Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace
Abstract
:1. Introduction
2. Results
2.1. GBS Experiment and SNP Calling
2.2. Population Structure
2.3. Private Allele Identification
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. GBS Assay and SNP Filtering
4.2.1. Population Structure and Genetic Relationships among Individuals
4.2.2. Identification of Private Alleles
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. FAO Statistical Database. Available online: http://www.fao.org (accessed on 9 January 2022).
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions-A global benefit to health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Block, E. Garlic and Other Alliums—The Lore and the Science; RSC Publishing: Cambridge, UK, 2010. [Google Scholar]
- Beretta, V.H.; Bannoud, F.; Insani, M.; Galmarini, C.R.; Cavagnaro, P.F. Dataset on absorption spectra and bulb concentration of phenolic compounds that may interfere with onion pyruvate determinations. Data Brief 2017, 11, 208–213. [Google Scholar] [CrossRef]
- Sami, R.; Elhakem, A.; Alharbi, M.; Benajiba, N.; Almatrafi, M.; Helal, M. Nutritional values of onion bulbs with some essential structural parameters for packaging process. Appl. Sci. 2021, 11, 2317. [Google Scholar] [CrossRef]
- Brewster, J.L. Onions and Other Vegetable Alliums; CABI Publishing: Wallingford, UK, 2008. [Google Scholar]
- Khosa, J.S.; McCallum, J.; Dhatt, A.S.; Macknight, R.C. Enhancing onion breeding using molecular tools. Plant Breed. 2016, 135, 9–20. [Google Scholar] [CrossRef]
- Villano, C.; Esposito, S.; Carucci, F.; Frusciante, L.; Carputo, D.; Aversano, R. High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding. Mol. Breed. 2019, 39, 5. [Google Scholar] [CrossRef]
- Taylor, A.; Teakle, G.R.; Walley, P.G.; Finch-Savage, W.E.; Jackson, A.C.; Jones, J.E.; Hand, P.; Thomas, B.; Havey, M.J.; Pink, D.A.C.; et al. Assembly and characterisation of a unique onion diversity set identifies resistance to fusarium basal rot and improved seedling vigour. Theor. Appl. Genet. 2019, 132, 3245–3264. [Google Scholar] [CrossRef]
- Mallor, C.; Arnedo-Andrés, M.S.; Garcés-Claver, A. Assessing the genetic diversity of Spanish Allium cepa landraces for onion breeding using microsatellite markers. Sci. Hortic. 2014, 170, 24–31. [Google Scholar] [CrossRef]
- Monteverde, E.; Galván, G.; Speranza, P. Genetic diversification of local onion populations under different production systems in Uruguay. Plant Genet. Resour. 2015, 13, 238–246. [Google Scholar] [CrossRef]
- Rivera, A.; Mallor, C.; Garcés-Claver, A.; García-Ulloa, A.; Pomar, F.; Silvar, C. Assessing the genetic diversity in onion (Allium cepa L.) landraces from northwest Spain and comparison with the European variability. N. Z. J. Crop Hortic. Sci. 2016, 43, 103–120. [Google Scholar] [CrossRef]
- Ricciardi, L.; Mazzeo, R.; Marcotrigiano, A.R.; Rainaldi, G.; Iovieno, P.; Zonno, V.; Pavan, S.; Lotti, C. Assessment of genetic diversity of the “acquaviva red onion” (Allium cepa L.) apulian landrace. Plants 2020, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.S.; Mandal, S.; Sharma, S.; Nourbakhsh, S.S.; Goldman, I.; Guzman, I. Recent Advances in Onion Genetic Improvement. Agronomy 2021, 11, 482. [Google Scholar] [CrossRef]
- Brahimi, A.; Landschoot, S.; Bekaert, B.; Hajji, L.; Hajjaj, H.; Audenaert, K.; Haesaert, G.; Mazouz, H. Exploring the genetic and phenotypic diversity within and between onion (Allium cepa L.) ecotypes in Morocco. J. Genet. Eng. Biotechnol. 2022, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotype ing-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Delvento, C.; Ricciardi, L.; Lotti, C.; Ciani, E.; D’Agostino, N. Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies. Front. Genet. 2020, 11, 447. [Google Scholar] [CrossRef]
- Taranto, F.; D’Agostino, N.; Rodriguez, M.; Pavan, S.; Minervini, A.P.; Pecchioni, N.; Papa, R.; De Vita, P. Whole genome scan reveals molecular signatures of divergence and selection related to important traits in durum wheat germplasm. Front. Genet. 2020, 217. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Lu, F.; Lipka, A.E.; Glaubitz, J.; Elshire, R.; Cherney, J.H.; Casler, D.M.; Buckler, E.S.; Costics, D.E. Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol. PLoS Genet. 2013, 9, e1003215. [Google Scholar] [CrossRef]
- Pavan, S.; Bardaro, N.; Fanelli, V.; Marcotrigiano, A.R.; Mangini, G.; Taranto, F.; Catalano, D.; Montemurro, C.; De Giovanni, C.; Lotti, C.; et al. Genotyping by sequencing of cultivated lentil (Lens culinaris Medik.) highlights population structure in the Mediterranean gene pool associated with geographic patterns and phenotypic variables. Front. Genet. 2019, 10, 872. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 2000, 67, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Res. 2005, 3, 373–384. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Sekine, D.; Yabe, S. Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding. Breed. Sci. 2020, 70, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Delvento, C.; Mazzeo, R.; Ricciardi, F.; Losciale, P.; Gaeta, L.; D’Agostino, N.; Taranto, F.; Sánchez-Pérez, R.; Ricciardi, L.; et al. Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Hortic. Res. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Galimberti, A.; De Mattia, F.; Losa, A.; Bruni, I.; Federici, S.; Casiraghi, M.; Martellos, S.; Labra, M. DNA barcoding as a new tool for food traceability. Food Res. Int. 2013, 50, 55–63. [Google Scholar] [CrossRef]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Ayalew, H.; Tsang, P.W.; Chu, C.; Wang, J.; Liu, S.; Chen, C.; Xue-Feng, M. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE 2019, 14, e0217222. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Coyne, C.J.; Main, D.; Pavan, S.; Sun, S.; Zhu, Z.; Xuxiao, Z.; Leitão, J.; McGee, R.J. Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.). Mol. Breed. 2017, 37, 151. [Google Scholar] [CrossRef]
- Finkers, R.; van Kaauwen, M.; Ament, K.; Burger-Meijer, K.; Egging, R.; Huits, H.; Kodde, L.; Kroon, L.; Shigyo, M.; Sato, S.; et al. Insights from the first genome assembly of Onion (Allium cepa). G3-Genes Genom. Genet. 2021, 11, jkab243. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, L.D.; McLay, T.G. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. J. Plant Res. 2011, 124, 311–314. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–14. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.; VonHoldt, B. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Gao, X.; Starmer, J.D. AWclust: Point-and-click software for non-parametric population structure analysis. BMC Bioinform. 2008, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Peakall, P.E.; Smouse, R. GenAlEx 6.5: Genetic analysis in excel population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
ARO_K1 | ARO_K2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ARO1 | ARO3 | ARO4 | ARO7 | ARO2 | ARO5 | ARO6 | M | ||
ARO_K1 | ARO1 | 0 | 0.509 | 0.470 | 0.433 | 0.001 | 0.001 | 0.012 | 0.012 |
ARO3 | 0 | 0 | 0.497 | 0.421 | 0.003 | 0.009 | 0.045 | 0.030 | |
ARO4 | 0.001 | 0 | 0 | 0.319 | 0.001 | 0.006 | 0.070 | 0.037 | |
ARO7 | 0 | 0.002 | 0.006 | 0 | 0.001 | 0.001 | 0.002 | 0.002 | |
ARO_K2 | ARO2 | 0.078 | 0.061 | 0.062 | 0.093 | 0 | 0.464 | 0.316 | 0.082 |
ARO5 | 0.094 | 0.073 | 0.077 | 0.113 | 0.003 | 0 | 0.438 | 0.161 | |
ARO6 | 0.048 | 0.036 | 0.033 | 0.063 | 0.010 | 0.011 | 0 | 0.279 | |
M | 0.030 | 0.022 | 0.022 | 0.042 | 0.019 | 0.021 | 0.009 | 0 |
CODE | Na | Ne | I | Ho | He | F | |
---|---|---|---|---|---|---|---|
ARO_K1 | ARO1 | 1.911 | 1.619 | 0.518 | 0.33 | 0.352 | 0.056 |
ARO3 | 1.904 | 1.61 | 0.513 | 0.327 | 0.349 | 0.054 | |
ARO4 | 1.891 | 1.615 | 0.511 | 0.325 | 0.348 | 0.057 | |
ARO7 | 1.905 | 1.617 | 0.515 | 0.343 | 0.351 | 0.022 | |
ARO_K2 | ARO2 | 1.69 | 1.469 | 0.399 | 0.181 | 0.272 | 0.279 |
ARO5 | 1.481 | 1.349 | 0.311 | 0.163 | 0.215 | 0.19 | |
ARO6 | 1.696 | 1.481 | 0.406 | 0.225 | 0.277 | 0.145 | |
M | 1.88 | 1.578 | 0.49 | 0.23 | 0.332 | 0.278 | |
Mean | 1.795 | 1.542 | 0.458 | 0.265 | 0.312 | 0.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delvento, C.; Pavan, S.; Miazzi, M.M.; Marcotrigiano, A.R.; Ricciardi, F.; Ricciardi, L.; Lotti, C. Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace. Plants 2022, 11, 2388. https://doi.org/10.3390/plants11182388
Delvento C, Pavan S, Miazzi MM, Marcotrigiano AR, Ricciardi F, Ricciardi L, Lotti C. Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace. Plants. 2022; 11(18):2388. https://doi.org/10.3390/plants11182388
Chicago/Turabian StyleDelvento, Chiara, Stefano Pavan, Monica Marilena Miazzi, Angelo Raffaele Marcotrigiano, Francesca Ricciardi, Luigi Ricciardi, and Concetta Lotti. 2022. "Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace" Plants 11, no. 18: 2388. https://doi.org/10.3390/plants11182388
APA StyleDelvento, C., Pavan, S., Miazzi, M. M., Marcotrigiano, A. R., Ricciardi, F., Ricciardi, L., & Lotti, C. (2022). Genotyping-by-Sequencing Defines Genetic Structure within the “Acquaviva” Red Onion Landrace. Plants, 11(18), 2388. https://doi.org/10.3390/plants11182388