Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses
Abstract
:1. Introduction
2. TGB/BMB: The ER-Based Pathway
2.1. Properties of TGB Proteins
2.2. Early Model of TGB-Mediated Transport
2.3. The Role of Modified ER Membranes in TGB-Mediated Transport
2.4. BMB2 Interaction with ER Membranes
3. Potyviruses: The Vesicles/Endosomes-Based Pathway
3.1. Potyvirus Proteins Involved in Virus Transport
3.2. Formation of Potyvirus VRCs
3.3. VRC Trafficking and the Endosome/Post-Golgi Pathway
4. Endosome Structures in mRNA Transport
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aniento, F.; de Medina Hernández, V.S.; Dagdas, Y.; Rojas-Pierce, M.; Russinova, E. Molecular Mechanisms of Endomembrane Trafficking in Plants. Plant Cell 2022, 34, 146–173. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.; Damme, D. Van Motif-Based Endomembrane Trafficking. Plant Physiol. 2021, 186, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Brandizzi, F. Transport from the Endoplasmic Reticulum to the Golgi in Plants: Where Are We Now? Semin. Cell Dev. Biol. 2018, 80, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Weigel, A.V.; Chang, C.L.; Shtengel, G.; Xu, C.S.; Hoffman, D.P.; Freeman, M.; Iyer, N.; Aaron, J.; Khuon, S.; Bogovic, J.; et al. ER-to-Golgi Protein Delivery through an Interwoven, Tubular Network Extending from ER. Cell 2021, 184, 2412–2429.e16. [Google Scholar] [CrossRef]
- Brandizzi, F.; Barlowe, C. Organization of the ER–Golgi Interface for Membrane Traffic Control. Nat. Rev. Mol. Cell Biol. 2013, 14, 382–392. [Google Scholar] [CrossRef]
- González Solís, A.; Berryman, E.; Otegui, M.S. Plant Endosomes as Protein Sorting Hubs. FEBS Lett. 2022, 17, 2288–2304. [Google Scholar] [CrossRef]
- Pérez-Sancho, J.; Tilsner, J.; Samuels, A.L.; Botella, M.A.; Bayer, E.M.; Rosado, A. Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends Cell Biol. 2016, 26, 705–717. [Google Scholar] [CrossRef]
- Cohen, S.; Valm, A.M.; Lippincott-Schwartz, J. Interacting Organelles. Curr. Opin. Cell Biol. 2018, 53, 84–91. [Google Scholar] [CrossRef]
- Shai, N.; Yifrach, E.; Van Roermund, C.W.T.; Cohen, N.; Bibi, C.; Ijlst, L.; Cavellini, L.; Meurisse, J.; Schuster, R.; Zada, L.; et al. Systematic Mapping of Contact Sites Reveals Tethers and a Function for the Peroxisome-Mitochondria Contact. Nat. Commun. 2018, 9, 1761. [Google Scholar] [CrossRef]
- Valm, A.M.; Cohen, S.; Legant, W.R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A.R.; Davidson, M.W.; Betzig, E.; Lippincott-Schwartz, J. Applying Systems-Level Spectral Imaging and Analysis to Reveal the Organelle Interactome. Nature 2017, 546, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Pankratenko, A.V.; Atabekova, A.K.; Morozov, S.Y.; Solovyev, A.G. Membrane Contacts in Plasmodesmata: Structural Components and Their Functions. Biochemistry 2020, 85, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, M. Plant Virus Replication and Movement. Virology 2015, 479–480, 657–671. [Google Scholar] [CrossRef]
- Nicolas, W.J.; Grison, M.S.; Bayer, E.M. Shaping Intercellular Channels of Plasmodesmata: The Structure-to-Function Missing Link. J. Exp. Bot. 2017, 69, 91–103. [Google Scholar] [CrossRef]
- Heinlein, M. Plasmodesmata: Channels for Viruses on the Move. Methods Mol. Biol. 2015, 1217, 25–52. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.P.; Paterlini, A.; Glavier, M.; Bayer, E.M. Intercellular Trafficking via Plasmodesmata: Molecular Layers of Complexity. Cell. Mol. Life Sci. 2021, 78, 799–816. [Google Scholar] [CrossRef]
- Brault, M.L.; Petit, J.D.; Immel, F.; Nicolas, W.J.; Glavier, M.; Brocard, L.; Gaston, A.; Fouché, M.; Hawkins, T.J.; Crowet, J.; et al. Multiple C2 Domains and Transmembrane Region Proteins (MCTPs) Tether Membranes at Plasmodesmata. EMBO Rep. 2019, 20, e47182. [Google Scholar] [CrossRef] [PubMed]
- Tilsner, J.; Nicolas, W.; Rosado, A.; Bayer, E.M. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants. Annu. Rev. Plant Biol. 2016, 67, 337–364. [Google Scholar] [CrossRef]
- Huang, C.; Heinlein, M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol. Biol. 2022, 2457, 23–54. [Google Scholar] [CrossRef]
- Wu, S.-W.; Kumar, R.; Iswanto, A.B.B.; Kim, J.-Y. Callose Balancing at Plasmodesmata. J. Exp. Bot. 2018, 69, 5325–5339. [Google Scholar] [CrossRef]
- Lucas, W.J. Plant Viral Movement Proteins: Agents for Cell-to-Cell Trafficking of Viral Genomes. Virology 2006, 344, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Citovsky, V. Tobacco Mosaic Virus: A Pioneer to Cell–to–Cell Movement. Philos. Trans. R. Soc. London. 1999, 354, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Boyko, V.; Ferralli, J.; Ashby, J.; Schellenbaum, P.; Heinlein, M. Function of Microtubules in Intercellular Transport of Plant Virus RNA. Nat. Cell Biol. 2000, 2, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, M.; Padgett, H.S.; Gens, J.S.; Pickard, B.G.; Casper, S.J.; Epel, B.L.; Beachy, R.N. Changing Patterns of Localization of the Tobacco Mosaic Virus Movement Protein and Replicase to the Endoplasmic Reticulum and Microtubules during Infection. Plant Cell 1998, 10, 1107–1120. [Google Scholar] [CrossRef]
- Sambade, A.; Brandner, K.; Hofmann, C.; Seemanpillai, M.; Mutterer, J.; Heinlein, M. Transport of TMV Movement Protein Particles Associated with the Targeting of RNA to Plasmodesmata. Traffic 2008, 9, 2073–2088. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Wood, N.T.; Roberts, A.G.; Chapman, S.; Boevink, P.; Mackenzie, K.M.; Oparka, K.J. Targeting of TMV Movement Protein to Plasmodesmata Requires the Actin/ER Network: Evidence from FRAP. Traffic 2007, 8, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Z.; Blancaflor, E.B.; Nelson, R.S. The Tobacco Mosaic Virus 126-Kilodalton Protein, a Constituent of the Virus Replication Complex, Alone or within the Complex Aligns with and Traffics along Microfilaments. Plant Physiol. 2005, 138, 1853–1865. [Google Scholar] [CrossRef]
- Amari, K.; Di Donato, M.; Dolja, V.V.; Heinlein, M. Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus. PLoS Pathog. 2014, 10, e1004448. [Google Scholar] [CrossRef]
- Lewis, J.D.; Lazarowitz, S.G. Arabidopsis Synaptotagmin SYTA Regulates Endocytosis and Virus Movement Protein Cell-to-Cell Transport. Proc. Natl. Acad. Sci. USA 2010, 107, 2491–2496. [Google Scholar] [CrossRef]
- Uchiyama, A.; Shimada-Beltran, H.; Levy, A.; Zheng, J.Y.; Javia, P.A.; Lazarowitz, S.G. The Arabidopsis Synaptotagmin SYTA Regulates the Cell-to-Cell Movement of Diverse Plant Viruses. Front. Plant Sci. 2014, 5, 584. [Google Scholar] [CrossRef]
- Levy, A.; Zheng, J.Y.; Lazarowitz, S.G. Synaptotagmin SYTA Forms ER-Plasma Membrane Junctions That Are Recruited to Plasmodesmata for Plant Virus Movement. Curr. Biol. 2015, 25, 2018–2025. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Lazarowitz, S.G.; Citovsky, V. Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein. mBio 2016, 7, e02052-15. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Lazarowitz, S.G.; Citovsky, V. The Plasmodesmal Localization Signal of TMV MP Is Recognized by Plant Synaptotagmin SYTA. mBio 2018, 9, e01314-18. [Google Scholar] [CrossRef]
- Christensen, N.; Tilsner, J.; Bell, K.; Hammann, P.; Parton, R.; Lacomme, C.; Oparka, K. The 5′ Cap of Tobacco Mosaic Virus (TMV) Is Required for Virion Attachment to the Actin/Endoplasmic Reticulum Network during Early Infection. Traffic 2009, 10, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Brill, L.M.; Nunn, R.S.; Kahn, T.W.; Yeager, M.; Beachy, R.N. Recombinant Tobacco Mosaic Virus Movement Protein Is an RNA-Binding, α-Helical Membrane Protein. Proc. Natl. Acad. Sci. USA 2000, 97, 7112–7117. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, M.; Kawakami, S.; Kim, R.W.; Beachy, R.N. Domains of Tobacco Mosaic Virus Movement Protein Essential for Its Membrane Association. J. Gen. Virol. 2006, 87, 2699–2707. [Google Scholar] [CrossRef]
- Peiró, A.; Martínez-Gil, L.; Tamborero, S.; Pallás, V.; Sánchez-Navarro, J.A.; Mingarro, I. The Tobacco Mosaic Virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. J. Virol. 2014, 88, 3016–3026. [Google Scholar] [CrossRef]
- Kawamura-Nagaya, K.; Ishibashi, K.; Huang, Y.-P.; Miyashita, S.; Ishikawa, M. Replication Protein of Tobacco Mosaic Virus Cotranslationally Binds the 5′ Untranslated Region of Genomic RNA to Enable Viral Replication. Proc. Natl. Acad. Sci. USA 2014, 111, E1620-8. [Google Scholar] [CrossRef]
- Morozov, S.Y.; Dolja, V.V.; Atabekov, J.G. Probable Reassortment of Genomic Elements among Elongated RNA-Containing Plant Viruses. J. Mol. Evol. 1989, 29, 52–62. [Google Scholar] [CrossRef]
- Morozov, S.Y.; Solovyev, A.G. Triple Gene Block: Modular Design of a Multifunctional Machine for Plant Virus Movement. J. Gen. Virol. 2003, 84, 1351–1366. [Google Scholar] [CrossRef]
- Morozov, S.Y.; Solovyev, A.G. Did Silencing Suppression Counter-Defensive Strategy Contribute to Origin and Evolution of the Triple Gene Block Coding for Plant Virus Movement Proteins? Front. Plant Sci. 2012, 3, 136. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E.V.; Dolja, V.V. Evolution and Taxonomy of Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 375–430. [Google Scholar] [CrossRef]
- Kalinina, N.O.; Rakitina, D.V.; Solovyev, A.G.; Schiemann, J.; Morozov, S.Y. RNA Helicase Activity of the Plant Virus Movement Proteins Encoded by the First Gene of the Triple Gene Block. Virology 2002, 296, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Zamyatnin, A.A.; Solovyev, A.G.; Savenkov, E.I.; Germundsson, A.; Sandgren, M.; Valkonen, J.P.T.; Morozov, S.Y. Transient Coexpression of Individual Genes Encoded by the Triple Gene Block of Potato Mop-Top Virus Reveals Requirements for TGBp1 Trafficking. Mol. Plant. Microbe. Interact. 2004, 17, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, K.; Li, Z.; Li, Z.; Yang, M.; Jin, X.; Cao, Q.; Wang, X.; Yue, N.; Li, D.; et al. The Barley Stripe Mosaic Virus Γb Protein Promotes Viral Cell-to-Cell Movement by Enhancing ATPase-Mediated Assembly of Ribonucleoprotein Movement Complexes. PLoS Pathog. 2020, 16, e1008709. [Google Scholar] [CrossRef] [PubMed]
- Donald, R.G.; Lawrence, D.M.; Jackson, A.O. The Barley Stripe Mosaic Virus 58-Kilodalton Beta(b) Protein Is a Multifunctional RNA Binding Protein. J. Virol. 1997, 71, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, N.O.; Rakitina, D.A.; Yelina, N.E.; Zamyatnin, A.A.; Stroganova, T.A.; Klinov, D.V.; Prokhorov, V.V.; Ustinova, S.V.; Chernov, B.K.; Schiemann, J.; et al. RNA-Binding Properties of the 63 KDa Protein Encoded by the Triple Gene Block of Poa Semilatent Hordeivirus. J. Gen. Virol. 2001, 82, 2569–2578. [Google Scholar] [CrossRef]
- Bleykasten, C.; Gilmer, D.; Guilley, H.; Richards, K.E.; Jonard, G. Beet Necrotic Yellow Vein Virus 42 KDa Triple Gene Block Protein Binds Nucleic Acid in Vitro. J. Gen. Virol. 1996, 77, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Cowan, G.H.; Lioliopoulou, F.; Ziegler, A.; Torrance, L. Subcellular Localisation, Protein Interactions, and RNA Binding of Potato Mop-Top Virus Triple Gene Block Proteins. Virology 2002, 298, 106–115. [Google Scholar] [CrossRef]
- Bayne, E.H.; Rakitina, D.V.; Morozov, S.Y.; Baulcombe, D.C. Cell-to-Cell Movement of Potato Potexvirus X Is Dependent on Suppression of RNA Silencing. Plant J. 2005, 44, 471–482. [Google Scholar] [CrossRef]
- Lim, H.-S.; Vaira, A.M.; Reinsel, M.D.; Bae, H.; Bailey, B.; Domier, L.L.; Hammond, J. Pathogenicity of Alternanthera Mosaic Virus Is Affected by Determinants in RNA-Dependent RNA Polymerase and by Reduced Efficacy of Silencing Suppression in a Movement-Competent TGB1. J. Gen. Virol. 2010, 91, 277–287. [Google Scholar] [CrossRef]
- Solovyev, A.G.; Savenkov, E.I.; Grdzelishvili, V.Z.; Kalinina, N.O.; Morozov, S.Y.; Schiemann, J.; Atabekov, J.G. Movement of Hordeivirus Hybrids with Exchanges in the Triple Gene Block. Virology 1999, 253, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Cowan, G.H.; Lukhovitskaya, N.I.; Tilsner, J.; Roberts, A.G.; Savenkov, E.I.; Torrance, L. The N-Terminal Domain of PMTV TGB1 Movement Protein Is Required for Nucleolar Localization, Microtubule Association, and Long-Distance Movement. Mol. Plant-Microbe Interact. 2010, 23, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, A.G.; Makarov, V.V. Helical Capsids of Plant Viruses: Architecture with Structural Lability. J. Gen. Virol. 2016, 97, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Atabekov, J.G.; Rodionova, N.P.; Karpova, O.V.; Kozlovsky, S.V.; Poljakov, V.Y. The Movement Protein-Triggered in Situ Conversion of Potato Virus X Virion RNA from a Nontranslatable into a Translatable Form. Virology 2000, 271, 259–263. [Google Scholar] [CrossRef]
- Lim, H.-S.; Bragg, J.N.; Ganesan, U.; Lawrence, D.M.; Yu, J.; Isogai, M.; Hammond, J.; Jackson, A.O. Triple Gene Block Protein Interactions Involved in Movement of Barley Stripe Mosaic Virus. J. Virol. 2008, 82, 4991–5006. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.O.; Lim, H.-S.; Bragg, J.; Ganesan, U.; Lee, M.Y. Hordeivirus Replication, Movement, and Pathogenesis. Annu. Rev. Phytopathol. 2009, 47, 385–422. [Google Scholar] [CrossRef]
- Mitra, R.; Krishnamurthy, K.; Blancaflor, E.; Payton, M.; Nelson, R.S.; Verchot-Lubicz, J. The Potato Virus x TGBp2 Protein Association with the Endoplasmic Reticulum Plays a Role in but Is Not Sufficient for Viral Cell-to-Cell Movement. Virology 2003, 312, 35–48. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Heppler, M.; Mitra, R.; Blancaflor, E.; Payton, M.; Nelson, R.S.; Verchot-Lubicz, J. The Potato Virus X TGBp3 Protein Associates with the ER Network for Virus Cell-to-Cell Movement. Virology 2003, 309, 135–151. [Google Scholar] [CrossRef]
- Zamyatnin, A.A., Jr.; Solovyev, A.G.; Bozhkov, P.V.; Valkonen, J.P.T.; Morozov, S.Y.; Savenkov, E.I. Assessment of the Integral Membrane Protein Topology in Living Cells. Plant J. 2006, 46, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-T.; Chou, Y.-L.; Tseng, Y.-H.; Lin, Y.-H.; Lin, T.-M.; Lin, N.-S.; Hsu, Y.-H.; Chang, B.-Y. Topological Properties of the Triple Gene Block Protein 2 of Bamboo Mosaic Virus. Virology 2008, 379, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, J.; Chai, M.; Wang, J.; Li, D.; Wang, A.; Cheng, X. The Potato Virus X TGBp2 Protein Plays Dual Functional Roles. J. Virol. 2019, 93, e01635-18. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.; Solovyev, A. Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes. AIMS Microbiol. 2020, 6, 305–329. [Google Scholar] [CrossRef] [PubMed]
- Verchot-Lubicz, J.; Torrance, L.; Solovyev, A.G.; Morozov, S.Y.; Jackson, A.O.; Gilmer, D. Varied Movement Strategies Employed by Triple Gene Block-Encoding Viruses. Mol. Plant-Microbe Interact. 2010, 23, 1231–1247. [Google Scholar] [CrossRef] [PubMed]
- Tilsner, J.; Cowan, G.H.; Roberts, A.G.; Chapman, S.N.; Ziegler, A.; Savenkov, E.; Torrance, L. Plasmodesmal Targeting and Intercellular Movement of Potato Mop-Top Pomovirus Is Mediated by a Membrane Anchored Tyrosine-Based Motif on the Lumenal Side of the Endoplasmic Reticulum and the C-Terminal Transmembrane Domain in the TGB3 Movement Protein. Virology 2010, 402, 41–51. [Google Scholar] [CrossRef]
- Shemyakina, E.A.; Erokhina, T.N.; Gorshkova, E.N.; Schiemann, J.; Solovyev, A.G.; Morozov, S.Y. Formation of Protein Complexes Containing Plant Virus Movement Protein TGBp3 Is Necessary for Its Intracellular Trafficking. Biochimie 2011, 93, 742–748. [Google Scholar] [CrossRef]
- Schepetilnikov, M.V.; Solovyev, A.G.; Gorshkova, E.N.; Schiemann, J.; Prokhnevsky, A.I.; Dolja, V.V.; Morozov, S.Y. Intracellular Targeting of a Hordeiviral Membrane-Spanning Movement Protein: Sequence Requirements and Involvement of an Unconventional Mechanism. J. Virol. 2008, 82, 1284–1293. [Google Scholar] [CrossRef]
- Lim, H.-S.; Bragg, J.N.; Ganesan, U.; Ruzin, S.; Schichnes, D.; Lee, M.Y.; Vaira, A.M.; Ryu, K.H.; Hammond, J.; Jackson, A.O. Subcellular Localization of the Barley Stripe Mosaic Virus Triple Gene Block Proteins. J. Virol. 2009, 83, 9432–9448. [Google Scholar] [CrossRef]
- Tilsner, J.; Linnik, O.; Louveaux, M.; Roberts, I.M.; Chapman, S.N.; Oparka, K.J. Replication and Trafficking of a Plant Virus Are Coupled at the Entrances of Plasmodesmata. J. Cell Biol. 2013, 201, 981–995. [Google Scholar] [CrossRef]
- Howard, A.R.; Heppler, M.L.; Ju, H.-J.; Krishnamurthy, K.; Payton, M.E.; Verchot-Lubicz, J. Potato Virus X TGBp1 Induces Plasmodesmata Gating and Moves between Cells in Several Host Species Whereas CP Moves Only in N. Benthamiana Leaves. Virology 2004, 328, 185–197. [Google Scholar] [CrossRef]
- Angell, S.M.; Davies, C.; Baulcombe, D.C. Cell-to-Cell Movement of Potato Virus X Is Associated with a Change in the Size-Exclusion Limit of Plasmodesmata in Trichome Cells of Nicotiana Clevelandii. Virology 1996, 216, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Lough, T.J.; Shash, K.; Xoconostle-Cázares, B.; Hofstra, K.R.; Beck, D.L.; Balmori, E.; Forster, R.L.S.; Lucas, W.J. Molecular Dissection of the Mechanism by Which Potexvirus Triple Gene Block Proteins Mediate Cell-to-Cell Transport of Infectious RNA. Mol. Plant-Microbe Interact. 1998, 11, 801–814. [Google Scholar] [CrossRef]
- Tamai, A.; Meshi, T. Cell-to-Cell Movement of Potato Virus X: The Role of P12 and P8 Encoded by the Second and Third Open Reading Frames of the Triple Gene Block. Mol. Plant-Microbe Interact. 2001, 14, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Fridborg, I.; Grainger, J.; Page, A.; Coleman, M.; Findlay, K.; Angell, S. TIP, a Novel Host Factor Linking Callose Degradation with the Cell-to-Cell Movement of Potato Virus X. Mol. Plant. Microbe. Interact. 2003, 16, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Shiraishi, T.; Hagiwara-Komoda, Y.; Komatsu, K.; Maejima, K.; Okano, Y.; Fujimoto, Y.; Yusa, A.; Yamaji, Y.; Namba, S. The Plant Noncanonical Antiviral Resistance Protein JAX1 Inhibits Potexviral Replication by Targeting the Viral RNA-Dependent RNA Polymerase. J. Virol. 2019, 93, e01506-18. [Google Scholar] [CrossRef]
- Komatsu, K.; Sasaki, N.; Yoshida, T.; Suzuki, K.; Masujima, Y.; Hashimoto, M.; Watanabe, S.; Tochio, N.; Kigawa, T.; Yamaji, Y.; et al. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J. Virol. 2021, 95, e0190620. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, X. Intercellular Movement of Plant RNA Viruses: Targeting Replication Complexes to the Plasmodesma for Both Accuracy and Efficiency. Traffic 2020, 21, 725–736. [Google Scholar] [CrossRef]
- Tilsner, J.; Linnik, O.; Wright, K.M.; Bell, K.; Roberts, A.G.; Lacomme, C.; Santa Cruz, S.; Oparka, K.J. The TGB1 Movement Protein of Potato Virus X Reorganizes Actin and Endomembranes into the X-Body, a Viral Replication Factory. Plant Physiol. 2012, 158, 1359–1370. [Google Scholar] [CrossRef]
- Linnik, O.; Liesche, J.; Tilsner, J.; Oparka, K.J. Unraveling the Structure of Viral Replication Complexes at Super-Resolution. Front. Plant Sci. 2013, 4, 6. [Google Scholar] [CrossRef]
- Ju, H.-J.; Samuels, T.D.; Wang, Y.-S.; Blancaflor, E.; Payton, M.; Mitra, R.; Krishnamurthy, K.; Nelson, R.S.; Verchot-Lubicz, J. The Potato Virus X TGBp2 Movement Protein Associates with Endoplasmic Reticulum-Derived Vesicles during Virus Infection. Plant Physiol. 2005, 138, 1877–1895. [Google Scholar] [CrossRef]
- Samuels, T.D.; Ju, H.-J.; Ye, C.-M.; Motes, C.M.; Blancaflor, E.B.; Verchot-Lubicz, J. Subcellular Targeting and Interactions among the Potato Virus X TGB Proteins. Virology 2007, 367, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Harries, P.; Park, J.-W.; Sasaki, N.; Ballard, K.D.; Maule, A.J.; Nelson, R.S. Differing Requirements for Actin and Myosin by Plant Viruses for Sustained Intercellular Movement. Proc. Natl. Acad. Sci. USA 2009, 106, 17594–17599. [Google Scholar] [CrossRef] [PubMed]
- Waigmann, E.; Ueki, S.; Trutnyeva, K.; Citovsky, V. The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. CRC. Crit. Rev. Plant Sci. 2004, 23, 195–250. [Google Scholar] [CrossRef]
- Melzer, M.J.; Sether, D.M.; Borth, W.B.; Hu, J.S. Characterization of a Virus Infecting Citrus Volkameriana with Citrus Leprosis-like Symptoms. Phytopathology 2012, 102, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.Y.; Solovyev, A.G. Phylogenetic Relationship of Some “Accessory” Helicases of Plant Positive-Stranded RNA Viruses: Toward Understanding the Evolution of Triple Gene Block. Front. Microbiol. 2015, 6, 508. [Google Scholar] [CrossRef]
- Lazareva, E.A.; Lezzhov, A.A.; Komarova, T.V.; Morozov, S.Y.; Heinlein, M.; Solovyev, A.G. A Novel Block of Plant Virus Movement Genes. Mol. Plant Pathol. 2017, 18, 611–624. [Google Scholar] [CrossRef]
- Solovyev, A.G.; Morozov, S.Y. Non-Replicative Integral Membrane Proteins Encoded by Plant Alpha-like Viruses: Emergence of Diverse Orphan ORFs and Movement Protein Genes. Front. Plant Sci. 2017, 8, 1820. [Google Scholar] [CrossRef]
- Lazareva, E.A.; Lezzhov, A.A.; Golyshev, S.A.; Morozov, S.Y.; Heinlein, M.; Solovyev, A.G. Similarities in Intracellular Transport of Plant Viral Movement Proteins BMB2 and TGB3. J. Gen. Virol. 2017, 98, 2379–2391. [Google Scholar] [CrossRef]
- Hawes, C.; Kiviniemi, P.; Kriechbaumer, V. The Endoplasmic Reticulum: A Dynamic and Well-Connected Organelle. J. Integr. Plant Biol. 2015, 57, 50–62. [Google Scholar] [CrossRef]
- Kriechbaumer, V.; Brandizzi, F. The Plant Endoplasmic Reticulum: An Organized Chaos of Tubules and Sheets with Multiple Functions. J. Microsc. 2020, 280, 122–133. [Google Scholar] [CrossRef]
- Hu, J.; Shibata, Y.; Voss, C.; Shemesh, T.; Li, Z.; Coughlin, M.; Kozlov, M.M.; Rapoport, T.; Prinz, W. a Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules. Science 2008, 319, 1247–1250. [Google Scholar] [CrossRef]
- Sparkes, I.; Tolley, N.; Aller, I.; Svozil, J.; Osterrieder, A.; Botchway, S.; Mueller, C.; Frigerio, L.; Hawes, C. Five Arabidopsis Reticulon Isoforms Share Endoplasmic Reticulum Location, Topology, and Membrane-Shaping Properties. Plant Cell 2010, 22, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Voss, C.; Rist, J.M.; Hu, J.; Rapoport, T.A.; Prinz, W.A.; Voeltz, G.K. The Reticulon and DP1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum. J. Biol. Chem. 2008, 283, 18892–18904. [Google Scholar] [CrossRef] [PubMed]
- Lazareva, E.A.; Lezzhov, A.A.; Chergintsev, D.A.; Golyshev, S.A.; Dolja, V.V.; Morozov, S.Y.; Heinlein, M.; Solovyev, A.G. Reticulon-like Properties of a Plant Virus-Encoded Movement Protein. New Phytol. 2021, 229, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Ahlquist, P. Role of Host Reticulon Proteins in Rearranging Membranes for Positive-Strand RNA Virus Replication. Curr. Opin. Microbiol. 2012, 15, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Kriechbaumer, V.; Botchway, S.W.; Slade, S.E.; Knox, K.; Frigerio, L.; Oparka, K.; Hawes, C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. Plant Physiol. 2015, 169, 1933–1945. [Google Scholar] [CrossRef]
- Knox, K.; Wang, P.; Kriechbaumer, V.; Tilsner, J.; Frigerio, L.; Sparkes, I.; Hawes, C.; Oparka, K. Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. Plant Physiol. 2015, 168, 1563–1572. [Google Scholar] [CrossRef]
- Revers, F.; García, J.A. Molecular Biology of Potyviruses. Adv. Virus Res. 2015, 92, 101–199. [Google Scholar] [CrossRef]
- Vijayapalani, P.; Maeshima, M.; Nagasaki-Takekuchi, N.; Miller, W.A. Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathog. 2012, 8, e1002639. [Google Scholar] [CrossRef]
- Chung, B.Y.-W.; Miller, W.A.; Atkins, J.F.; Firth, A.E. An Overlapping Essential Gene in the Potyviridae. Proc. Natl. Acad. Sci. USA 2008, 105, 5897–5902. [Google Scholar] [CrossRef]
- Seo, J.-K.; Vo Phan, M.S.; Kang, S.-H.; Choi, H.-S.; Kim, K.-H. The Charged Residues in the Surface-Exposed C-Terminus of the Soybean Mosaic Virus Coat Protein Are Critical for Cell-to-Cell Movement. Virology 2013, 446, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Dolja, V.V.; Haldeman, R.; Robertson, N.L.; Dougherty, W.G.; Carrington, J.C. Distinct Functions of Capsid Protein in Assembly and Movement of Tobacco Etch Potyvirus in Plants. EMBO J. 1994, 13, 1482–1491. [Google Scholar] [CrossRef]
- Dolja, V.V.; Haldeman-Cahill, R.; Montgomery, A.E.; Vandenbosch, K.A.; Carrington, J.C. Capsid Protein Determinants Involved in Cell-to-Cell and Long Distance Movement of Tobacco Etch Potyvirus. Virology 1995, 206, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.M.; Wang, D.; Findlay, K.; Maule, A.J. Ultrastructural and Temporal Observations of the Potyvirus Cylindrical Inclusions (CIs) Show That the CI Protein Acts Transiently in Aiding Virus Movement. Virology 1998, 245, 173–181. [Google Scholar] [CrossRef]
- Rodríguez-Cerezo, E.; Findlay, K.; Shaw, J.G.; Lomonossoff, G.P.; Qiu, S.G.; Linstead, P.; Shanks, M.; Risco, C. The Coat and Cylindrical Inclusion Proteins of a Potyvirus Are Associated with Connections between Plant Cells. Virology 1997, 236, 296–306. [Google Scholar] [CrossRef]
- Wang, A. Cell-to-Cell Movement of Plant Viruses via Plasmodesmata: A Current Perspective on Potyviruses. Curr. Opin. Virol. 2021, 48, 10–16. [Google Scholar] [CrossRef]
- Taliansky, M.; Torrance, L.; Kalinina, N.O. Role of Plant Virus Movement Proteins. Methods Mol. Biol. 2008, 451, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Carrington, J.C.; Jensen, P.E.; Schaad, M.C. Genetic Evidence for an Essential Role for Potyvirus CI Protein in Cell-to-Cell Movement. Plant J. 1998, 14, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Guo, H.S.; Sáenz, P.; Simón-Buela, L.; Gómez de Cedrón, M.; García, J.A. The Motif V of Plum Pox Potyvirus CI RNA Helicase Is Involved in NTP Hydrolysis and Is Essential for Virus RNA Replication. Nucleic Acids Res. 1997, 25, 4474–4480. [Google Scholar] [CrossRef]
- Gómez de Cedrón, M.; Osaba, L.; López, L.; García, J.A. Genetic Analysis of the Function of the Plum Pox Virus CI RNA Helicase in Virus Movement. Virus Res. 2006, 116, 136–145. [Google Scholar] [CrossRef]
- López, L.; Urzainqui, A.; Domínguez, E.; García, J.A. Identification of an N-Terminal Domain of the Plum Pox Potyvirus CI RNA Helicase Involved in Self-Interaction in a Yeast Two-Hybrid System. J. Gen. Virol. 2001, 82, 677–686. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, C.; Hong, J.; Xiong, R.; Kasschau, K.D.; Zhou, X.; Carrington, J.C.; Wang, A. Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathog. 2010, 6, e1000962. [Google Scholar] [CrossRef] [PubMed]
- Yambao, M.L.M.; Masuta, C.; Nakahara, K.; Uyeda, I. The Central and C-Terminal Domains of VPg of Clover Yellow Vein Virus Are Important for VPg–HCPro and VPg–VPg Interactions. J. Gen. Virol. 2003, 84, 2861–2869. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Rajamäki, M.-L.; Saarma, M.; Valkonen, J.P.T. Towards a Protein Interaction Map of Potyviruses: Protein Interaction Matrixes of Two Potyviruses Based on the Yeast Two-Hybrid System. J. Gen. Virol. 2001, 82, 935–939. [Google Scholar] [CrossRef]
- Dunoyer, P.; Thomas, C.; Harrison, S.; Revers, F.; Maule, A. A Cysteine-Rich Plant Protein Potentiates Potyvirus Movement through an Interaction with the Virus Genome-Linked Protein VPg. J. Virol. 2004, 78, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Torrance, L.; Andreev, I.A.; Gabrenaite-Verhovskaya, R.; Cowan, G.; Mäkinen, K.; Taliansky, M.E. An Unusual Structure at One End of Potato Potyvirus Particles. J. Mol. Biol. 2006, 357, 1–8. [Google Scholar] [CrossRef]
- Gabrenaite-Verkhovskaya, R.; Andreev, I.A.; Kalinina, N.O.; Torrance, L.; Taliansky, M.E.; Mäkinen, K. Cylindrical Inclusion Protein of Potato Virus A Is Associated with a Subpopulation of Particles Isolated from Infected Plants. J. Gen. Virol. 2008, 89, 829–838. [Google Scholar] [CrossRef]
- Rojas, M.R.; Zerbini, F.M.; Allison, R.F.; Gilbertson, R.L.; Lucas, W.J. Capsid Protein and Helper Component-Proteinase Function as Potyvirus Cell-to-Cell Movement Proteins. Virology 1997, 237, 283–295. [Google Scholar] [CrossRef]
- Salonen, A.; Ahola, T.; Kääriäinen, L. Viral RNA Replication in Association with Cellular Membranes. Curr. Top. Microbiol. Immunol. 2004, 285, 139–173. [Google Scholar] [CrossRef]
- Gushchin, V.A.; Solovyev, A.G.; Erokhina, T.N.; Morozov, S.Y.; Agranovsky, A.A. Beet Yellows Virus Replicase and Replicative Compartments: Parallels with Other RNA Viruses. Front. Microbiol. 2013, 4, 38. [Google Scholar] [CrossRef]
- Schaad, M.C.; Jensen, P.E.; Carrington, J.C. Formation of Plant RNA Virus Replication Complexes on Membranes: Role of an Endoplasmic Reticulum-Targeted Viral Protein. EMBO J. 1997, 16, 4049–4059. [Google Scholar] [CrossRef]
- Wan, J.; Basu, K.; Mui, J.; Vali, H.; Zheng, H.; Laliberté, J.-F. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles. J. Virol. 2015, 89, 12441–12456. [Google Scholar] [CrossRef]
- Cotton, S.; Grangeon, R.; Thivierge, K.; Mathieu, I.; Ide, C.; Wei, T.; Wang, A.; Laliberté, J.-F. Turnip Mosaic Virus RNA Replication Complex Vesicles Are Mobile, Align with Microfilaments, and Are Each Derived from a Single Viral Genome. J. Virol. 2009, 83, 10460–10471. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Shi, Y.; Dai, Z.; Wang, A. The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, R.; Jiang, J.; Laliberté, J.-F. Host Endomembrane Recruitment for Plant RNA Virus Replication. Curr. Opin. Virol. 2012, 2, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, R.; Agbeci, M.; Chen, J.; Grondin, G.; Zheng, H.; Laliberté, J.-F. Impact on the Endoplasmic Reticulum and Golgi Apparatus of Turnip Mosaic Virus Infection. J. Virol. 2012, 86, 9255–9265. [Google Scholar] [CrossRef]
- Wei, T.; Wang, A. Biogenesis of Cytoplasmic Membranous Vesicles for Plant Potyvirus Replication Occurs at Endoplasmic Reticulum Exit Sites in a COPI- and COPII-Dependent Manner. J. Virol. 2008, 82, 12252–12264. [Google Scholar] [CrossRef]
- Lerich, A.; Langhans, M.; Sturm, S.; Robinson, D.G. Is the 6 KDa Tobacco Etch Viral Protein a Bona Fide ERES Marker? J. Exp. Bot. 2011, 62, 5013–5023. [Google Scholar] [CrossRef]
- Jiang, J.; Patarroyo, C.; Garcia Cabanillas, D.; Zheng, H.; Laliberté, J.-F. The Vesicle-Forming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection. J. Virol. 2015, 89, 6695–6710. [Google Scholar] [CrossRef]
- Agbeci, M.; Grangeon, R.; Nelson, R.S.; Zheng, H.; Laliberté, J.-F. Contribution of Host Intracellular Transport Machineries to Intercellular Movement of Turnip Mosaic Virus. PLoS Pathog. 2013, 9, e1003683. [Google Scholar] [CrossRef]
- Peremyslov, V.V.; Klocko, A.L.; Fowler, J.E.; Dolja, V.V. Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-Actin. Front. Plant Sci. 2012, 3, 184. [Google Scholar] [CrossRef] [Green Version]
- Grangeon, R.; Jiang, J.; Wan, J.; Agbeci, M.; Zheng, H.; Laliberté, J.-F. 6K2-Induced Vesicles Can Move Cell to Cell during Turnip Mosaic Virus Infection. Front. Microbiol. 2013, 4, 351. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Watanabe, Y.; Beachy, R.N. Tobacco Mosaic Virus Infection Spreads Cell to Cell as Intact Replication Complexes. Proc. Natl. Acad. Sci. USA 2004, 101, 6291–6296. [Google Scholar] [CrossRef]
- Cabanillas, D.G.; Jiang, J.; Movahed, N.; Germain, H.; Yamaji, Y.; Zheng, H.; Laliberté, J.-F. Turnip Mosaic Virus Uses the SNARE Protein VTI11 in an Unconventional Route for Replication Vesicle Trafficking. Plant Cell 2018, 30, 2594–2615. [Google Scholar] [CrossRef] [PubMed]
- Movahed, N.; Sun, J.; Vali, H.; Laliberté, J.-F.; Zheng, H. A Host ER Fusogen Is Recruited by Turnip Mosaic Virus for Maturation of Viral Replication Vesicles. Plant Physiol. 2019, 179, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Uemura, T. RAB GTPases and SNAREs at the Trans-Golgi Network in Plants. J. Plant Res. 2022, 135, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jia, Z.; Ding, K.; Zheng, H.; Lu, Y.; Lin, L.; Peng, J.; Rao, S.; Wang, A.; Chen, J.; et al. Turnip Mosaic Virus Co-Opts the Vacuolar Sorting Receptor VSR4 to Promote Viral Genome Replication in Plants by Targeting Viral Replication Vesicles to the Endosome. PLOS Pathog. 2022, 18, e1010257. [Google Scholar] [CrossRef]
- Agaoua, A.; Rittener, V.; Troadec, C.; Desbiez, C.; Bendahmane, A.; Moquet, F.; Dogimont, C. A Single Substitution in Vacuolar Protein Sorting 4 Is Responsible for Resistance to Watermelon Mosaic Virus in Melon. J. Exp. Bot. 2022, 73, 4008–4021. [Google Scholar] [CrossRef]
- Movahed, N.; Patarroyo, C.; Sun, J.; Vali, H.; Laliberté, J.-F.; Zheng, H. Cylindrical Inclusion Protein of Turnip Mosaic Virus Serves as a Docking Point for the Intercellular Movement of Viral Replication Vesicles. Plant Physiol. 2017, 175, 1732–1744. [Google Scholar] [CrossRef]
- Chin, A.; Lécuyer, E. RNA Localization: Making Its Way to the Center Stage. Biochim. Biophys. Acta—Gen. Subj. 2017, 1861, 2956–2970. [Google Scholar] [CrossRef] [PubMed]
- Zappulo, A.; van den Bruck, D.; Ciolli Mattioli, C.; Franke, V.; Imami, K.; McShane, E.; Moreno-Estelles, M.; Calviello, L.; Filipchyk, A.; Peguero-Sanchez, E.; et al. RNA Localization Is a Key Determinant of Neurite-Enriched Proteome. Nat. Commun. 2017, 8, 583. [Google Scholar] [CrossRef] [Green Version]
- Haag, C.; Steuten, B.; Feldbrügge, M. Membrane-Coupled MRNA Trafficking in Fungi. Annu. Rev. Microbiol. 2015, 69, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-L.; Tian, L.; Washida, H.; Fukuda, M.; Kumamaru, T.; Okita, T.W. The Rice Storage Protein MRNAs as a Model System for RNA Localization in Higher Plants. Plant Sci. 2019, 284, 203–211. [Google Scholar] [CrossRef]
- Tian, L.; Chou, H.-L.; Zhang, L.; Hwang, S.-K.; Starkenburg, S.R.; Doroshenk, K.A.; Kumamaru, T.; Okita, T.W. RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine MRNA Localization in Rice Endosperm Cells. Plant Cell 2018, 30, 2529–2552. [Google Scholar] [CrossRef]
- Tian, L.; Chou, H.-L.; Fukuda, M.; Kumamaru, T.; Okita, T.W. MRNA Localization in Plant Cells. Plant Physiol. 2020, 182, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-B.; Wang, C.; Muench, D.G.; Ozawa, K.; Franceschi, V.R.; Wu, Y.; Okita, T.W. Messenger RNA Targeting of Rice Seed Storage Proteins to Specific ER Subdomains. Nature 2000, 407, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Ishiyama, K.; Choi, S.-B.; Wang, C.; Singh, S.; Kawai, N.; Franceschi, V.R.; Okita, T.W. The Transport of Prolamine RNAs to Prolamine Protein Bodies in Living Rice Endosperm Cells. Plant Cell 2003, 15, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Doroshenk, K.A.; Zhang, L.; Fukuda, M.; Washida, H.; Kumamaru, T.; Okita, T. Zipcode RNA-Binding Proteins and Membrane Trafficking Proteins Cooperate to Transport Glutelin MRNAs in Rice Endosperm. Plant Cell 2020, 32, 2566–2581. [Google Scholar] [CrossRef]
- Müntjes, K.; Devan, S.K.; Reichert, A.S.; Feldbrügge, M. Linking Transport and Translation of MRNAs with Endosomes and Mitochondria. EMBO Rep. 2021, 22, e52445. [Google Scholar] [CrossRef]
- Olgeiser, L.; Haag, C.; Boerner, S.; Ule, J.; Busch, A.; Koepke, J.; König, J.; Feldbrügge, M.; Zarnack, K. The Key Protein of Endosomal MRNP Transport Rrm4 Binds Translational Landmark Sites of Cargo MRNAs. EMBO Rep. 2019, 20, e46588. [Google Scholar] [CrossRef]
- Pohlmann, T.; Baumann, S.; Haag, C.; Albrecht, M.; Feldbrügge, M. A FYVE Zinc Finger Domain Protein Specifically Links MRNA Transport to Endosome Trafficking. Elife 2015, 4, e06041. [Google Scholar] [CrossRef]
- Baumann, S.; Pohlmann, T.; Jungbluth, M.; Brachmann, A.; Feldbrügge, M. Kinesin-3 and Dynein Mediate Microtubule-Dependent Co-Transport of MRNPs and Endosomes. J. Cell Sci. 2012, 125, 2740–2752. [Google Scholar] [CrossRef]
- Baumann, S.; König, J.; Koepke, J.; Feldbrügge, M. Endosomal Transport of Septin mRNA and Protein Indicates Local Translation on Endosomes and Is Required for Correct Septin Filamentation. EMBO Rep. 2014, 15, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Ashwin, P.; Roger, Y.; Steinberg, G. Early Endosome Motility Spatially Organizes Polysome Distribution. J. Cell Biol. 2014, 204, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Smith, D.S.; Perrone-Bizzozero, N.; Twiss, J.L. Axonal MRNA Transport and Translation at a Glance. J. Cell Sci. 2018, 131, jcs196808. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, J.; Ji, S.-J. Axonal MRNA Localization and Translation: Local Events with Broad Roles. Cell. Mol. Life Sci. 2021, 78, 7379–7395. [Google Scholar] [CrossRef]
- Cioni, J.-M.; Lin, J.Q.; Holtermann, A.V.; Koppers, M.; Jakobs, M.A.H.; Azizi, A.; Turner-Bridger, B.; Shigeoka, T.; Franze, K.; Harris, W.A.; et al. Late Endosomes Act as MRNA Translation Platforms and Sustain Mitochondria in Axons. Cell 2019, 176, 56–72.e15. [Google Scholar] [CrossRef]
- Bassell, G.J.; Zhang, H.; Byrd, A.L.; Femino, A.M.; Singer, R.H.; Taneja, K.L.; Lifshitz, L.M.; Herman, I.M.; Kosik, K.S. Sorting of β-Actin MRNA and Protein to Neurites and Growth Cones in Culture. J. Neurosci. 1998, 18, 251–265. [Google Scholar] [CrossRef]
- Agrawal, M.; Welshhans, K. Local Translation Across Neural Development: A Focus on Radial Glial Cells, Axons, and Synaptogenesis. Front. Mol. Neurosci. 2021, 14, 717170. [Google Scholar] [CrossRef]
- Zhang, H.L.; Eom, T.; Oleynikov, Y.; Shenoy, S.M.; Liebelt, D.A.; Dictenberg, J.B.; Singer, R.H.; Bassell, G.J. Neurotrophin-Induced Transport of a β-Actin MRNP Complex Increases β-Actin Levels and Stimulates Growth Cone Motility. Neuron 2001, 31, 261–275. [Google Scholar] [CrossRef]
- Donnelly, C.J.; Park, M.; Spillane, M.; Yoo, S.; Pacheco, A.; Gomes, C.; Vuppalanchi, D.; McDonald, M.; Kim, H.H.; Merianda, T.T.; et al. Axonally Synthesized -Actin and GAP-43 Proteins Support Distinct Modes of Axonal Growth. J. Neurosci. 2013, 33, 3311–3322. [Google Scholar] [CrossRef] [Green Version]
- Quentin, D.; Schuhmacher, J.; Klink, B.; Lauer, J.; Shaikh, T.; Huis in t’t Veld, P.; Welp, L.; Urlaub, H.; Zerial, M.; Raunser, S. Structure of the Human FERRY Rab5 Effector Complex. bioRxiv 2021. [Google Scholar] [CrossRef]
- Navarro, J.A.; Pallás, V. An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. Front. Plant Sci. 2017, 8, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovyev, A.G.; Atabekova, A.K.; Lezzhov, A.A.; Solovieva, A.D.; Chergintsev, D.A.; Morozov, S.Y. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. Plants 2022, 11, 2403. https://doi.org/10.3390/plants11182403
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. Plants. 2022; 11(18):2403. https://doi.org/10.3390/plants11182403
Chicago/Turabian StyleSolovyev, Andrey G., Anastasia K. Atabekova, Alexander A. Lezzhov, Anna D. Solovieva, Denis A. Chergintsev, and Sergey Y. Morozov. 2022. "Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses" Plants 11, no. 18: 2403. https://doi.org/10.3390/plants11182403
APA StyleSolovyev, A. G., Atabekova, A. K., Lezzhov, A. A., Solovieva, A. D., Chergintsev, D. A., & Morozov, S. Y. (2022). Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. Plants, 11(18), 2403. https://doi.org/10.3390/plants11182403