Resistance to Snow Mold as a Target Trait for Rye Breeding
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation of SM Resistance in Rye Accessions
2.2. Differentiation of Rye Accessions by the SM Resistance
2.3. Influence of SM on the Agronomic Parameters of Rye
2.4. Determination of the SM Resistance by the Detached Leaf Assay (DLA) Test
2.5. Cluster Analysis of Rye Accessions Based on Multiple SM Resistance Assessments
3. Discussion
4. Methods
4.1. Research Methods and Techniques
4.2. Climate Features
4.3. Field Experiments for the Determination of SM Resistance
4.4. Disease Scoring
4.5. Detached Leaf Assay
4.6. Statistical Analysis
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Geiger, H.H.; Miedaner, T. Rye breeding. In Cereals, 1st ed.; Carena, M.J., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 157–181. [Google Scholar] [CrossRef]
- Miedaner, T.; Laidig, F. Hybrid breeding in rye (Secale cereale L.). Advances in Plant Breeding Strategies. In Cereals, 1st ed.; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer Nature Switzerland AG: Basel, Switzerland, 2019; Volume 5, pp. 343–372. [Google Scholar] [CrossRef]
- Korzun, V.; Ponomareva, M.; Sorrells, M. Economic and Academic Importance of Rye. In The Rye Genome, 1st ed.; Rabanus-Wallace, T., Stein, N., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Aman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- Wrigley, C.; Bushuk, W. Rye: Grain-quality characteristics and management of quality requirements. In Cereal Grains, 2nd ed.; Wrigley, C., Batey, I.L., Miskelly, D., Eds.; Woodhead Publishing (Elsevier): Cambridge, UK, 2017; pp. 153–178. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Z.; Barr, J.; Gillespie, J.; Simsek, S.; Horsley, R.D.; Schwarz, P.B. Micro-malting for the quality evaluation of rye (Secale cereale) genotypes. Fermentation 2018, 4, 50. [Google Scholar] [CrossRef]
- Castro, M.L.; Larregain, C.C.; Coscarello, E.N.; Aguerre, R.J. Fibers: Healthy component in whole wheat and rye flours. In Food Engineering, 1st ed.; Coldea, T.E., Ed.; Intech Open: London, UK, 2019; pp. 133–141. [Google Scholar] [CrossRef]
- Jonsson, K.; Andersson, R.; Bach Knudsen, K.E.; Hallmans, G.; Hanhineva, K.; Katina, K.; Kolehmainen, M.; Kyr, C.; Langton, M.; Nordlund, E.; et al. Rye and health-where do we stand and where do we go? Trends Food Sci. Technol. 2018, 79, 78–87. [Google Scholar] [CrossRef]
- Németh, R.; Tömösközi, S. Rye: Current state and future trends in research and applications. Acta Aliment. 2021, 50, 620–640. [Google Scholar] [CrossRef]
- Andersson, R.; Fransson, G.; Tietjen, M.; Åman, P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J. Agric. Food Chem. 2009, 57, 2004–2008. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Courtin, C.M.; Verbeke, K.; de Wiele, T.V.; Verstraete, W.; Delcour, J.A. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011, 51, 178–194. [Google Scholar] [CrossRef]
- Saeed, F.; Pasha, I.; Anjum, F.M.; Sultan, M.T. Arabinoxylans and arabinogalactans: A comprehensive treatise. Crit. Rev. Food Sci. Nutr. 2011, 51, 467–476. [Google Scholar] [CrossRef]
- Damen, B.; Cloetens, L.; Broekaert, W.F.; François, I.; Lescroart, O.; Trogh, I.; Arnaut, F.; Welling, G.W.; Wijffels, J.; Delcour, J.A.; et al. Consumption of breads containing in situ–produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. J. Nutr. 2012, 142, 470–477. [Google Scholar] [CrossRef]
- Delcour, J.A.; Joye, I.J.; Pareyt, B.; Wilderjans, E.; Brijs, K.; Lagrain, B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu. Rev. Food Sci. Technol. 2012, 3, 469–492. [Google Scholar] [CrossRef]
- Erath, W.; Bauer, E.; Schön, C.-C.; Fowler, D.B.; Gordillo, A.; Korzun, V.; Schmidt, M.; Schmiedchen, B.; Wilde, P.; Ponomareva, M. Exploring new alleles for frost tolerance in winter rye. Theor. Appl. Genet. 2017, 130, 2151–2164. [Google Scholar] [CrossRef]
- Korzun, V.; Malyzhev, S.; Voylokov, A.V.; Bőrner, A. A Genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 2001, 102, 709–717. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021, 53, 574–584. [Google Scholar] [CrossRef]
- Gagkaeva, T.; Orina, A.S.; Gavrilova, O.P.; Gogina, N.N. Evidence of Microdochium fungi associated with cereal grains in Russia. Microorganisms 2020, 8, 340. [Google Scholar] [CrossRef]
- Ponomareva, M.L.; Gorshkov, V.Y.; Ponomarev, S.N.; Korzun, V.; Miedaner, T. Snow mold of winter cereals: A complex disease and a challenge for resistance breeding. Theor. Appl. Genet. 2021, 134, 419–433. [Google Scholar] [CrossRef]
- Ponomareva, M.L.; Ponomarev, S.N.; Mannapova, G.S.; Ilalova, L.V. Phytosanitary monitoring of the most harmful winter rye diseases in the Tatarstan Republic. Bull. KSAU 2019, 9, 27–34. (In Russian) [Google Scholar]
- Shchekleina, L.M. Monitoring of winter rye diseases in Kirov region and possible trends of breeding for immunity. Agric. Sci. Euro-North-East. 2020, 21, 124–132. [Google Scholar] [CrossRef]
- Volkova, G.V.; Yakhnik, Y.V.; Zhukovsky, A.G.; Pilat, T.G.; Zhukovskaya, A.A. Immunological assessment of varieties of cereal crops relative to the North Caucasian and Belarusian populations of the pathogen of pink snow mold. In Proceedings of the IOP Conference Series: Earth and Environmental Science, II International Scientific and Practical Conference “Ensuring Sustainable Development in the Context of Agriculture, Green Energy, Ecology and Earth Science”, Smolensk, Russia, 23–27 January 2022; IOP Publishing Ltd.: Bristol, UK, 2022; Volume 1045, p. 012066. [Google Scholar] [CrossRef]
- Parry, D.W.; Rezanoor, H.N.; Pettitt, T.R.; Hare, M.C.; Nicholson, P. Analysis of Microdochium nivale isolates from wheat in the UK during 1993. Ann. Appl. Biol. 1995, 126, 449–455. [Google Scholar] [CrossRef]
- Smiley, R.W.; Patterson, L.M.; Rhinhart, K.E.L. Fungicide seed treatment effects on emergence of deeply planted winter wheat. J. Prod. Agric. 1996, 9, 564–659. [Google Scholar] [CrossRef]
- Cockerell, V. New and priority seedborne diseases in Western Europe. In Seed Health Testing: Progress towards the 21st Century, 1st ed.; Reeves, J.C., Hutchins, J.D., Eds.; CAB International: Wallingford, UK, 1997; pp. 1–10. [Google Scholar]
- Matsumoto, N. Snow molds: A group of fungi that prevail under snow. Microbes Environ. 2009, 24, 14–20. [Google Scholar] [CrossRef]
- Dubas, E.; Golebiowska, G.; Zur, I.; Wedzony, M. Microdochium nivale (Fr., Samuels & Hallett): Cytological analysis of the infection process in triticale (x Triticosecale Wittm.). Acta Physiol. Plant 2011, 33, 529–537. [Google Scholar] [CrossRef]
- Tkachenko, O.B.; Ovsyankina, A.V.; Shchukovskaya, A.G. Snow molds: History of the study and control. Agric. Biol. 2015, 50, 16–29. [Google Scholar] [CrossRef]
- Zhukovskiy, A.; Krupenko, N.; Yakhnik, Y.; Tarancheva, O.; Volkova, G. Pink snow mold in winter cereal crops in Belarus and in the South of Russia. In Proceedings of the XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization”, BIO Web of Conferences, Krasnodar, Russia, 21–24 September 2020. [Google Scholar] [CrossRef]
- Tkachenko, O.B. Snow mold fungi in Russia. In Plant and Microbe Adaptations to Cold in a Changing World; Imai, R., Yoshida, M., Matsumoto, N., Eds.; Springer: New York, NY, USA, 2013; pp. 293–303. [Google Scholar]
- Dyda, M.; Wasek, I.; Tyrka, M.; Wedzony, M.; Szechynska-Hebda, M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. Physiologiaplantarum 2019, 165, 711–727. [Google Scholar]
- Szechynska-Hebda, M.; Hebda, M.; Mierzwinski, D.; Kuczynska, P.; Mirek, M.; Wedzony, M.; Van Lammeren, A.; Karpinski, S. Effect of cold-induced changes in physical and chemical leaf properties on the resistance of winter triticale (Triticosecale) to the fungal pathogen Microdochium nivale. Plant Pathol. 2013, 62, 867–878. [Google Scholar] [CrossRef]
- Gołębiowska, G.; Dyda, M.; Wajdzik, K. Quantitative trait loci and candidate genes associated with cold-acclimation and Microdochium nivale tolerance/susceptibility in winter triticale (x Triticosecale). Plants 2021, 10, 2678. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Justenen, A.F.; Jensen, J.D.; Jørgensen, L.N. Microdochium nivale and Microdochium majus in seed samples of Danish small grain cereals. Crop Prot. 2013, 43, 192–200. [Google Scholar] [CrossRef]
- Tronsmo, A.M.; Hsiang, T.; Okuyama, H.; Nakajima, T. Low temperature diseases caused by Microdochium nivale. In Low Temperature Plant Microbe Interactions Under Snow; Iriki, N., Gaudet, D.A., Tronsmo, A.M., Matsumoto, N., Yoshida, M., Nishimune, A., Eds.; Hokkaido National Agricultural Experimental Station: Sapporo, Japan, 2001; pp. 75–86. [Google Scholar]
- Xu, F.; Shi, R.J.; Zhang, J.J.; Song, Y.L.; Liu, L.L.; Han, Z.H.; Wang, J.M.; Li, Y.H.; Feng, C.H.; Li, L.J. First Report of Microdochium nivale and M. majus Causing Brown Foot Rot of Wheat in China. Plant Dis. 2022, 106, 1523. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Chukhina, I.G. Plant genetic resources: A conservation strategy and use. Vestn. Russ. Acad. Sci. 2020, 90, 522–527. (In Russian) [Google Scholar] [CrossRef]
- Shchekleina, L.M.; Sheshegova, T.K.; Utkina, E.I. Search for immunologically valuable winter rye genotypes using separate parameters of non-specific resistance. Agric. Sci. Euro-North-East. 2021, 22, 507–517. [Google Scholar] [CrossRef]
- Kobyliansky, V.D.; Solodukhina, O.V. The role of the Vavilov institute of plant industry in the initiation and development of new trends in winter rye breeding in Russia. Proc. Appl. Bot. Genet. Breed. 2015, 176, 5–19. [Google Scholar] [CrossRef]
- Kruse, E.B.; Carle, S.W.; Wen, N.; Skinner, D.Z.; Murray, T.D.; Garland-Campbell, K.A.; Carter, A.H. Genomic regions associated with tolerance to freezing stress and snow mold in winter wheat. G3 Genes Genomes Genet 2017, 7, 775–780. [Google Scholar] [CrossRef]
- Lozada, D.; Godoy, J.V.; Murray, T.D.; Ward, B.P.; Carter, A.H. Genetic dissection of snow mold tolerance in US Pacific Northwest winter wheat through genome-wide association study and genomic selection. Front. Plant Sci. 2019, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Phipps, S.N.; Burke, A.B.; Balow, K.; Smith, J.; Murray, T.; Carter, A.H. Identification of snow mold tolerance QTL in a landrace winter wheat using linkage mapping. Crop Sci. 2022, 62, 1415–1429. [Google Scholar] [CrossRef]
- Szechynska-Hebda, M.; Wedzony, M.; Tyrka, M.; Gołebiowska, G.; Chrupek, M.; Czyczyło-Mysza, I.; Dubas, E.; Zur, I.; Golemiec, E. Identifying QTLs for cold-induced resistance to Microdochium nivale in winter triticale. Plant Genet. 2011, 9, 296–299. [Google Scholar] [CrossRef]
- Utkina, E.I.; Kedrova, L.I.; Parfenova, E.S. Sources of breeding-valuable traits for creation of winter hardiness varieties of winter rye in Volga-Vyatka region. Int. J. Appl. Fund Res. 2017, 12, 326–330. (In Russian) [Google Scholar]
- Gorshkov, V.; Osipova, E.; Ponomareva, M.; Ponomarev, S.; Gogoleva, N.; Petrova, O.; Gogoleva, O.; Meshcherov, A.; Balkin, A.; Vetchinkina, E.; et al. Rye Snow mold-associated Microdochium nivale strains inhabiting a common area: Variability in genetics, morphotype, extracellular enzymatic activities, and virulence. J. Fungi 2020, 6, 335. [Google Scholar] [CrossRef]
- Kruse, E.B.; Esvelt Klos, K.L.; Marshall, J.M.; Murray, T.D.; Ward, B.P.; Carter, A.H. Evaluating selection of a quantitative trait: Snow mold tolerance in winter wheat. Agrosyst. Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Gołębiowska, G.; Stawoska, I.; Wesełucha-Birczyńska, A. Cold-modulated leaf compounds in winter triticale DH lines tolerant to freezing and Microdochium nivale infection: LC-MS and Raman study. Functional Plant Biology. 2022, 49, 725–741. [Google Scholar] [CrossRef]
- Miedaner, T.; Wilde, P. Selection strategies in hybrid rye with special consideration of fungal disease resistances. In Advances in Breeding Techniques for Cereal Crops, 1st ed.; Ordon, F., Friedt, W., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; Chapter 9; pp. 223–246. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Ashirbekov, M.Z.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Tyryshkin, L.G.; Zuev, E.V.; Kirakosyan, R.N.; Glinushkin, A.P.; Potapova, E.S.; et al. Evaluation of wheat resistance to snow mold caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under abiotic stress influence in the central non-black earth region of Russia. Plants 2022, 11, 699. [Google Scholar] [CrossRef]
- Schlegel, R. Rye–Genetics, Breeding & Cultivation, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group, Inc.: New York, NY, USA, 2013; p. 387. [Google Scholar]
Resistance Level | NIB 2020 | NIB 2021 | AIB 2020 | AIB 2021 |
---|---|---|---|---|
Resistant (DS 1.0–2.9) | 44 | 19 | 9 | - |
Moderately resistant (DS 3.0–4.9) | 14 | 27 | 33 | 2 |
Moderately susceptible (DS 5.0–6.9) | - | 10 | 12 | 31 |
Susceptible (DS 7.0–9.0) | - | 2 | 4 | 25 |
Trait | Mean ± Std. Deviation | |
---|---|---|
NIB | AIB | |
Evaluation 1 (points) | 3.52 ± 1.48 * | 6.42 ± 1.17 * |
Evaluation 2 (points) | 3.65 ± 0.97 | 5.62 ± 1.18 |
Grain yield (g/m2) | 416.38 ± 94.81 * | 243.31 ± 72.22 * |
Plant height (cm) | 155.09 ± 13.13 | 140.55 ± 16.22 |
Spike length (cm) | 11.09 ± 0.91 | 10.72 ± 0.97 |
Spikelet number per spike (pieces) | 34.80 ± 2.31 * | 29.81 ± 2.65 * |
Grain number per spike (pieces) | 52.18 ± 6.67 | 41.38 ± 8.34 |
Grain weight per spike (g) | 1.71 ± 0.27 | 1.42 ± 0.33 |
Trait | DS 1 | DS 2 | Grain Yield | Plant Height | Spike Length | Spikelet Number per Spike | Grain Number per Spike | Grain Weight per Spike |
---|---|---|---|---|---|---|---|---|
NIB | ||||||||
DS 1 | 1 | |||||||
DS 2 | 0.672 | 1 | ||||||
Grain yield | −0.503 | −0.574 | 1 | |||||
Plant height | 0.059 | −0.149 | −0.132 | 1 | ||||
Spike length | −0.215 | −0.258 | 0.134 | −0.129 | 1 | |||
Spikelet number per spike | 0.019 | −0.116 | 0.104 | −0.014 | 0.626 | 1 | ||
Grain number per spike | 0.153 | −0.034 | 0.104 | −0.127 | 0.352 | 0.595 | 1 | |
Grain weight per spike | −0.104 | −0.084 | 0.233 | −0.203 | 0.321 | 0.308 | 0.688 | 1 |
AIB | ||||||||
DS 1 | 1 | |||||||
DS 2 | 0.551 | 1 | ||||||
Grain yield | −0.609 | −0.725 | 1 | |||||
Plant height | −0.065 | 0.014 | −0.071 | 1 | ||||
Spike length | −0.214 | −0.197 | 0.326 | −0.060 | 1 | |||
Spikelet number per spike | −0.216 | −0.170 | 0.328 | 0.076 | 0.838 | 1 | ||
Grain number per spike | 0.063 | −0.096 | 0.195 | −0.055 | 0.502 | 0.653 | 1 | |
Grain weight per spike | 0.094 | −0.013 | 0.167 | −0.174 | 0.448 | 0.575 | 0.889 | 1 |
Name | AIB, Points | NIB, Points | IS | LI, % | DI, % |
---|---|---|---|---|---|
Radon | 4.0 | 1.7 | 0.47 | 16.3 | 63.3 |
Falenskaya 4 | 4.0 | 2.8 | 0.73 | 25.4 | 86.7 |
Talisman | 4.0 | 1.8 | 0.52 | 17.7 | 80.9 |
Derzhavinskaya 50 | 4.3 | 3.0 | 0.63 | 21.3 | 77.5 |
Uralskaya 2 | 4.3 | 2.5 | 0.58 | 20.0 | 71.7 |
Tantana | 4.5 | 1.5 | 0.65 | 22.0 | 70.8 |
Talovskaya 2 | 4.5 | 1.8 | 1.03 | 35.2 | 75.0 |
Gran | 4.5 | 3.8 | 0.50 | 17.3 | 75.8 |
Talovskaya 44 | 4.5 | 3.0 | 0.56 | 19.2 | 70.8 |
Zarnitsa | 4.5 | 2.0 | 0.43 | 15.0 | 62.5 |
Malko | 4.5 | 1.8 | 0.52 | 17.8 | 57.5 |
Rifle Fall | 4.5 | 2.5 | 1.48 | 50.6 | 96.7 |
Rossul 2 | 4.8 | 2.5 | 1.09 | 36.8 | 89.2 |
Sinilga | 4.8 | 2.3 | 0.23 | 7.9 | 35.9 |
Pamyat Popova | 4.8 | 2.5 | 0.28 | 9.7 | 36.7 |
Orlovskaya 9-2 | 4.8 | 3.0 | 0.49 | 16.9 | 53.4 |
Chishminskaya 3-2 | 5.0 | 2.5 | 0.90 | 30.4 | 85.0 |
Krona 2 | 5.0 | 2.8 | 1.56 | 53.9 | 96.7 |
Adar | 5.0 | 4.3 | 0.45 | 15.5 | 65.0 |
Toseuschi | 5.0 | 2.5 | 0.66 | 23.3 | 87.5 |
Roxana | 5.3 | 2.3 | 0.47 | 15.7 | 69.2 |
Carsten 2 | 5.3 | 3.8 | 0.38 | 13.1 | 46.7 |
Olga | 5.5 | 3.3 | 0.34 | 11.7 | 51.7 |
Slavia | 5.5 | 1.8 | 0.51 | 17.2 | 61.7 |
Ogonek | 5.8 | 2.8 | 0.14 | 4.6 | 25.8 |
Tatiana | 6.0 | 3.0 | 0.49 | 16.8 | 44.2 |
Parcha | 6.0 | 2.8 | 1.17 | 40.7 | 87.5 |
Zduno | 6.0 | 3.5 | 1.18 | 40.5 | 83.3 |
Yaseldya | 6.5 | 3.5 | 0.34 | 11.6 | 50.8 |
Kaupo | 6.5 | 2.5 | 0.57 | 20.9 | 50.0 |
Marusenka | 7.0 | 3.0 | 0.28 | 10.2 | 39.2 |
Solnyshko | 7.0 | 3.0 | 0.96 | 33.8 | 84.2 |
Jan An | 7.3 | 4.5 | 0.51 | 17.3 | 49.2 |
Conduct | 8.8 | 4.5 | 1.00 | 34.8 | 85.0 |
Cluster | Number of Accessions | Name | AIB, Points | NIB, Points | IS | LI, % | DI, % |
---|---|---|---|---|---|---|---|
1 | 13 | Tantana, Radon, Falenskaya 4, Derzhavinskaya 50, Uralskaya 2, Roxana, Gran, Slavia, Talovskaya 44, Zarnitsa, Talisman, Adar, Toseuschi | 4.6 | 2.5 | 0.6 | 18.9 | 72.6 |
2 | 12 | Ogonek, Tatiana, Olga, Sinilga, Marusenka, Carsten 2, Pamyat Popova, Orlovskaya 9-2, Yaseldya, Malko, Kaupo, Jan An | 5.7 | 3.0 | 0.4 | 13.2 | 45.1 |
3 | 9 | Chishminskaya 3-2, Rossul 2, Krona 2, Talovskaya 2, Solnyshko, Parcha, Zduno, Conduct, Rifle Fall | 5.7 | 2.9 | 1.2 | 39.6 | 87.0 |
Meteorological Parameters | 2019–2020 | 2020–2021 |
---|---|---|
Start of winter | 19 Nov | 11 Nov |
The end of winter | 8 Mar | 26 Mar |
Length of winter, days | 110 | 135 |
Duration of snow cover, days | 102 | 150 |
Number of days with temperature −20…−30 °C | 1 | 1 |
Minimal air temperature for the winter period, °C | −20 | −31 |
Number of thaws for the winter period, days | 61 | 12 |
Average air temperature for the winter period, °C | −2.4 | −8.6 |
Amount of precipitation, mm | 135 | 172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomareva, M.; Gorshkov, V.; Ponomarev, S.; Mannapova, G.; Askhadullin, D.; Askhadullin, D.; Gogoleva, O.; Meshcherov, A.; Korzun, V. Resistance to Snow Mold as a Target Trait for Rye Breeding. Plants 2022, 11, 2516. https://doi.org/10.3390/plants11192516
Ponomareva M, Gorshkov V, Ponomarev S, Mannapova G, Askhadullin D, Askhadullin D, Gogoleva O, Meshcherov A, Korzun V. Resistance to Snow Mold as a Target Trait for Rye Breeding. Plants. 2022; 11(19):2516. https://doi.org/10.3390/plants11192516
Chicago/Turabian StylePonomareva, Mira, Vladimir Gorshkov, Sergey Ponomarev, Gulnaz Mannapova, Danil Askhadullin, Damir Askhadullin, Olga Gogoleva, Azat Meshcherov, and Viktor Korzun. 2022. "Resistance to Snow Mold as a Target Trait for Rye Breeding" Plants 11, no. 19: 2516. https://doi.org/10.3390/plants11192516
APA StylePonomareva, M., Gorshkov, V., Ponomarev, S., Mannapova, G., Askhadullin, D., Askhadullin, D., Gogoleva, O., Meshcherov, A., & Korzun, V. (2022). Resistance to Snow Mold as a Target Trait for Rye Breeding. Plants, 11(19), 2516. https://doi.org/10.3390/plants11192516