Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphological Analysis
2.3. Terminology
3. Results
3.1. Morphology of Normal Canna Inflorescence and Flower
3.2. Morphology of the Partial Florescence and Flower Structure in Aberrant Collections
3.3. The Form of the Fertile Stamen Is Correlated with the Placement of Higher Order Bracts
3.4. A Proposed Model to Explain the Correlation of in Florescence Architecture and Floral Symmetry
4. Discussion
4.1. A Possible Cause of Floral Symmetry Variation in the Primary Flowers of 3-Flowered Cymes
4.2. Comparison of Paired Flowers between Marantaceae and Aberrant Collections of Cannaceae
4.3. Studying Aberrant Flowers as an Approach to Understanding Normal Floral Morphology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maas, H.; Maas, P.J.M. The Cannaceae of the world. Blumea Biodivers. Evol. Biogeogr. Plants 2008, 53, 247–318. [Google Scholar] [CrossRef]
- Prince, L.M. Phylogenetic relationships and species delimitation in Canna (Cannaceae). In Diversity, Phylogeny, and Evolution in the Monocotyledons; Seberg, O., Peterson, G., Barfod, A., Davis, J.I., Eds.; Aarhus University Press: Aarhus, Denmark, 2010; pp. 307–331. [Google Scholar]
- Endress, P.K. The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot. Rev. 2012, 78, 345–397. [Google Scholar] [CrossRef]
- Rudall, P.J.; Bateman, R.M. Evolution of zygomorphy in monocot flowers: Iterative patterns and developmental constraints. New Phytol. 2004, 162, 25–44. [Google Scholar] [CrossRef]
- Kirchoff, B.K. Floral organogenesis in five genera of the Marantaceae and in Canna (Cannaceae). Am. J. Bot. 1983, 70, 508–523. [Google Scholar] [CrossRef]
- Miao, M.; Liu, H.; Kuang, Y.; Zou, P.; Liao, J. Floral vasculature and ontogeny in Canna indica. Nord. J. Bot. 2014, 32, 485–492. [Google Scholar] [CrossRef]
- Almeida, A.M.; Brown, A.; Specht, C.D. Tracking the development of the petaloid fertile stamen in Canna indica: Insights into the origin of androecial petaloidy in the Zingiberales. AoB Plants 2013, 5, plt009. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, H.; Almeida, A.M.; Kuang, Y.; Zou, P.; Liao, J. Molecular basis of floral petaloidy: Insights from androecia of Canna indica. AoB Plants 2014, 6, plu015. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Q.; Liu, H.; Liao, J. Temporal-spatial transcriptome analyses provide insights into the development of petaloid androecium in Canna indica. Front. Plant Sci. 2016, 7, 1194. [Google Scholar] [CrossRef]
- Tian, X.; Zou, P.; Miao, M.; Ning, Z.; Liao, J. RNA-Seq analysis reveals the distinctive adaxial-abaxial polarity in the asymmetric one-theca stamen of Canna indica. Mol. Genet. Genom. 2018, 293, 391–400. [Google Scholar] [CrossRef]
- Tian, X.; Li, X.; Yu, Q.; Zhao, H.; Song, J.; Liao, J. Irregular adaxial-abaxial polarity rearrangement contributes to the monosymmetric-to-asymmetric transformation of Canna indica stamen. AoB Plants 2020, 12, plaa051. [Google Scholar] [CrossRef]
- Glinos, E.; Cocucci, A.A. Pollination biology of Canna indica (Cannaceae) with particular reference to the functional morphology of the style. Plant Syst. Evol. 2010, 291, 49–58. [Google Scholar] [CrossRef]
- Morioka, K.; Yockteng, R.; Almeida, A.M.; Specht, C.D. Loss of YABBY2-Like gene expression may underlie the evolution of the laminar style in Canna and contribute to floral morphological diversity in the Zingiberales. Front. Plant Sci. 2015, 6, 1106. [Google Scholar] [CrossRef] [PubMed]
- Coen, E.S.; Nugent, J.M. Evolution of flowers and inflorescences. Development 1994, 1994, 107–116. [Google Scholar] [CrossRef]
- Citerne, H.; Jabbour, F.; Nadot, S.; Damerval, C. The evolution of floral symmetry. Adv. Bot. Res. 2010, 54, 85–137. [Google Scholar] [CrossRef]
- Dahlgren, R.M.T.; Clifford, H.T.; Yeo, P.F. The Families of the Monocotyledons: Structure, Evolution and Taxonomy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Stebbins, G.L. Flowering Plants: Evolution Above the Species Level; Belknap Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Endress, P.K. Symmetry in flowers: Diversity and evolution. Int. J. Plant Sci. 1999, 160, S3–S23. [Google Scholar] [CrossRef] [PubMed]
- Kirchoff, B.K. Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. Int. J. Plant Sci. 2003, 164, 505–517. [Google Scholar] [CrossRef]
- Broholm, S.K.; Tahtiharju, S.; Laitinen, R.A.; Albert, V.A.; Teeri, T.H.; Elomaa, P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Natl. Acad. Sci. USA 2008, 105, 9117–9122. [Google Scholar] [CrossRef]
- Bull-Herenu, K.; Classen-Bockhoff, R. Open and closed inflorescences: More than simple opposites. J. Exp. Bot. 2011, 62, 79–88. [Google Scholar] [CrossRef]
- Sokoloff, D.; Rudall, P.J.; Remizowa, M. Flower-like terminal structures in racemose inflorescences: A tool in morphogenetic and evolutionary research. J. Exp. Bot. 2006, 57, 3517–3530. [Google Scholar] [CrossRef]
- Rudall, P.J.; Bateman, R.M. Evolutionary change in flowers and inflorescences: Evidence from naturally occurring terata. Trends Plant Sci. 2003, 8, 76–82. [Google Scholar] [CrossRef]
- Endress, P.K. Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 2010, 48, 225–239. [Google Scholar] [CrossRef]
- Prenner, G.; Vergara-Silva, F.; Rudall, P.J. The key role of morphology in modelling inflorescence architecture. Trends Plant Sci. 2009, 14, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Weberling, F. Fundamental features of modern inflorescence morphology. Bothalia 1983, 14, 917–922. [Google Scholar] [CrossRef]
- Kirchoff, B.K.; Liu, H.; Liao, J.-P. Inflorescence and flower development in Orchidantha chinensis T. L. Wu (Lowiaceae; Zingiberales): Similarities to inflorescence structure in the Strelitziaceae. Int. J. Plant Sci. 2020, 181. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Q.; Lin, C.; Zhao, T.; Zou, P.; Liao, J. Why pendulum symmetry is absent from the cymose partial inflorescences of Cannaceae? Insights into the essential characteristic of cincinni. J. Plant Res. 2021, 134, 797–802. [Google Scholar] [CrossRef]
- Almeida, A.M.; Yockteng, R.; Schnable, J.; Alvarez-Buylla, E.R.; Freeling, M.; Specht, C.D. Co-option of the polarity gene network shapes filament morphology in angiosperms. Sci. Rep. 2014, 4, 6194. [Google Scholar] [CrossRef]
- Kunze, H. Die Infloreszenzen der Marantaceen und ihr Zusammenhang mit dem Typus der Zingiberales—Synfloreszenz. Beitraege Biol. Pflanz. 1985, 60, 93–140. [Google Scholar]
- Kirchoff, B.K. Inflorescence structure and development in the Zingiberales: Thalia geniculata (Marantaceae). Can. J. Bot. 1986, 64, 859–864. [Google Scholar] [CrossRef]
- Arber, A. Natural Philosophy of Plant Form; Cambridge University Press: Cambridge, MA, USA, 1950. [Google Scholar]
- Stammler, A.; Meyer, S.S.; Plant, A.R.; Townsley, B.T.; Becker, A.; Gleissberg, S. Duplicated STM-like KNOX I genes act in floral meristem activity in Eschscholzia californica (Papaveraceae). Dev. Genes Evol. 2013, 223, 289–301. [Google Scholar] [CrossRef]
- Jabbour, F.; Nadot, S.; Espinosa, F.; Damerval, C. Ranunculacean flower terata: Records, a classification, and some clues about floral developmental genetics and evolution. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 217, 64–74. [Google Scholar] [CrossRef]
- Meyerowitz, E.M.; Smyth, D.R.; Bowman, J.L. Abnormal flowers and pattern-formation in floral development. Development 1989, 106, 209–217. [Google Scholar] [CrossRef]
- Cubas, P.; Vincent, C.; Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 1999, 401, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Carpenter, R.; Vincent, C.; Copsey, L.; Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 1996, 383, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.S. The epigynous glands of Zingiberaceae. New Phytol. 1963, 62, 342–349. [Google Scholar] [CrossRef]
- Maas, P.J.M. Renealmia (Zingiberaceae-Zingiberoideae) Costoideae (Additions) (Zingiberaceae). Flora Neotrop. 1977, 18, 1–218. [Google Scholar]
- Chen, Z.; Wu, T. An atavistic mutation of Alpinia guangdongensis—On the origin of staminodes in Zingiberaceae. Acta Bot. Austro Sin. 1989, 4, 39–42. [Google Scholar]
- Song, J.; Tang, Y.; Me, Z.; Zou, P.; Wu, Q.; Wu, D.; Chen, Z.; Liao, J. Abnormal flowers in genus Alpinia. Nord. J. Bot. 2003, 23, 177–182. [Google Scholar] [CrossRef]
- Li, X.; Fan, T.; Zou, P.; Zhang, W.; Wu, X.; Zhang, Y.; Liao, J. Can the anatomy of abnormal flowers elucidate relationships of the androecial members in the ginger (Zingiberaceae)? Evodevo 2020, 11, 12. [Google Scholar] [CrossRef]
- Kress, W.J.; Prince, L.M.; Hahn, W.J.; Zimmer, E.A. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst. Biol. 2001, 50, 926–944. [Google Scholar] [CrossRef]
- Barrett, C.F.; Specht, C.D.; Leebens-Mack, J.; Stevenson, D.W.; Zomlefer, W.B.; Davis, J.I. Resolving ancient radiations: Can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann. Bot. 2014, 113, 119–133. [Google Scholar] [CrossRef]
- Sass, C.; Iles, W.J.; Barrett, C.F.; Smith, S.Y.; Specht, C.D. Revisiting the Zingiberales: Using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. PeerJ 2016, 4, e1584. [Google Scholar] [CrossRef]
- Carlsen, M.M.; Fer, T.; Schmickl, R.; Leong-Skornickova, J.; Newman, M.; Kress, W.J. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data. Mol. Phylogenet. Evol. 2018, 128, 55–68. [Google Scholar] [CrossRef]
Collection ID. | Species | Partial Inflorescence | Figure |
---|---|---|---|
Ci-1 | Canna indica | Single flower | 4, 12A |
Ci-2 | Canna indica | 1-flowered cyme | 5A,B,E, 12D |
Ci-3 | Canna indica | 1-flowered cyme | 5C–E, 12D |
Ci-4 | Canna indica | 2-flowered cyme | 6, 12E |
Ci-5 | Canna indica | 3-flowered cyme | 7A,B,O, 12F |
Cg-1 | Canna glauca | 3-flowered cyme | 7C,D,O |
Cg-2 | Canna glauca | 3-flowered cyme | 7E,F,O |
Cg-3 | Canna glauca | 3-flowered cyme | 7G,H,O |
Cg-4 | Canna glauca | 3-flowered cyme | 7I,J,O |
Cg-5 | Canna glauca | 3-flowered cyme | 7K,L,O |
Cg-6 | Canna glauca | 3-flowered cyme | 7M–O |
Cg-7 | Canna glauca | 4-flowered cyme | 8, 12G |
Ci-6 | Canna indica | 2-flowered thyrse | 9, 12H |
Ci-7 | Canna indica | 3-flowered thyrse | 10, 12I |
Ci-8 | Canna indica | 4-flowered thyrse | 11A,C,D, 12J |
Cg-8 | Canna glauca | 4-flowered thyrse | 11B–D, 12J |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Zhao, T.; Zhao, H.; Specht, C.D.; Tian, X.; Liao, J. Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae). Plants 2022, 11, 2512. https://doi.org/10.3390/plants11192512
Yu Q, Zhao T, Zhao H, Specht CD, Tian X, Liao J. Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae). Plants. 2022; 11(19):2512. https://doi.org/10.3390/plants11192512
Chicago/Turabian StyleYu, Qianxia, Tong Zhao, Haichan Zhao, Chelsea D. Specht, Xueyi Tian, and Jingping Liao. 2022. "Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae)" Plants 11, no. 19: 2512. https://doi.org/10.3390/plants11192512
APA StyleYu, Q., Zhao, T., Zhao, H., Specht, C. D., Tian, X., & Liao, J. (2022). Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae). Plants, 11(19), 2512. https://doi.org/10.3390/plants11192512