Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance
Abstract
:1. Introduction
2. Results
2.1. Performance of Rice Genotypes and Interaction with Drought
2.1.1. Shoot Growth and Developmental Parameters
2.1.2. Root Growth and Developmental Parameters
2.1.3. Physiological Parameters
2.1.4. Aboveground Biomass
2.2. Classification of Rice Genotypes Based on Drought Response Indices
3. Discussion
4. Materials and Methods
4.1. Experimental Setup and Germplasm
4.2. Drought Treatments
4.3. Measurements
4.3.1. Growth and Developmental Parameters
4.3.2. Measurement of Physiological Parameters
4.3.3. Root Image Acquisition and Analysis
4.4. Data Analysis
4.5. Drought Response Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Song, Z.P.; Lu, B.R.; Zhu, Y.G.; Chen, J.K. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol. 2003, 157, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Jagadish, S.V.; Septiningsih, E.M.; Kohli, A.; Thomson, M.J.; Ye, C.; Redona, E.; Kumar, A.; Gregorio, G.B.; Wassmann, R.; Ismail, A.M.; et al. Genetic advances in adapting rice to a rapidly changing climate. J. Agron. Crop Sci. 2012, 198, 360–373. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.H. Root response to drought stress in rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [PubMed]
- Ouk, M.; Basnayake, J.; Tsubo, M.; Fukai, S.; Fischer, K.S.; Cooper, M.; Nesbitt, H. Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Res. 2006, 99, 48–58. [Google Scholar] [CrossRef]
- Mostajeran, A.; Rahimi-Eichi, V. Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. Agric. Environ. Sci. 2009, 5, 264–272. [Google Scholar]
- Hibberd, J.M.; Sheehy, J.E.; Langdale, J.A. Using C4 photosynthesis to increase the yield of rice rationale and feasibility. Curr. Opin. Plant Biol. 2008, 11, 228–231. [Google Scholar] [CrossRef]
- Prasad, R. Aerobic rice systems. Adv. Agron. 2011, 111, 207–247. [Google Scholar] [CrossRef]
- Narciso, J.; Hossain, M. World Rice Statistics; IRRI: Los Baños, Philippines, 2002; Available online: http://www.irri.org/science/ricestat (accessed on 19 July 2017).
- Gleick, P.H. Water in Crisis. A Guide to the world’s freshwater resources. Pacific Institute for studies in development, environment, and security. Stockh. Environ. Inst. 1993, 473, 9. [Google Scholar]
- Wade, L.J.; McLaren, C.G.; Quintana, L.; Harnpichitvitaya, D.; Rajatasereekul, S.; Sarawgi, A.K.; Ahmed, H.U.; Sarwoto, A.K.S.; Rodriguez, R.; Siopongco, J.; et al. Genotype by environment interactions across diverse rainfed lowland rice environments. Field Crops Res. 1999, 64, 35–50. [Google Scholar] [CrossRef]
- Wery, J.; Silim, S.N.; Knights, E.J.; Malhotra, R.S.; Cousin, R. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 1994, 73, 73–83. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms, and management. Sustain. Agric. 2009, 29, 153–188. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Yongsheng, G.; Yan, S.; Li, Z. Whole plant responses, key processes, and adaptation to drought stress: The case of rice. J. Exp Bot. 2007, 58, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongdee, B. New rice breeding methods for rainfed lowlands of north and northeast Thailand. In Proceedings of the International Workshop, Vientiane, Laos, 30 October–2 November 2000; pp. 221–228. [Google Scholar]
- Pantuwan, G.; Fukai, S.; Cooper, M.; Rajatasereekul, S.; O’toole, J.C. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes. Field Crops Res. 2002, 73, 169–180. [Google Scholar] [CrossRef]
- Bunnag, S.; Pongthai, P. Selection of rice (Oryza sativa L.) cultivars tolerant to drought stress at the vegetative stage under field conditions. Am. J. Plant Sci. 2013, 4, 1701. [Google Scholar] [CrossRef]
- Asch, F.; Sow, A.; Dingkuhn, M. Reserve mobilization, dry matter partitioning and specific leaf area in seedlings of African rice cultivars differing in early vigor. Field Crops Res. 1999, 62, 191–202. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Breeding for high water-use efficiency. J. Exp Bot. 2004, 55, 2447–2460. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Johnson, D.E.; Sow, A.; Audebert, A.Y. Relationships between upland rice canopy characteristics and weed competitiveness. Field Crops Res. 1999, 61, 79–95. [Google Scholar] [CrossRef]
- Zhao, D.L.; Atlin, G.N.; Bastiaans, L.; Spiertz, J.H.J. Comparing rice germplasm groups for growth, grain yield and weed-suppressive ability under aerobic soil conditions. Weed Res. 2006, 46, 444–452. [Google Scholar] [CrossRef]
- Kakar, N.; Jumaa, S.H.; Redoña, E.D.; Warburton, M.L.; Reddy, K.R. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice 2019, 12, 57. [Google Scholar] [CrossRef]
- Donde, R.; Kumar, J.; Gouda, G.; Gupta, M.K.; Mukherjee, M.; Baksh, S.Y.; Mahadani, P.; Sahoo, K.K.; Behera, L.; Dash, S.K. Assessment of genetic diversity of drought tolerant and susceptible rice genotypes using microsatellite markers. Rice Sci. 2019, 26, 239–247. [Google Scholar] [CrossRef]
- Roy, S.; Verma, B.C.; Banerjee, A.; Kumar, J.; Ray, U.S.; Mandal, N.P. Genetic diversity for drought and low-phosphorus tolerance in rice (Oryza sativa L.) varieties and donors adapted to rainfed drought-prone ecologies. Sci. Rep. 2021, 11, 1–9. [Google Scholar]
- Serraj, R.; Atlin, G. Drought-resistant rice for increased rainfed production and poverty alleviation: A concept note. In Drought Frontiers in Rice: Crop Improvement for Increased Rainfed Production; Serraj, R., Bennett, J., Hardy, D., Eds.; International Rice Research Iinstitute: Los Banos, Philippines, 2008; pp. 385–400. [Google Scholar] [CrossRef]
- Tuberosa, R.; Salvi, S.; Sanguineti, M.C.; Landi, P.; Maccaferri, M.; Conti, S. Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings, and perspectives in drought-stressed maize. Ann. Bot. 2002, 89, 941–963. [Google Scholar] [CrossRef] [Green Version]
- Redoña, E.D.; Mackill, D.J. Genetic variation for seedling vigor traits in rice. Crop Sci. 1996, 36, 285–290. [Google Scholar] [CrossRef]
- Khush, G.S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 1997, 35, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ashikari, M.; Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 2006, 11, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, J.N.; Zhang, J.; Robin, S.; Nguyen, T.T.; Nguyen, H.T. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor. Appl. Genet. 2000, 100, 1197–1202. [Google Scholar] [CrossRef]
- Manikavelu, A.; Nadarajan, N.; Ganesh, S.K.; Gnanamalar, R.P.; Babu, R.C. Drought tolerance in rice: Morphological and molecular genetic consideration. Plant Growth Regul. 2006, 50, 121–138. [Google Scholar] [CrossRef]
- Harris, D.; Tripathi, R.S.; Joshi, A. On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopes, K., Hardy, B., Eds.; International Research Institute: Manila, Philippines, 2002; pp. 231–240. [Google Scholar]
- Kaya, M.D.; Okcu, G.; Atak, M.; Cıkılıc, Y.; Kolsarıcı, O. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 2006, 24, 291–295. [Google Scholar] [CrossRef]
- Islam, M.T. Plant Water Relation Studies in Diverse Rice Cultivars under Bangladesh Climatic Conditions. Ph.D. Thesis, Institute of Agronomy, University of Agricultural Sciences, Vienna, Austria, 1999. [Google Scholar]
- Nonami, H. Plant water relations and control of cell elongation at low water potentials. J. Plant Res. 1998, 111, 373–382. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, M.A.; Farooq, M.; Ashraf, M.Y.; Cheema, M.A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008, 194, 193–199. [Google Scholar] [CrossRef]
- Zain, N.A.M.; Ismail, M.R.; Mahmood, M.; Puteh, A.; Ibrahim, M.H. Alleviation of water stress effects on mr220 rice by application of periodical water stress and potassium fertilization. Molecules 2014, 19, 1795–1819. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cui, K.; Xu, A.; Nie, L.; Huang, J.; Peng, S. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 2015, 37, 9. [Google Scholar] [CrossRef]
- Ogawa, A.; Yamauchi, A. Root osmotic adjustment under osmotic stress in maize seedlings. 1. Transient change of growth and water relations in roots in response to osmotic stress. Plant Prod. Sci. 2006, 9, 27–38. [Google Scholar] [CrossRef]
- Wahid, A.; Rasul, E. Photosynthesis in leaf, stem, flower, and fruit. In Handbook of Photosynthesis, 2nd ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 479–497. [Google Scholar]
- Mensah, J.K.; Obadoni, B.O.; Eroutor, P.G.; Onome-Irieguna, F. Simulated flooding and drought effects on germination, growth, and yield parameters of Sesame (Sesamum indicum L.). Afr. J. Biotechol. 2006, 5, 1249–1253. [Google Scholar]
- Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F.; Schepers, J.S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J. 2005, 97, 106–112. [Google Scholar] [CrossRef]
- Plaut, Z. Plant exposure to water stress during specific growth stages. In Encyclopedia of Water Science; Marcel Dekker Inc.: New York, NY, USA, 2003; pp. 673–675. [Google Scholar]
- Craufurd, P.Q.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J.; Prasad, P.V.V. Escape and tolerance to high temperature at flowering in groundnut. J. Agri Sci. 2000, 135, 371–378. [Google Scholar] [CrossRef]
- Kokubun, M.; Shimada, S.; Takahashi, M. Flower abortion caused by pre-anthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci. 2001, 41, 1517–1521. [Google Scholar] [CrossRef]
- Farooq, M.; Kobayashi, N.; Ito, O.; Wahid, A.; Serraj, R. Broader leaves result in better performance of indica rice under drought stress. J. Plant Physiol. 2010, 167, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Wijewardana, C.; Gajanayake, B.; Lokhande, S.; Wallace, T.; Jones, D.; Reddy, K.R. Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica 2018, 214, 57. [Google Scholar] [CrossRef]
- Wijewardana, C.; Hock, M.; Henry, B.; Reddy, K.R. Screening corn hybrids for cold tolerance using morphological traits for early-season seeding. Crop Sci. 2015, 55, 851–867. [Google Scholar] [CrossRef]
- Reddy, K.R.; Seghal, A.; Jumaa, S.; Bheemanahalli, R.; Kakar, N.; Redoña, E.D.; Lone, A.A. Morpho-Physiological characterization of diverse rice genotypes for seedling stage high-and low-temperature tolerance. Agronomy 2021, 11, 112. [Google Scholar] [CrossRef]
- Jumaa, S.H.; Kakar, N.; Redona, E.D.; Lone, A.A.; Chastain, D.; Gao, W.; Warburton, M.L.; Reddy, K.R. Assessing the early-season vigor of a diverse rice population by using morphophysiological traits. SABRAO J. Breed Genet. 2020, 52, 248–270. [Google Scholar]
- Kakar, N.; Bheemanahalli, R.; Jumaa, S.; Redoña, E.; Warburton, M.; Reddy, K.R. Assessment of agromorphological, physiological and yield traits diversity among tropical rice. PeerJ 2021, 9, 11752. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, E.J. Sand and Water Culture Methods Used in the Study of Plant Nutrition. In Technical Communication No. 22, Commonwealth Bureau of Horticulture and Plantation Crops; Commonwealth Agricultural Bureaux: Farnham Royal, Buckinghamshire, UK, 1952. [Google Scholar]
- Stirbet, A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Raman, A.; Verulkar, S.B.; Mandal, N.P.; Variar, M.; Shukla, V.; Dwivedi, J.; Singh, B.N.; Singh, N.O.; Pamini, S.; Mall, K.A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 31. [Google Scholar] [CrossRef] [Green Version]
Source | PH | TN | LA | LRL | CRL | RSA | ARD | RV | RT | RF | RC | SPAD | FO | FM | Fv/Fm | LDW | SDW | ShDW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment (T) | *** | *** | *** | NS | NS | NS | *** | NS | * | NS | ** | *** | NS | NS | NS | *** | *** | *** |
Genotypes (G) | *** | NS | *** | *** | *** | *** | *** | *** | ** | *** | *** | *** | ** | ** | * | *** | *** | *** |
T*G | NS | NS | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
DS | LDT | MDT | HDT | ||||
---|---|---|---|---|---|---|---|
Genotypes | CDSRI | Genotypes | CDSRI | Genotypes | CCDSRI | Genotypes | TDSRI |
IRRI 154 | 14.439 | HHZ 12 | 18.281 | IR09A130 | 20.776 | IR78222 | 23.16 |
IRRI 157 | 15.91 | IR78221 | 18.414 | IR08A172 | 20.784 | CT18233 | 23.443 |
IR06N155 | 16.005 | IR75483 | 18.439 | IR09L337 | 20.835 | IR07K142 | 23.592 |
PALMAR | 16.141 | FED21 | 18.523 | IR05F102 | 20.965 | CT18247 | 24.203 |
IR86-11 | 16.321 | IR05N412 | 18.532 | GMET-15 | 20.966 | CT18372 | 24.93 |
IR04A115 | 16.741 | IRRI 152 | 18.554 | IR86052 | 21.066 | IR86635 | 26.825 |
CT18593 | 16.773 | IR64 | 18.673 | IR09L179 | 21.115 | IR86126 | 28.884 |
BR47 | 17.051 | IR09N537 | 18.674 | IR86-44 | 21.147 | ||
IR07F102 | 17.089 | IR6 | 18.784 | CT6946 | 21.184 | ||
IR86-1 | 17.223 | IR85411 | 18.977 | COL-XXI | 21.235 | ||
MIL240 | 17.253 | FED-MO | 19.12 | Rex | 21.245 | ||
IR85427 | 17.263 | CT18245 | 19.218 | CT18237 | 21.47 | ||
IR08N136 | 17.319 | IR09L324 | 19.297 | HHZ 1 | 21.938 | ||
Thad | 17.505 | CT18244 | 19.423 | IR70213 | 22.603 | ||
CT18615 | 17.668 | FED473 | 19.51 | CT19561 | 22.92 | ||
IR85422 | 17.678 | FED20 | 19.529 | ||||
IR10A134 | 17.841 | MTU1010 | 19.617 | ||||
Apo | 17.904 | IR88633 | 19.688 | ||||
IR74371 | 18.127 | GMET-25 | 19.872 | ||||
IR93324 | 19.937 | ||||||
IR10N230 | 20.052 | ||||||
IRRI 123 | 20.054 | ||||||
IR65600 | 20.066 | ||||||
IR49830 | 20.093 | ||||||
WAB 56 | 20.122 | ||||||
75-1-127 | 20.161 | ||||||
CT18614 | 20.223 | ||||||
IR93323 | 20.25 | ||||||
IR07F287 | 20.303 | ||||||
IR78049 | 20.312 | ||||||
IR65482 | 20.444 | ||||||
CT6510 | 20.469 | ||||||
IR09F436 | 20.511 | ||||||
No. of genotypes: 19 | 33 | 15 | 7 | ||||
Percentage: 26 % | 45% | 20% | 9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakar, N.; Jumaa, S.H.; Sah, S.K.; Redoña, E.D.; Warburton, M.L.; Reddy, K.R. Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance. Plants 2022, 11, 2332. https://doi.org/10.3390/plants11182332
Kakar N, Jumaa SH, Sah SK, Redoña ED, Warburton ML, Reddy KR. Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance. Plants. 2022; 11(18):2332. https://doi.org/10.3390/plants11182332
Chicago/Turabian StyleKakar, Naqeebullah, Salah H. Jumaa, Saroj Kumar Sah, Edilberto D. Redoña, Marilyn L. Warburton, and Kambham R. Reddy. 2022. "Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance" Plants 11, no. 18: 2332. https://doi.org/10.3390/plants11182332
APA StyleKakar, N., Jumaa, S. H., Sah, S. K., Redoña, E. D., Warburton, M. L., & Reddy, K. R. (2022). Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance. Plants, 11(18), 2332. https://doi.org/10.3390/plants11182332