Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Analysis
2.2. Calculation of N Balance
2.3. Assessment of NUE
2.4. Estimation of Fertilizer N Losses
2.4.1. Global Warming Potential
2.4.2. Acidification Potential
2.4.3. Water Pollution Induced by N Surface Runoff and Leaching
3. Results and Discussion
3.1. Spatial and Temporal Variations in N Balance
3.2. Integrated Analysis of the Fate of N Fertilizers
3.3. Environmental Impacts of N Losses
3.4. Correlations among N Balance, Crop Yield and N Fertilizer Input
4. Uncertainties and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2021, 806, 150718. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Commission on Population and Development, Fifty-Fourth Session. Available online: https://www.un.org/development/desa/pd/events/CPD54 (accessed on 24 June 2022).
- Chen, X.P.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environ-mental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Shi, Y.; Yu, Z. Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Sci. Rep. 2020, 10, 20310. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC), 2004–2018. Available online: http://data.stats.gov.cn/ (accessed on 15 April 2021).
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. 100 years of ammonia synthesis: How a single patent changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- He, P.; Xu, X.P.; Zhou, W.; Smith, W.; He, W.; Grant, B.; Ding, W.C.; Qiu, S.J.; Zhao, S.C. Ensuring future agricultural sustainability in China utilizing an observationally validated nutrient recommendation approach. Eur. J. Agron. 2022, 132, 126409. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Hoogenboom, G.; Ammar, K.A.; Ahmed, M.; Feike, T.; Elnashar, A.; Liu, B.; Ding, Z.L.; Asseng, S. Mini-mizing trade-offs between wheat yield and resource-use efficiency in the Nile Delta—A multi-model analysis. Field Crops Res. 2022, 287, 108638. [Google Scholar] [CrossRef]
- Du, Y.; Niu, W.; Zhang, Q.; Cui, B.; Zhang, Z.; Wang, Z.; Sun, J. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water- and nitrogen-use efficiencies in China. Field Crop. Res. 2021, 265, 108105. [Google Scholar] [CrossRef]
- FAOSTAT. Statistics Division of the Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/faostat/en/#home (accessed on 28 June 2022).
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable devel-opment. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.H.; Shi, Y.L.; Groffman, P.M.; Schlesinger, W.H.; Zhu, Y.G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl. Acad. Sci. USA 2013, 110, 2052–2057. [Google Scholar] [CrossRef]
- He, W.T.; Jiang, R.; He, P.; Yang, J.Y.; Zhou, W.; Ma, J.C.; Liu, Y.X. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014. Agric. Syst. 2018, 167, 125–135. [Google Scholar] [CrossRef]
- Liu, Y.X.; Heuvelink, G.B.M.; Bai, Z.G.; He, P.; Xu, X.P.; Ma, J.C.; Masiliūnas, D. Space-time statistical analysis and modelling of nitrogen use efficiency indicators at provincial scale in China. Eur. J. Agron. 2020, 115, 126032. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Transations R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, L.; Kroeze, C.; Beusen, A.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 2010, 24, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Chen, L.; Zhai, L.; Liu, H.; Wang, K.; Jiao, C.; Shen, Z. National assessment of nitrogen fertilizers fate and related environmental impacts of multiple pathways in China. J. Clean. Prod. 2020, 277, 123519. [Google Scholar] [CrossRef]
- Chang, J.Y.; Song, M.Y.; Yu, X.M.; Bai, J.H.; Jia, J.X.; Liu, M.D. Ecological and environmental impact of rice production in Shenyang, China. J. Agro-Environ. Sci. 2018, 37, 1793–1801. (In Chinese) [Google Scholar]
- Sheldrick, W.F.; Syers, J.K.; Lingard, J. Soil nutrient audits for China to estimate nutrient balances and output/input rela-tionships. Agric. Ecosyst. Environ. 2003, 94, 341–354. [Google Scholar] [CrossRef]
- Li, S.T.; Jin, J.Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Sci. Agric. Sin. 2011, 44, 4207–4229. (In Chinese) [Google Scholar]
- Wang, X.L.; Feng, A.P.; Wang, Q.; Wu, C.Q.; Liu, Z.; Ma, Z.S.; Wei, X.F. Spatial variability of the nutrient balance and related NPSP risk analysis for agro-ecosystems in China in 2010. Agric. Ecosyst. Environ. 2014, 193, 42–52. [Google Scholar] [CrossRef]
- Gu, B.J.; Ju, X.T.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef] [PubMed]
- China National Knowledge Infrastructure (CNKI). China Economic and Social Big Data Research Platform. Available online: https://data.cnki.net/ (accessed on 1 August 2020).
- Zhen, W.; Qin, Q.; Kuang, Y.; Huang, N. Investigating low-carbon crop production in Guangdong Province, China (1993–2013): A decoupling and decomposition analysis. J. Clean. Prod. 2017, 146, 63–70. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Environmental Indicators for Agriculture: Methods and Results; OECD: Paris, France, 2001. [Google Scholar]
- Chen, M.P.; Sun, F.; Shindo, J. China’s agricultural nitrogen flows in 2011: Environmental assessment and management sce-narios. Resour. Conserv. Recycl. 2016, 111, 10–27. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 87. [Google Scholar]
- Cui, X.Q.; Zhou, F.; Ciais, P.; Davidson, E.A.; Tubiello, F.N.; Niu, X.Y.; Ju, X.T.; Canadell, J.G.; Bouwman, A.F.; Jackson, R.B.; et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2021, 2, 886–893. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global anthropogenic phosphorus loads to fresh water and associated grey water footprints and water pollution levels: A high-resolution global study. Water Resour. Res. 2017, 54, 345–358. [Google Scholar] [CrossRef]
- Hou, Y.P.; Han, L.G.; Kong, L.L.; Yin, C.X.; Qin, Y.B.; Li, Q.; Xie, J.G. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. Plant Nutr. Fert. Sci. 2015, 21, 836–845. (In Chinese) [Google Scholar]
- Wu, L.; Zhang, W.F.; Chen, X.P.; Cui, Z.L.; Fan, M.S.; Chen, Q.; Zhang, F.S. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland. China Soils Fert. Soil Sci. 2016, 11, 76–83. (In Chinese) [Google Scholar]
- Zhao, Y.Y.; Xu, X.; Huang, Y.F.; Sun, X.M.; Ye, Y.L. Nitrogen requirement and saving potential for wheat and maize in Henan province. Sci. Agric. Sin. 2018, 51, 2747–2757. (In Chinese) [Google Scholar]
- OECD. Organization for Economic Co-Operation and Development. Available online: http://stats.oecd.org (accessed on 25 May 2022).
- Tenorio, F.A.; McLellan, E.L.; Eagle, A.J.; Cassman, K.G.; Torrion, J.A.; Grassini, P. Disentangling management factors influencing nitrogen balance in producer fields in the western Corn Belt. Agric. Syst. 2021, 193, 103245. [Google Scholar] [CrossRef]
- Zhao, X.; Christianson, L.E.; Harmel, D.; Pittelkow, C.M. Assessment of drainage nitrogen losses on a yield-scaled basis. Field Crop. Res. 2016, 199, 156–166. [Google Scholar] [CrossRef]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; Van Es, H.M. The Nitrogen Balancing Act: Tracking the Environmental Performance of Food Production. BioScience 2018, 68, 194–203. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 177, 102689. [Google Scholar] [CrossRef]
- Wang, J.G.; Lin, S.; Li, B.B. Nitrogen cycling and management strategies in Chinese agriculture. Sci. Agri. Sin. 2016, 49, 503–517. (In Chinese) [Google Scholar]
- Liu, Y.; Gao, B.B.; Pan, Y.C.; Gao, Y.B. Investigating contribution factors to china’s grain output increase based on LMDI model during the period 1980 to 2010. J. Nat. Resour. 2014, 29, 1709–1720. (In Chinese) [Google Scholar]
- Li, Z.-P.; Long, Y.-Q.; Tang, P.-Q.; Tan, J.-Y.; Li, Z.-G.; Wu, W.-B.; Hu, Y.-N.; Yang, P. Spatio-temporal changes in rice area at the northern limits of the rice cropping system in China from 1984 to 2013. J. Integr. Agric. 2017, 16, 360–367. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Shi, W.M. Nitrogen use efficiencies of major grain crops in China in recent 10 years. Acta Pedol. Sin. 2015, 52, 1311–1324. (In Chinese) [Google Scholar]
- Xu, X.P.; He, P.; Pampolinoc, M.F.; Johnstond, A.M.; Qiu, S.J.; Zhao, S.C.; Chuan, L.M.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crop. Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Huang, J.K.; Huang, Z.R.; Jia, X.P.; Hu, R.F.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Ke, J.; Xing, X.M.; Lia, G.H.; Ding, Y.F.; Douc, F.G.; Wang, S.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Chen, L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crop. Res. 2015, 205, 147–156. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.W.; Man, J.G.; Ma, S.Y.; Gao, Z.Q.; Zhang, Y.L. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Tillage Res. 2017, 160, 73–81. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, Y.; Yang, K.P.; Duan, F.Y.; Liu, P.; Wang, Z.G.; Wang, J.W. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. J. Clean. Prod. 2021, 314, 127997. [Google Scholar] [CrossRef]
- Li, N.; Wei, C.; Zhang, H.; Cai, C.; Song, M.; Miao, J. Drivers of the national and regional crop production-derived greenhouse gas emissions in China. J. Clean. Prod. 2020, 257, 120503. [Google Scholar] [CrossRef]
- Yang, R.; Tong, J.X.; Li, J.Y.; Wei, W.S. Numerical simulation of nitrogen loss in surface runoff and leaching from paddy field. J. Irrig. Drain. 2018, 37, 63–69. (In Chinese) [Google Scholar]
- Wang, M.; Ma, L.; Strokal, M.; Ma, W.; Liu, X.; Kroeze, C. Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis. Environ. Sci. Technol. 2018, 52, 5782–5791. [Google Scholar] [CrossRef] [PubMed]
- Iurii, S.; Neville, M.; G Philip, R. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199. [Google Scholar] [CrossRef]
- Drury, C.F.; Yang, X.; Reynolds, W.D.; Calder, W.; Oloya, T.O.; Woodley, A. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields. J. Environ. Qual. 2017, 46, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Nasielski, J.; Grant, B.; Smith, W.; Niemeyer, C.; Janovicek, K.; Deen, B. Effect of nitrogen source, placement and timing on the environmental performance of economically optimum nitrogen rates in maize. Field Crop. Res. 2020, 246, 107686. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhuang, P.; Jia, Z. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Moulin, A.P.; Lemke, R.L.; Izaurralde, R.C.; Johnson, E.N.; Olfert, O.O.; Brandt, S.A. Modelling the effects of climate change, agricultural inputs, cropping diversity, and environment on soil nitrogen and phosphorus: A case study in Saskatchewan, Canada. Agric. Water Manag. 2021, 252, 106850. [Google Scholar] [CrossRef]
- Grant, B.B.; Smith, W.N.; Campbell, C.A.; Desjardins, R.L.; Lemke, R.L.; Kröbel, R.; McConkey, B.G.; Smith, E.G.; Lafond, G.P. Comparison of DayCent and DNDC Models: Case Studies Using Data from Long-Term Experiments on the Canadian Prairies. In Advances in Modeling Agricultural Systems: Trans-Disciplinary Research, Synthesize, Modelling, and Application; Del Grosso, S.J., Ahuja, L.R., Parton, W.J., Eds.; Crop Science Society of American and American Society of Agronomy: Madison, WI, USA, 2016; pp. 1–37. [Google Scholar]
- Liang, K.; Jiang, Y.; Nyiraneza, J.; Fuller, K.; Murnaghan, D.; Meng, F.-R. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. Field Crop. Res. 2019, 242, 107603. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- Raza, S.; Zhou, J.; Aziz, T.; Afzal, M.R.; Ahmed, M.; Javaid, S.; Chen, Z. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: A challenge not challenged (1961–2013). Environ. Res. Lett. 2018, 13, 034012. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Folberth, C.; Müller, C.; Ciais, P.; Abbaspour, K.C.; Schulin, R. Achieving High Crop Yields with Low Nitrogen Emissions in Global Agricultural Input Intensification. Environ. Sci. Technol. 2018, 52, 13782–13791. [Google Scholar] [CrossRef]
- Snyder, C.S. Enhanced nitrogen fertiliser technologies support the ‘4R’ concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463–472. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, F.B.; Ma, X.; Guo, G.Z.; Liu, B.; Cheng, T.H.; Liang, T.; Tao, W.L.; Chen, X.P.; Wang, X.Z. Greenhouse gas emissions from vegetables production in China. J. Clean. Prod. 2021, 317, 128449. [Google Scholar] [CrossRef]
- Liang, K.; Jiang, Y.; Qi, J.; Fuller, K.; Nyiraneza, J.; Meng, F.-R. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada. Sci. Total Environ. 2020, 729, 138793. [Google Scholar] [CrossRef] [PubMed]
- Woodley, A.L.; Drury, C.F.; Yang, X.M.; Phillips, L.A.; Reynolds, W.D.; Calder, W.; Oloya, T.O. Ammonia volatilization; N2O emissions and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
Region 1 | Maize | Wheat | Single Rice | Double Rice | ||||
---|---|---|---|---|---|---|---|---|
2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | |
NE | 43.1 ± 21.2 b 2 | 31.5 ± 15.3 b | 47.5 ± 14.9 b | 17.2 ± 6.3 c | 87.8 ± 41.2 c | 47.9 ± 25.2 e | -3 | - |
NW | 80.2 ± 31.4 a | 60.8 ± 26.2 a | 120.8 ± 43.9 a | 125.5 ± 51.2 a | 133.8 ± 51.5 b | 117.4 ± 34.3 b | - | - |
NC | 26.2 ± 22.9 c | 3.1 ± 15.0 c | 77.8 ± 36.5 a | 49.7 ± 25.2 b | 201.5 ± 44.3 a | 147.3 ± 18.2 a | - | - |
MLYR | 48.8 ± 17.3 ab | 18.3 ± 10.8 b | 44.8 ± 21.6 a | 34.0 ± 15.9 ab | 57.5 ± 16.5 c | 34.8 ± 10.7 c | 23.2 ± 6.5 | 10.4 ± 3.3 |
SE | 68.1 ± 9.6 a | 68.2 ± 10.6 a | - | - | 39.2 ± 7.2 c | 29.9 ± 5.6 cd | 80.5 ± 13.8 | 78.8 ± 10.2 |
SW | 47.8 ± 11.7 ab | 24.6 ± 8.4 b | 78.0 ± 16.5 a | 73.7 ± 19.5 ab | 36.8 ± 6.5 c | 16.5 ± 4.7 cd | - | - |
China | 33.3 ± 26.1 | 23.7 ± 25.4 | 82.4 ± 40.1 | 71.4 ± 35.4 | 93.6 ± 33.8 | 64.8 ± 26.9 | 51.8 ± 10.3 | 34.1 ± 10.2 |
Region 1 | Maize | Wheat | Single Rice | Double Rice | ||||
---|---|---|---|---|---|---|---|---|
2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | |
NE | 66.7 ± 12.9 a 2 | 69.9 ± 13.3 a | 52.9 ± 7.9 a | 68.3 ± 2.9 a | 58.4 ± 13.1 a | 66.9 ± 8.1 a | -3 | - |
NW | 58.0 ± 10.4 b | 63.4 ± 8.7 ab | 40.5 ± 6.7 b | 42.0 ± 8.2 b | 49.0 ± 7.7 bc | 52.7 ± 6.2 cd | - | - |
NC | 48.3 ± 8.8 c | 57.0 ± 9.7 bc | 38.4 ± 7.2 b | 41.4 ± 7.9 b | 40.5 ± 4.0 d | 48.9 ± 2.3 d | - | - |
MLYR | 42.7 ± 5.0 cd | 49.1 ± 5.0 d | 42.4 ± 7.5 b | 43.6 ± 7.2 b | 46.6 ± 5.7 c | 51.8 ± 5.3 cd | 56.4 ± 3.6 | 60.7 ± 3.6 |
SE | 38.1 ± 1.9 d | 37.9 ± 2.7 e | - | - | 52.8 ± 2.2 b | 55.2 ± 1.7 bc | 51.1 ± 3.1 | 52.2 ± 4.5 |
SW | 45.0 ± 6.3 cd | 51.4 ± 4.3 cd | 31.6 ± 2.7 c | 34.2 ± 3.6 c | 50.8 ± 4.9 bc | 57.7 ± 3.6 b | - | - |
China | 49.8 ± 12.1 | 54.8 ± 11.6 | 41.2 ± 7.9 | 45.9 ± 9.7 | 48.5 ± 8.7 | 54.7 ± 7.6 | 54.0 ± 4.3 | 56.9 ± 5.8 |
Region 1 | Maize | Wheat | Single Rice | Double Rice | ||||
---|---|---|---|---|---|---|---|---|
2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | 2004–2008 | 2014–2018 | |
NE | 58.5 ± 7.1 c 2 | 59.9 ± 7.8 d | 43.6 ± 2.5 e | 43.3 ± 1.4 e | 65.9 ± 13.5 d | 61.2 ± 9.1 e | -3 | - |
NW | 79.5 ± 13.6 c | 84.7 ± 14.8 d | 84.1 ± 14.5 c | 95.1 ± 19.8 c | 78.2 ± 10.4 d | 77.0 ± 6.6 d | - | - |
NC | 292.6 ± 52.6 a | 272.6 ± 47.0 a | 182.3 ± 29.4 a | 211.2 ± 25.3 a | 98.9 ± 10.1 c | 90.8 ± 5.7 c | - | - |
MLYR | 174.1 ± 19.5 b | 184.4 ± 21.2 b | 156.2 ± 8.3 b | 174.0 ± 10.9 b | 170.3 ± 15.7 a | 168.2 ± 13.4 a | 231.5 ± 15.8 | 245.8 ± 16.1 |
SE | 167.5 ± 18.2 b | 173.5 ± 19.9 b | - | - | 122.9 ± 10.5 c | 127.7 ± 11.4 b | 205.3 ± 12.1 | 213..4 ± 10.7 |
SW | 153.7 ± 13.0 b | 151.9 ± 11.8 c | 90.4 ± 8.3 d | 92.3 ± 11.3 d | 156.0 ± 11.0 b | 141.5 ± 8.9 b | - | - |
China | 165.2 ± 37.5 | 162.4 ± 33.7 | 125.2 ± 35.4 | 140.3 ± 45.0 | 125.8 ± 26.2 | 120.4 ± 25.6 | 219.7 ± 12.5 | 231.6 ± 13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Jiang, R.; Fan, D.; Zou, G.; Du, L.; Wei, D.; Guo, X.; He, W. Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018. Plants 2022, 11, 2507. https://doi.org/10.3390/plants11192507
Song D, Jiang R, Fan D, Zou G, Du L, Wei D, Guo X, He W. Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018. Plants. 2022; 11(19):2507. https://doi.org/10.3390/plants11192507
Chicago/Turabian StyleSong, Daping, Rong Jiang, Daijia Fan, Guoyuan Zou, Lianfeng Du, Dan Wei, Xuan Guo, and Wentian He. 2022. "Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018" Plants 11, no. 19: 2507. https://doi.org/10.3390/plants11192507
APA StyleSong, D., Jiang, R., Fan, D., Zou, G., Du, L., Wei, D., Guo, X., & He, W. (2022). Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018. Plants, 11(19), 2507. https://doi.org/10.3390/plants11192507