The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods
Abstract
:1. Introduction
2. Result
2.1. Quantitative Chemical Analysis of Plant Material from Single and Phytosociological Crops
2.2. The Influence of Fertilization on the Quality of Soil and Plant Raw Materials
2.3. The Influence of Fertilizers on the Biosynthesis of Polyphenols
2.4. Phytochemical Analyses of Dry Plant Extracts
2.5. FT-ICR MS (Fourier-Transform Ion–Cyclotron-Resonance High-Resolution Mass Spectrometer)
2.6. UHPLC-MS (Ultra-High Performance Liquid Chromatography-MS)
2.7. Evaluation of Antioxidant Activity
2.7.1. In Vitro Antioxidant Assays
2.7.2. In Silico Studies
3. Discussion
4. Materials and Methods
4.1. Establishing the Quality of Plant Raw Materials
4.1.1. Plant Materials, Reagents and Equipment
4.1.2. Determination of Polyphenolic Content
Determination of Total Flavonoids Content (TFL)
Determination of Total Phenolic Content (TPC)
4.2. The Influence of Fertilizers on the Biosynthesis of Secondary Metabolites
4.2.1. Assessment of Soil Composition and Plant Material
4.2.2. Determination of the Quality of Extractive Solutions from Fertilized Material
4.3. Plant Extracts Preparation
4.4. Phytochemical Analysis of Plant Extracts
4.4.1. Assessment of TFL and TPC
4.4.2. Identification of Polyphenolic Compounds by FT–ICR MS
4.4.3. Identification and Quantification of Polyphenolic Compounds by Ultra-High Performance Liquid Chromatography–MS (UHPLC–MS)
4.5. Evaluation of Antioxidant Activity
4.5.1. In Vitro Assays
DPPH Free Radical Scavenging Activity (2,2-Diphenyl-1-picrylhydrazyl)
ABTS Method of Total Antioxidant Capacity Assessment
Antioxidant Activity Using FRAP Assay (Ferric Reducing Antioxidant Power Assay)
4.5.2. In Silico Methods
Molecular Docking
Binding Free Energy Calculations
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Machiani, M.A.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of Yield, Essential Oil Content and Compositions of Peppermint (Mentha piperita L.) Intercropped with Faba Bean (Vicia faba L.). J. Clean. Prod. 2018, 171, 529–537. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of Competition, Essential Oil Quality and Quantity of Peppermint Intercropped with Soybean. Ind. Crops Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Carrubba, A.; Torre, R.L.; Saiano, F.; Aiello, P. Sustainable Production of Fennel and Dill by Intercropping. Agron. Sustain. Dev. 2008, 28, 247–256. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and Antioxidant Activities of Three Mentha Species Essential Oils. Planta Med. 2003, 69, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal Variation in Content, Chemical Composition and Antimicrobial and Cytotoxic Activities of Essential Oils from Four Mentha Species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Orhan, I.E.; Özçelik, B.; Kartal, M.; Kan, Y. Antimicrobial and Antiviral Effects of Essential Oils from Selected Umbelliferae and Labiatae Plants and Individual Essential Oil Components. Turkish J. Biol. 2012, 36, 239–246. [Google Scholar] [CrossRef]
- Taher, Y.A. Antinociceptive Activity of Mentha piperita Leaf Aqueous Extract in Mice. Libyan J. Med. 2012, 7, 1–5. [Google Scholar] [CrossRef]
- Belemkar, S.; Thakre, S.; Pata, M.K. Evaluation of Anti-Inflammatory and Analgesic Activities of Methanolic Extract of Adhatoda Vasica and Mentha piperita Linn Exploring the Role of Nitric Oxide in Insulin Resistance View Project Computer-Assisted Method Development for Pharmaceutical Drugs. 2013. Available online: https://www.researchgate.net/ (accessed on 26 July 2022).
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and Antioxidant Activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef]
- Moradkhani, H.; Sargsyan, E.; Bibak, H.; Naseri, B.; Sadat-Hosseini, M.; Fayazi-Barjin, A.; Meftahizade, H. Melissa officinalis L., a Valuable Medicine Plant: A Review. J. Med. Plants Res. 2010, 4, 2753–2759. [Google Scholar]
- Świder, K.; Startek, K.; Wijaya, C.H. The Therapeutic Properties of Lemon Balm (Melissa officinalis L.): Reviewing Novel Findings and Medical Indications. J. Appl. Bot. Food Qual. 2019, 92, 327–335. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Akram, M.; Abbaass, W.; Semwal, P.; Painuli, S.; Konovalov, D.A.; Alfred, M.A.; Kumar, N.V.A.; et al. Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. Oxid. Med. Cell. Longev. 2021, 2021, 6584693. [Google Scholar] [CrossRef]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A Review of Its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef]
- Ungurianu, A.; Zanfirescu, A.; Margină, D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. Plants 2022, 11, 1741. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Li, T.; Liu, M.; Wang, Y.; Ma, H.; Mu, N.; Wang, H. SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 641315. [Google Scholar] [CrossRef]
- Liao, C.-Y.; Kennedy, B.K. SIRT6, Oxidative Stress, and Aging. Cell Res. 2016, 26, 143–144. [Google Scholar] [CrossRef]
- Liu, B.; Che, W.; Zheng, C.; Liu, W.; Wen, J.; Fu, H.; Tang, K.; Zhang, J.; Xu, Y. SIRT5: A Safeguard Against Oxidative Stress-Induced Apoptosis in Cardiomyocytes. Cell. Physiol. Biochem. 2013, 32, 1050–1059. [Google Scholar] [CrossRef]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef]
- You, W.; Zheng, W.; Weiss, S.; Chua, K.F.; Steegborn, C. Structural Basis for the Activation and Inhibition of Sirtuin 6 by Quercetin and Its Derivatives. Sci. Rep. 2019, 9, 19176. [Google Scholar] [CrossRef]
- Luta, E.A.; Ghica, M.; Costea, T.; Gird, C.E. Phytosociological Study and Its Influence on the Biosynthesis of Active Compounds of Two Medicinal Plants Mentha piperita l. and Melissa officinalis L. Farmacia 2020, 68, 919–924. [Google Scholar] [CrossRef]
- Luta, E.A.; Ghica, M.; Gird, C.E. The Initiation of a Phytosociological Study on Certain Types of Medicinal Plants. Agriculture 2022, 12, 283. [Google Scholar] [CrossRef]
- Dumitru, M.; Manea, A.; Ciobanu, C.; Vrinceanu, N.; Calciu, I.; Tanase, V.; Preda, V.; Risnoveanu, I.; Mocanu, V.; Eftene, M. Soil Quality Monitoring in Romania, National Research-Development Institute for Pedology, Agrochemistry And Environmental Protection, Sitech, Craiova, 2011. Available online: https://www.icpa.ro/proiecte/Proiecte%20nationale/monitoring/atlasICPA.pdf (accessed on 26 July 2022).
- Hend, M.F.S.; Sakr, W.R.A.; Sabh, A.Z.; Ragab, A.A. Effect of Some Chemical and Bio-Fertilizers on Peppermint Plants Grown in Sandy Soil: 1. Effect on Vegetative Growth as Well as Essential Oil Percentage and Constituents. Available online: https://www.cabdirect.org/cabdirect/abstract/20083026707 (accessed on 26 July 2022).
- Sheykholeslami, Z.; Almdari, M.; Qanbari, S.; Akbarzadeh, M. Effect of Organic and Chemical Fertilizers on Yield and Yield Components of Peppermint (Mentha piperita L.). Am. J. Exp. Agric. 2015, 6, 251–257. [Google Scholar] [CrossRef]
- Mehrafarin, A.; Naghdi Badi, H.; Poorhadi, M.; Hadavi, E.; Qavami, N.; Kadkhoda, Z. Phytochemical and Agronomical Response of Peppermint (Mentha piperita L.) to Bio-Fertilizers and Urea Fertilizer Application. Available online: https://www.cabdirect.org/cabdirect/abstract/20123181186 (accessed on 26 July 2022).
- Marin, N.; Vrinceanu, N.; Lupascu, N.; Dumitru, M. Heavy Metals From The Soil And Mineral Fertilization. Agronomy 2018, 61, 101–108. [Google Scholar]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid.-Based Complement. Altern. Med. 2021, 2021, 6139308. [Google Scholar] [CrossRef] [PubMed]
- Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.; Krishna, D. Bioflavonoids Classification, Pharmacological, Biochemical Effects and Therapeutic Potential. Indian J. Pharmacol. 2001, 33, 2–16. Available online: https://www.google.com/search?q=Narayana+KR%2C+Reddy+MS%2C+Chaluvadi+M%2C+Krishna+D.+Bioflavonoids+classification%2C+pharmacological%2C+biochemical+effects+and+therapeutic+potential.+Indian+journal+of+pharmacology.+2001%3B33(1)%3A2-16.&oq=Narayana+KR%2C+R (accessed on 26 July 2022).
- Verhoye, E.; Langlois, M.R. Circulating Oxidized Low-Density Lipoprotein: A Biomarker of Atherosclerosis and Cardiovascular Risk? Clin. Chem. Lab. Med. 2009, 47, 128–137. [Google Scholar] [CrossRef]
- Aviram, M. Modified Forms of Low Density Lipoprotein and Atherosclerosis. Atherosclerosis 1993, 98, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT—Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Lue, B.M.; Nielsen, N.S.; Jacobsen, C.; Hellgren, L.; Guo, Z.; Xu, X. Antioxidant Properties of Modified Rutin Esters by DPPH, Reducing Power, Iron Chelation and Human Low Density Lipoprotein Assays. Food Chem. 2010, 123, 221–230. [Google Scholar] [CrossRef]
- Wang, L.; Lee, I.M.; Zhang, S.M.; Blumberg, J.B.; Buring, J.E.; Sesso, H.D. Dietary Intake of Selected Flavonols, Flavones, and Flavonoid-Rich Foods and Risk of Cancer in Middle-Aged and Older Women. Am. J. Clin. Nutr. 2009, 89, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.B.; Sun, X.; Wang, M.; Ye, J.X.; Si, J.Y.; Xu, H.B.; Meng, X.B.; Qin, M.; Sun, J.; Wang, H.W.; et al. Oxidative Stress Suppression by Luteolin-Induced Heme Oxygenase-1 Expression. Toxicol. Appl. Pharmacol. 2012, 265, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Gan, F.F.; Shelar, S.B.; Ng, K.Y.; Chew, E.H. Antioxidant and Nrf2 Inducing Activities of Luteolin, a Flavonoid Constituent in Ixeris Sonchifolia Hance, Provide Neuroprotective Effects against Ischemia-Induced Cellular Injury. Food Chem. Toxicol. 2013, 59, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.H.; Hung, L.M.; Chen, Y.H.; Kuan, Y.H.; Zhang, F.B.Y.; Lin, R.H.; Shih, H.C.; Tsai, S.K.; Huang, S.S. Cardioprotective Effects of Luteolin during Ischemia-Reperfusion Injury in Rats. Circ. J. 2011, 75, 443–450. [Google Scholar] [CrossRef]
- Kritas, S.K.; Saggini, A.; Varvara, G.; Murmura, G.; Caraffa, A.; Antinolfi, P.; Toniato, E.; Pantalone, A.; Neri, G.; Frydas, S.; et al. Luteolin Inhibits Mast Cell-Mediated Allergic Inflammation. J. Biol. Regul. Homeost. Agents 2013, 27, 955–959. [Google Scholar]
- Gülçin, I. Antioxidant Activity of Caffeic Acid (3,4-Dihydroxycinnamic Acid). Toxicology 2006, 217, 213–220. [Google Scholar] [CrossRef]
- Meyer, A.S.; Donovan, J.L.; Pearson, D.A.; Waterhouse, A.L.; Frankel, E.N. Fruit Hydroxycinnamic Acids Inhibit Human Low-Density Lipoprotein Oxidation in Vitro. J. Agric. Food Chem. 1998, 46, 1783–1787. [Google Scholar] [CrossRef]
- Cartron, E.; Carbonneau, M.A.; Fouret, G.; Descomps, B.; Léger, C.L. Specific Antioxidant Activity of Caffeoyl Derivatives and Other Natural Phenolic Compounds: LDL Protection against Oxidation and Decrease in the Proinflammatory Lysophosphatidylcholine Production. J. Nat. Prod. 2001, 64, 480–486. [Google Scholar] [CrossRef]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharm. Res. 2022, 45, 205–228. [Google Scholar] [CrossRef]
- Kaewmool, C.; Kongtawelert, P.; Phitak, T.; Pothacharoen, P.; Udomruk, S. Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Activated BV2 Microglia via Regulating SIRT1/NF-ΚB Pathway Contributed to the Suppression of Microglial Activation-Induced PC12 Cell Apoptosis. J. Neuroimmunol. 2020, 341, 577164. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Li, B.S.; Gao, S.S.; Seo, J.H.; Choi, B.-M. Luteolin Inhibits H2O2-Induced Cellular Senescence via Modulation of SIRT1 and P53. Korean J. Physiol. Pharmacol. 2021, 25, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Ding, Y.; Liu, J.; Liu, R.; Zhang, J.; Zhou, Q.; Long, Z.; Peng, J.; Li, L.; Bai, H.; et al. Chlorogenic Acid Prevents Paraquat-Induced Apoptosis via Sirt1-Mediated Regulation of Redox and Mitochondrial Function. Free Radic. Res. 2019, 53, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Ku, H.-C.; Kuo, Y.-H.; Yang, K.-C.; Tu, P.-C.; Chiu, H.-L.; Su, M.-J. Caffeic Acid Ethanolamide Prevents Cardiac Dysfunction through Sirtuin Dependent Cardiac Bioenergetics Preservation. J. Biomed. Sci. 2015, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Fusi, J.; Bianchi, S.; Daniele, S.; Pellegrini, S.; Martini, C.; Galetta, F.; Giovannini, L.; Franzoni, F. An in Vitro Comparative Study of the Antioxidant Activity and SIRT1 Modulation of Natural Compounds. Biomed. Pharmacother. 2018, 101, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Komeili-Movahhed, T.; Bassirian, M.; Changizi, Z.; Moslehi, A. SIRT1/NFκB Pathway Mediates Anti-Inflammatory and Anti-Apoptotic Effects of Rosmarinic Acid on in a Mouse Model of Nonalcoholic Steatohepatitis (NASH). J. Recept. Signal Transduct. 2022, 42, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Costea, L.; Chitescu, C.L.; Boscencu, R.; Ghica, M.; Lupuliasa, D.; Mihai, D.P.; Deculescu-Ionita, T.; Dutu, L.E.; Popescu, M.L.; Luta, E.A.; et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants 2022, 11, 1680. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin-Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2017; Volume 6, pp. 107–115. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Wu, Z.; Rodgers, R.P.; Marshall, A.G. Characterization of Vegetable Oils: Detailed Compositional Fingerprints Derived from Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 5322–5328. [Google Scholar] [CrossRef]
- Cooper, H.J.; Marshall, A.G. Electrospray Ionization Fourier Transform Mass Spectrometric Analysis of Wine. J. Agric. Food Chem. 2001, 49, 5710–5718. [Google Scholar] [CrossRef]
- Wu, Z.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Composition of Explosives by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2002, 74, 1879–1883. [Google Scholar] [CrossRef]
- Hur, M.; Oh, H.B.; Kim, S. Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results. Bull. Korean Chem. Soc. 2009, 30, 2665–2668. [Google Scholar] [CrossRef]
- Kim, S.; Kaplan, L.A.; Hatcher, P.G. Biodegradable Dissolved Organic Matter in a Temperate and a Tropical Stream Determined from Ultra-High Resolution Mass Spectrometry. Limnol. Oceanogr. 2006, 51, 1054–1063. [Google Scholar] [CrossRef]
- Kim, S.; Kramer, R.W.; Hatcher, P.G. Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram. Anal. Chem. 2003, 75, 5336–5344. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: The Next Grand Challenge for Chemical Analysis. Acc. Chem. Res. 2004, 37, 53–59. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the Underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent Effects on the Antioxidant Capacity of Lipophilic and Hydrophilic Antioxidants Measured by CUPRAC, ABTS/Persulphate and FRAP Methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory Effects of Chlorogenic Acids on Linoleic Acid Peroxidation and Haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H.; Ebskamp, M.J.M.; Paul, M.J.; Jeuken, M.J.W.; Weisbeek, P.J.; Smeekens, S.C.M. Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress. Plant Physiol. 1995, 107, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Cao, D.; Wang, M.; Qiu, X.; Liu, D.; Jiang, H.; Yang, N.; Xu, R.-M. Structural Basis for Allosteric, Substrate-Dependent Stimulation of SIRT1 Activity by Resveratrol. Genes Dev. 2015, 29, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gertz, M.; Nguyen, G.T.T.; Fischer, F.; Suenkel, B.; Schlicker, C.; Fränzel, B.; Tomaschewski, J.; Aladini, F.; Becker, C.; Wolters, D.; et al. A Molecular Mechanism for Direct Sirtuin Activation by Resveratrol. PLoS ONE 2012, 7, e49761. [Google Scholar] [CrossRef] [PubMed]
- Land, H.; Humble, M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. In Protein Engineering; Humana Press: New York, NY, USA, 2018; pp. 43–67. [Google Scholar]
- Zanfirescu, A.; Nitulescu, G.; Mihai, D.P.; Nitulescu, G.M. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals 2021, 15, 38. [Google Scholar] [CrossRef]
- Nitulescu, G.; Nitulescu, G.M.; Zanfirescu, A.; Mihai, D.P.; Gradinaru, D. Candidates for Repurposing as Anti-Virulence Agents Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Gao, J.; York, D.M. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations. J. Chem. Theory Comput. 2005, 1, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Vriend, G. New Ways to Boost Molecular Dynamics Simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- R Core Team, R. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Albeanu, G.; Ghica, M.; Popentiu-Vladicescu, F. On Using Bootstrap Scenario-Generation for Multi-Period Stochastic Programming Applications. Int. J. Comput. Commun. Control 2008, 3, 282–286. [Google Scholar]
- Mair, P.; Wilcox, R. Robust Statistical Methods in R Using the WRS2 Package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
Plant Sample | Solvent | TFL (mg/g Eq Expressed in Rutin) | TPC (mg/g Eq Expressed in Tannic Acid) |
---|---|---|---|
MM | 50% Alcohol | 10.11 ± 2.526 | 91.80 ± 14.828 |
MF | 50% Alcohol | 25.87 ± 5.766 | 101.43 ± 19.329 |
MLM | 70% Alcohol | 16.12 ± 2.692 | 40.90 ± 10.775 |
MLF | 70% Alcohol | 22.71 ± 5.160 | 65.84 ± 28.841 |
Identification Probe | ID 103-21 | ID 1054 | ID 1055 | M F | ML F | M NPK | ML NPK | M Bio | ML Bio |
---|---|---|---|---|---|---|---|---|---|
pH | 8.06 | 7.38 | 8.05 | - | - | - | - | - | - |
HUM [mg/kg] | 28.10 | 36.70 | 36.10 | - | - | - | - | - | - |
Res. Cond. [mg/kg] | 400.00 | 1780.00 | 880.00 | - | - | - | - | - | - |
N [mg/kg] | 1.98 | 2.73 | 2.41 | 37.00 | 17.60 | 45.90 | 26.30 | 37.60 | 25.00 |
P [mg/kg] | 403.00 | 1118.00 | 660.00 | 3.60 | 4.50 | 4.80 | 3.60 | 4.30 | 4.20 |
K [mg/kg] | 359.00 | 752.00 | 464.00 | 17.80 | 25.90 | 21.20 | 24.00 | 18.70 | 24.10 |
Ca [mg/kg] | - | - | - | 21.90 | 12.10 | 21.40 | 12.50 | 18.30 | 12.20 |
Zn [mg/kg] | 3.60 | 7.30 | 5.90 | 222.00 | 360.00 | 264.00 | 212.00 | 219.00 | 314.00 |
Cu [mg/kg] | 5.90 | 6.40 | 5.50 | 111.00 | 134.00 | 111.00 | 121.00 | 108.00 | 130.00 |
Fe [mg/kg] | 12.00 | 11.20 | 9.00 | 1760.00 | 4720.00 | 3320.00 | 2690.00 | 3840.00 | 4540.00 |
Mn [mg/kg] | 10.05 | 15.90 | 13.90 | 350.00 | 254.00 | 402.00 | 196.00 | 380.00 | 259.00 |
Plant Extract | Solvent | TFL (mg/g Eq Expressed in Rutin) | TPC (mg/g Eq Expressed in Tannic Acid) |
---|---|---|---|
M F | 50% Alcohol | 25.87 ± 5.766 | 101.43 ± 19.329 |
M NPK | 50% Alcohol | 22.71 ± 5.476 | 104.17 ± 21.563 |
M Bio | 50% Alcohol | 35.38 ± 6.649 | 120.09 ± 38.467 |
ML F | 70% Alcohol | 22.71 ± 5.160 | 65.84 ± 28.841 |
ML NPK | 70% Alcohol | 23.51 ± 6.588 | 70.26 ± 27.772 |
ML Bio | 70% Alcohol | 40.03 ± 5.417 | 83.41 ± 24.644 |
Plant Extract | TFL (mg/g Eq Expressed in Rutin) | TPC (mg/g Eq Expressed in Tannic Acid) |
---|---|---|
MM E | 54.70 ± 10.995 | 327.46 ± 3.003 |
MF E | 86.78 ± 10.996 | 411.73 ± 13.696 |
MLM E | 65.38 ± 15.772 | 333.67 ± 34.451 |
MLF E | 78.74 ± 8.055 | 574.54 ± 45.203 |
Sample Name | m/z | MM E | MF E | MLM E | MLF E | |||||
---|---|---|---|---|---|---|---|---|---|---|
ESI+ | ESI− | ESI+ | ESI− | ESI+ | ESI− | ESI+ | ESI− | ESI+ | ESI− | |
PRO | - | 153.02 | - | + | - | + | - | + | - | + |
RUT | 611.16 | 609.15 | - | + | - | + | + | + | + | + |
CAF | 181.05 | 179.03 | + | + | + | + | + | + | + | + |
CHL | 355.10 | 353.09 | + | + | + | + | + | + | + | + |
LUT | 287.06 | 285.04 | + | + | + | + | + | + | + | + |
KAE | 287.06 | 285.04 | + | + | + | + | + | + | + | + |
ROS | 361.09 | 359.08 | + | + | + | + | + | + | + | + |
QUE | 303.05 | 301.04 | + | + | + | + | + | + | + | + |
ISO | 465.10 | 463.09 | + | + | + | + | + | + | + | + |
FER | 195.07 | 193.05 | + | + | + | + | + | + | + | + |
COU | 165.05 | 163.04 | - | + | - | + | + | + | + | + |
Sample Name | MM E | MF E | MLM E | MLF E |
---|---|---|---|---|
PRO [μg/g] | 57.13 ± 1.883 | 48.62 ± 2.275 | 78.82 ± 1.910 | 98.54 ± 1.985 |
RUT [μg/g] | 27.36 ± 2.117 | 68.00 ± 2.058 | 28.74 ± 2.256 | 205.82 ± 1.309 |
CAF [μg/g] | 321.44 ± 1.727 | 345.45 ± 2.221 | 84.15 ± 2.146 | 1296.55 ± 1.911 |
CHL [μg/g] | 56.09 ± 1.911 | 75.42 ± 2.385 | 73.99 ± 1.995 | 397.91 ± 2.237 |
LUT [μg/g] | 99.68 ± 2.225 | 87.03 ± 1.652 | 121.19 ± 1.723 | 547.50 ± 1.866 |
KAE [μg/g] | M | 0.94 ± 0.148 | 1.22 ± 0.180 | 3.13 ± 0.689 |
ROS [μg/g] | 43.95 ± 2.145 | 51.02 ± 2.080 | 48.59 ± 2.143 | 64.31 ± 1.750 |
QUE [μg/g] | 5.93 ± 1.205 | 116.38 ± 2.100 | 4.62 ± 0.7605 | 76.84 ± 1.722 |
ISO [μg/g] | 176.48 ± 2.355 | 170.67 ± 2.165 | 170.67 ± 4.455 | 270.91 ± 2.108 |
FER [μg/g] | M | M | M | M |
COU [μg/g] | 28.81 ± 1.888 | 20.78 ± 1.722 | 10.32 ± 1.624 | 54.64 ± 1.641 |
Sample | DPPH IC50 (mg/mL) | 95%CI | ABTS IC50 (mg/mL) | 95%CI | FRAP IC50 (mg/mL) | 95%CI |
---|---|---|---|---|---|---|
MM E | 0.082 | 0.079–0.086 | 0.037 | 0.035–0.038 | 0.807 | 0.754–0.870 |
MF E | 0.056 | 0.052–0.059 | 0.028 | 0.026–0.030 | 0.619 | 0.585–0.658 |
MLM E | 0.048 | 0.040–0.055 | 0.027 | 0.024–0.029 | 0.756 | 0.689–0.836 |
MLF E | 0.042 | 0.035–0.047 | 0.025 | 0.024–0.026 | 0.591 | 0.528–0.672 |
Vitamin C | 0.016 | 0.0160–0.0169 | –* | –* | ||
Trolox | –* | 0.033 | 0.028–0.037 | –* | ||
FeSO4 | –* | –* | 0.102 | 0.098–0.106 |
SIRT1 (Activator) | SIRT5 (Activator) | SIRT6 (Activator) | SIRT6 (Inhibitor) | |||||
---|---|---|---|---|---|---|---|---|
Ligand | ΔG (kcal/mol) | LE | ΔG (kcal/mol) | LE | ΔG (kcal/mol) | LE | ΔG (kcal/mol) | LE |
Caffeic acid | −7.186 | 0.553 | −6.224 | 0.479 | −6.274 | 0.483 | −6.411 | 0.493 |
Chlorogenic acid | −8.027 | 0.321 | −7.212 | 0.289 | −6.609 | 0.264 | −7.262 | 0.291 |
Ferulic acid | −7.334 | 0.524 | −6.057 | 0.433 | −5.721 | 0.409 | −6.172 | 0.441 |
Isoquercitrin | −8.995 | 0.273 | −8.205 | 0.249 | −6.460 | 0.196 | −5.865 | 0.178 |
Kaempferol | −9.827 | 0.468 | −7.583 | 0.361 | −6.690 | 0.319 | −6.787 | 0.323 |
Luteolin | −9.520 | 0.453 | −7.962 | 0.379 | −6.419 | 0.306 | −7.279 | 0.347 |
p-Coumaric acid | −7.376 | 0.615 | −5.720 | 0.477 | −6.977 | 0.581 | −5.900 | 0.492 |
Protocatechuic acid | −5.858 | 0.533 | −5.750 | 0.523 | −6.232 | 0.567 | −5.703 | 0.519 |
Quercetin | −9.259 | 0.421 | −7.554 | 0.343 | −6.899 * | 0.314 * | −6.912 | 0.314 |
Rosmarinic acid | −9.638 | 0.371 | −8.357 | 0.321 | −7.775 | 0.299 | −8.287 | 0.319 |
Rutin | −9.709 | 0.226 | −8.764 | 0.204 | −7.623 | 0.177 | −7.940 | 0.185 |
Resveratrol * | −9.332 | 0.549 | −5.220 | 0.307 | - | - | - | - |
Catechin gallate * | - | - | - | - | - | - | −8.732 | 0.273 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luță, E.A.; Biță, A.; Moroșan, A.; Mihaiescu, D.E.; Ghica, M.; Mihai, D.P.; Olaru, O.T.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; et al. The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods. Plants 2022, 11, 2398. https://doi.org/10.3390/plants11182398
Luță EA, Biță A, Moroșan A, Mihaiescu DE, Ghica M, Mihai DP, Olaru OT, Deculescu-Ioniță T, Duțu LE, Popescu ML, et al. The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods. Plants. 2022; 11(18):2398. https://doi.org/10.3390/plants11182398
Chicago/Turabian StyleLuță, Emanuela Alice, Andrei Biță, Alina Moroșan, Dan Eduard Mihaiescu, Manuela Ghica, Dragoș Paul Mihai, Octavian Tudorel Olaru, Teodora Deculescu-Ioniță, Ligia Elena Duțu, Maria Lidia Popescu, and et al. 2022. "The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods" Plants 11, no. 18: 2398. https://doi.org/10.3390/plants11182398
APA StyleLuță, E. A., Biță, A., Moroșan, A., Mihaiescu, D. E., Ghica, M., Mihai, D. P., Olaru, O. T., Deculescu-Ioniță, T., Duțu, L. E., Popescu, M. L., Costea, L., Nitulescu, G. M., Lupuliasa, D., Boscencu, R., & Gîrd, C. E. (2022). The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods. Plants, 11(18), 2398. https://doi.org/10.3390/plants11182398