.; van Kammen, A. Polyacrylamide disc electrophoresis of the solubleleaf proteins from Nicotianatabacum var. “Samsun” and “Samsun NN”. II. Changesin protein constitution after infection with tobacco mosaic virus. Virology 1970, 40, 190–211. [Google Scholar]
- Akbudak, M.A.; Yildiz, S.; Filiz, E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress. Genomics 2020, 112, 4089–4099. [Google Scholar] [CrossRef]
- Anuradha, C.; Chandrasekar, A.; Backiyarani, S.; Thangavelu, R.; Giribabu, S.; Uma, S. Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene 2022, 821, 146334. [Google Scholar] [CrossRef]
- Choudhary, V.; Darwiche, R.; Gfeller, D.; Zoete, V.; Michielin, O.; Schneiter, R. The caveolin-binding motif of the pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is required for in vivo export of cholesteryl acetate. J. Lipid Res. 2014, 55, 883–894. [Google Scholar] [CrossRef]
- Seo, P.J.; Lee, A.-K.; Xiang, F.; Park, C.-M. Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant Cell Physiol. 2008, 20, 49334–49344. [Google Scholar] [CrossRef]
- Kothari, K.S.; Dansana, P.K.; Giri, J.; Tyagi, A.K. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. Front. Plant Sci. 2016, 7, 1057. [Google Scholar] [CrossRef]
- Chu, N.; Zhou, J.-R.; Rott, P.C.; Li, J.; Fu, H.-Y.; Huang, M.-T.; Zhang, H.-L.; Gao, S.-J. ScPR1 plays a positive role in the regulation of resistance to diverse stresses in sugarcane (Saccharum spp.) and Arabidopsis thaliana. Ind. Crop. Prod. 2022, 180, 114736. [Google Scholar] [CrossRef]
- Seo, J.S.; Diloknawarit, P.; Park, B.S.; Chua, N.H. Elf18-induced long noncoding rna 1 evicts fibrillarin from mediator subunit to enhance pathogenesis-related gene 1 (PR1) expression. New Phytologist. 2019, 221, 2067–2079. [Google Scholar] [CrossRef]
- Upadhyay, P.; Rai, A.; Kumar, R.; Singh, M.; Sinha, B. Differential expression of pathogenesis related protein genes in tomato during inoculation with A. solani. J. Plant Pathol. Microbiol. 2014, 5, 1. [Google Scholar]
- Li, Y.; Qiu, L.; Liu, X.; Zhang, Q.; Zhuansun, X.; Fahima, T.; Xie, C. Glycerol-induced powdery mildew resistance in wheat by regulating plant fatty acid metabolism, plant hormones crosstalk, and pathogenesis-related genes. Int. J. Mol. Sci. 2020, 21, 673. [Google Scholar] [CrossRef]
- Wang, J.; Mao, X.; Wang, R.; Li, A.; Zhao, G.; Zhao, J.; Jing, R. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast libraryprepared following abiotic stress. Sci. Rep. 2019, 9, 141. [Google Scholar]
- Hussain, R.M.; Sheikh, A.H.; Haider, I.; Quareshy, M.; Linthorst, H.J. Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Front. Plant Sci. 2018, 9, 930. [Google Scholar] [CrossRef]
- Van Verk, M.C.; Pappaioannou, D.; Neeleman, L.; Bol, J.F.; Linthorst, H.J. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol. 2008, 146, 1983–1995. [Google Scholar] [CrossRef]
- Tang, Y.; Kuang, J.F.; Wang, F.Y.; Chen, L.; Hong, K.Q.; Xiao, Y.Y.; Chen, J.Y. Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol. Technol. 2013, 79, 62–68. [Google Scholar] [CrossRef]
- Ghorbel, M.; Zribi, I.; Haddaji, N.; Besbes, M.; Bouali, N.; Brini, F. The Wheat Pathogenesis Related Protein (TdPR1. 2) Ensures Contrasting Behaviors to E. coli Transformant Cells under Stress Conditions. Adv. Microbiol. 2021, 11, 453–468. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, J.J.; Garvin, D.F. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome. Plant Biotechnol. J. 2016, 14, 2147–2157. [Google Scholar]
- Bekele, W.A.; Wight, C.P.; Chao, S.; Howarth, C.J.; Tinker, N.A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol. J. 2018, 16, 1452–1463. [Google Scholar] [CrossRef]
- Wang, X.; Dingxuan, Q.; Shi, M. Calcium amendment for improved germination, plant growth, and leaf photosynthetic electron transport in oat (Avena sativa) under NaCl stress. PLoS ONE 2021, 16, e0256529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.Q.; Ma, B.L.; Ren, C.Z. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci. 2007, 47, 123–131. [Google Scholar] [CrossRef]
- Swapnil, S.; Iti, G.M.; Sharad, T. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotionin oat seedlings (Avena sativa L.). Microbiol. Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Li, H.S.; Zhang, X.Y.; Zeng, X.Y.; Nie, C.R. Toxic effects of potassium chlorate on peanut growth. Chin. J. Plan. Ecol. 2006, 30, 124–131. [Google Scholar] [CrossRef]
- Talwar, H.S.; Kumari, A.; Surwenshi, A.; Seetharama, N. Sodium: Potassium ratio in foliage as an indicatorof tolerance to chloride-dominant soil salinity in oat (Avena sativa L.). Indian J. Agric. Sci. B 2011, 81, 481–484. [Google Scholar]
- Wu, B.; Hu, Y.; Huo, P.; Zhang, Q.; Chen, X.; Zhang, Z. Transcriptome analysis of hexaploidhulless oat inresponse to salinity stress. PLoS ONE 2017, 12, e0171451. [Google Scholar] [CrossRef]
- Evans, N.H.; McAinsh, M.R.; Hetherington, A.M. Calcium oscillations in higher plants. Curr.Opin. Plant Biol. 2001, 4, 415–420. [Google Scholar] [CrossRef]
- Chen, Y.L.; Lee, C.Y.; Cheng, K.T.; Chang, W.H.; Huang, R.N.; Nam, H.G.; Chen, Y.R. Quantitative peptidomics study reveals thata wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 2014, 26, 4135–4148. [Google Scholar] [CrossRef]
- Almeida-Silva, F.; Venancio, T.M. Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Genes 2022, 809, 146013. [Google Scholar] [CrossRef]
- Lincoln, J.E.; Sanchez, J.P.; Zumstein, K.; Gilchrist, D.G. Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Mol. Plant Pathol. 2018, 19, 2111–2123. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Breen, S.; Williams, S.J.; Outram, M.; Kobe, B.; Solomon, P.S. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 2017, 22, 871–879. [Google Scholar] [CrossRef]
- Arsova, B.; Schulze, W.X. Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology. Front. Plant Sci. 2012, 3, 132. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, Z.; Gao, X.; Jin, C.; Wen, L.; Yao, X.; Ren, J. GPS-SNO: Computational predictionof protein S-nitrosylation sites with a modified GPSalgorithm. PLoS ONE 2010, 5, e11290. [Google Scholar] [CrossRef]
- Ren, X.B.; Dang, Y.R.; Liu, S.S.; Huang, K.X.; Qin, Q.L.; Chen, X.L.; Li, P.Y. Identification and Characterization of Three Chitinases with Potential in Direct Conversion of Crystalline Chitin into N, N′-diacetylchitobiose. Mar. Drugs 2022, 20, 3–165. [Google Scholar] [CrossRef]
- Wang, J.-E.; Li, D.-W.; Zhang, Y.-L.; Zhao, Q.; He, Y.-M.; Gong, Z.-H. Defence responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthoracapsici. Eur. J. Plant Pathol. 2013, 136, 625–638. [Google Scholar]
- Joshi, V.; Joshi, N.; AmderVyas, A.; Jadhav, S.K. Pathogenesis-related proteins: Role in plant defense. In Biocontrol Agents and Secondary Metabolites; Jogaiah, S., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 573–590. [Google Scholar] [CrossRef]
- Sarowar, S.; Kim, Y.J.; Kim, E.N.; Kim, K.D.; Hwang, B.K.; Islam, R.; Shin, J.S. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 2005, 24, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Pak, J.-H.; Kim, M.J.; Kim, H.J.; Oh, J.S.; Choi, H.K.; Jung, H.W.; Chung, Y.S. An acidic pathogenesis-related1 gene of Oryzagrandiglumis is involved in disease resistance response against bacterial infection. Plant Pathol. J. 2014, 30, 208. [Google Scholar] [CrossRef]
- Kiba, A.; Nishihara, M.; Nakatsuka, T.; Yamamura, S. Pathogenesis-related protein 1 homologue is an antifungal protein in Wasabia japonica leaves and confers resistance to Botrytis cinerea in transgenic tobacco. Plant Biotechnol. 2007, 24, 247–253. [Google Scholar] [CrossRef]
- Lu, S.; Friesen, T.L.; Faris, J.D. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Mol. Genet. Genom. 2011, 285, 485–503. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Q. Computational identification of novel PR-1-type genes in Oryza sativa. J. Genet. 2011, 85, 193–198. [Google Scholar] [CrossRef]
- Gamir, J.; Darwiche, R.; Hof, P.V.; Choudhary, V.; Stumpe, M.; Schneiter, R.; Mauch, F. The sterol-binding activity of pathogenesis-related protein 1 reveals the mode of action of an antimicrobial protein. Plant J. 2017, 89, 502–509. [Google Scholar] [CrossRef] [PubMed]
- DeFalco, T.A.; Bender, K.W.; Snedden, W.A. Breaking the code: Ca2+ sensors in plant signaling. Biochem. J. 2009, 425, 27–40. [Google Scholar] [CrossRef]
- Ghorbel, M.; Feki, K.; Tounsi, S.; Haddaji, N.; Hanin, M.; Brini, F. The Activity of the Durum Wheat (Triticum durum L.) Catalase 1 (TdCAT1) Is Modulated by Calmodulin. Antioxidants 2022, 11, 1483. [Google Scholar] [CrossRef]
- Ghorbel, M.; Zaidi, I.; Robe, E.; Ranty, B.; Mazars, C.; Galaud, J.-P.; Hanin, M. The activity of the wheat MAP kinase phosphatase 1 is regulated by manganese and by calmodulin. Biochimie 2015, 108, 13–19. [Google Scholar] [CrossRef]
- Lu, S.; Faris, J.; Sherwood, R.; Friesen, T.L.; Edwards, M.C. A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat. Mol. Plant Pathol. 2014, 15, 650–663. [Google Scholar] [CrossRef]
- Shi, F.M. Cloning and Function Study of Pathogenesis-Related Protein Genes ZmPR-1 and ZmPR-4. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Hou, L.X.; Gao, C.; Che, Y.M.; Zhao, F.G.; Liu, X. Gene cloning and expression analysis of pathogenesis-related protein 1 in Vitis vinifera L. Plant Physiol. J. 2012, 48, 57–62. [Google Scholar]
- Jiao, Z.; Xu, W.; Nong, Q.; Zhang, M.; Jian, S.; Lu, H.; Chen, J.; Zhang, M.; Xia, K. An Integrative Transcriptomic and Metabolomic Analysis of Red Pitaya (Hylocereus polyrhizus) Seedlings in Response to Heat Stress. Genes. 2021, 12, 1714. [Google Scholar] [CrossRef]
- Xi, Y.; Han, X.; Zhang, Z.; Joshi, J.; Borza, T.; Aqa, M.M.; Zhang, B.; Yuan, H.; Wang-Pruski, G. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicol. Environ. Saf. 2020, 190, 110048. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server, The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 571–607. [Google Scholar]
- Armenteros, J.J.A.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Heijne, G.; von Nielsen, H. SignalP 5.0 improves signal peptide predictions using deepneural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Blom, N.; Sicheritz-Ponten, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the aminoacid sequence. Proteomics 2004, 4, 1633–1649. [Google Scholar] [CrossRef]
- Geourjon, C.; Deleage, G. SOPMA: Significant improvement in protein secondarystructure prediction by c prediction from alignments and joint prediction. Bioinformatics 1995, 11, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.; Mezulis, S.; Yates, C.; Wass, M.; Sternberg, M. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real Time Quantitative PCR and the 22DDCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Protein | MW | Number of aa | Number of Negatively Charged Residues | Number of Positively Charged Residues | Grand Average of Hydropathicity (GRAVY) | Aliphatic Index | PI |
---|---|---|---|---|---|---|---|
AvPR1 | 18.89 | 174 | 12 | 18 | −0.288 | 63.45 | 9.19 |
TdPR1 | 18,836.12 | 174 | 12 | 17 | −0.238 | 65.11 | 9.02 |
TcPR1.2 | 18,850.15 | 174 | 12 | 17 | −0.237 | 65.11 | 9.02 |
AetPR1 | 18,658.97 | 172 | 12 | 18 | −0.273 | 66.40 | 9.17 |
HvPR1 | 18,969.98 | 172 | 12 | 19 | −0.333 | 63.02 | 9.32 |
PhPR1-like | 18,898.31 | 174 | 15 | 20 | −0.190 | 70.80 | 9.00 |
TuPR1 | 18,330.67 | 167 | 10 | 21 | −0.362 | 67.19 | 9.86 |
EjPR-1 | 17,668.02 | 161 | 10 | 16 | −0.268 | 81.74 | 9.1 |
ObPRB1-2-like | 18,458.88 | 172 | 11 | 20 | −0.182 | 65.99 | 9.51 |
SbPR1 | 19,094.56 | 179 | 14 | 20 | −0.152 | 66.15 | 9.10 |
BnPR-1 | 17,771.98 | 162 | 10 | 16 | −0.315 | 78.27 | 9.02 |
ZmPRB1-2 | 19,156.67 | 179 | 13 | 21 | −0.189 | 68.38 | 9.50 |
SiPR1 | 19,045.54 | 176 | 12 | 21 | −0.164 | 71.14 | 9.0 |
MaPR1 | 17,308.30 | 162 | 8 | 11 | −0.204 | 66.36 | 8.49 |
EsPR1 | 17,706.92 | 161 | 15 | 16 | −0.322 | 81.74 | 7.58 |
PdPR1 | 17,470.43 | 162 | 11 | 11 | −0.182 | 66.36 | 6.93 |
CsPR1 | 17,697.91 | 161 | 8 | 14 | −0.268 | 73.85 | 9.08 |
AtPR1 | 17,676.94 | 161 | 10 | 16 | −0.288 | 73.85 | 9.08 |
OsPR1 | 18,743.06 | 176 | 12 | 18 | −0.227 | 66.65 | 9.10 |
Protein | α-Helices | Extended Strands | Random Coils | β-Turns |
---|---|---|---|---|
AvPR-1 | 55 | 8 | 81 | 30 |
TdPR1.2 | 55 | 8 | 81 | 30 |
HvPR1 | 68 | 8 | 70 | 26 |
PhPR1 | 66 | 8 | 69 | 31 |
ObPR1 | 64 | 7 | 75 | 26 |
SbPR1 | 64 | 7 | 81 | 27 |
DoPR1 | 47 | 8 | 72 | 31 |
PvPR1 | 66 | 10 | 72 | 28 |
ZmPR1 | 68 | 10 | 71 | 31 |
SiPR1 | 66 | 8 | 71 | 31 |
MaPR1 | 55 | 7 | 70 | 30 |
AsPR1 | 61 | 8 | 71 | 26 |
PdPR1 | 57 | 9 | 69 | 27 |
CsPR1 | 55 | 9 | 68 | 31 |
TaPR1 | 55 | 8 | 81 | 30 |
AtsPR1 | 68 | 8 | 71 | 25 |
OsPR1 | 60 | 8 | 82 | 26 |
ClPR1 | 58 | 6 | 72 | 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlHudaib, K.A.; Alanazi, N.A.; Ghorbel, M.; El-Ganainy, S.M.; Brini, F. Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses. Plants 2022, 11, 2284. https://doi.org/10.3390/plants11172284
AlHudaib KA, Alanazi NA, Ghorbel M, El-Ganainy SM, Brini F. Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses. Plants. 2022; 11(17):2284. https://doi.org/10.3390/plants11172284
Chicago/Turabian StyleAlHudaib, Khalid A., Naimah Asid Alanazi, Mouna Ghorbel, Sherif Mohamed El-Ganainy, and Faiçal Brini. 2022. "Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses" Plants 11, no. 17: 2284. https://doi.org/10.3390/plants11172284
APA StyleAlHudaib, K. A., Alanazi, N. A., Ghorbel, M., El-Ganainy, S. M., & Brini, F. (2022). Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses. Plants, 11(17), 2284. https://doi.org/10.3390/plants11172284