Genetic Redundancy in Rye Shows in a Variety of Ways †
Abstract
:1. Introduction: The Concept of Genetic Redundancy (“Selfish DNA”) in Eukaryotes
2. Is Subtelomeric Heterochromatin in Rye a Harbor of Selfish DNA?
2.1. Tandem Repeats
2.2. Transposable Elements
2.3. Rye Genomic Libraries Detailed the Organization of Subtelomeric Heterochromatin
3. Gene Duplications
4. Conclusions: The Concept of Genetic Redundancy in Eukaryotes Revisited
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohno, S. So much “junk” DNA in our genome. Brookhaven Symp. Biol. 1972, 23, 366–370. [Google Scholar] [PubMed]
- Britten, R.J.; Kohne, D.E. Repeated sequences in DNA. Science 1968, 161, 529–540. [Google Scholar] [CrossRef]
- Agren, J.A.; Wright, S.I. Selfish genetic elements and plant genome size evolution. Trends Plant Sci. 2015, 20, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Zhang, Z.; Krause, H.M. Long noncoding RNAs and repetitive elements: Junk or intimate evolutionary partners? Trends Genet. 2019, 35, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doolittle, W.F.; Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 1980, 284, 601–603. [Google Scholar] [CrossRef] [PubMed]
- Orgel, L.E.; Crick, F.H.C. Selfish DNA: The ultimate parasite. Nature 1980, 284, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.C.; Taft, R.J.; Faulkner, G.I. A global view of genomic information—Moving beyond the gene and the master regulator. Trends Genet. 2009, 26, 21–28. [Google Scholar] [CrossRef] [PubMed]
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. Metazoan microRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Doolittle, W.D.; Brunet, T.D.P. On causal roles and selected effects: Our genome is mostly junk. BMC Biol. 2017, 15, 116. [Google Scholar] [CrossRef] [Green Version]
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. Plant DNA C-Values Database (Release 7.1). 2019. Available online: https://cvalues.science.kew.org/ (accessed on 12 September 2022).
- Rabinowicz, P.D.; Bennetzen, J.L. The maize genome as a model for efficient sequence analysis of large plant genomes. Curr. Opin. Plant Biol. 2006, 9, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.-C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.; Zhu, T.; Wang, L.; McGuire, P.E.; et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018, 557, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Jayakodi, M.; Padmarasu, S.; Haberer, G.; Bonthala, V.; Gundlach, H.; Monat, C.; Lux, T.; Kamal, N.; Lang, D.; Himmelbach, A.; et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020, 588, 284–289. [Google Scholar] [CrossRef]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021, 53, 574–584. [Google Scholar] [CrossRef]
- Cuadrado, A.; Jouve, N. Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J. Hered. 2002, 93, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Flavell, R.B.; Bennett, M.D.; Smith, J.B.; Smith, D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 1974, 12, 257–269. [Google Scholar] [CrossRef]
- Bedbrook, J.R.; Jones, J.; O’Dell, M.; Tompson, R.; Flavell, R. A molecular description of telomeric heterochromatin in Secale species. Cell 1980, 19, 545–560. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Flavell, R.B. The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma 1982, 86, 595–612. [Google Scholar] [CrossRef]
- McIntyre, C.L.; Pereira, S.; Moran, L.B.; Appels, R. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 1990, 33, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Vershinin, A.V.; Schwarzacher, T.; Heslop-Harrison, J.S. The large-scale organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 1995, 7, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Ames, D.; Murphy, N.; Helentjaris, T.; Sun, N.; Chandler, V. Comparative analyses of human single- and multilocus tandem repeats. Genetics 2008, 7, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Evtushenko, E.V.; Levitsky, V.G.; Elisafenko, E.A.; Gunbin, K.V.; Belousov, A.I.; Šafář, J.; Doležel, J.; Vershinin, A.V. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genom. 2016, 17, 337. [Google Scholar] [CrossRef] [Green Version]
- Tek, A.L.; Song, J.; Macas, J.; Jiang, J. Sobo, a recently amplified satellite repeat of potato, and its amplifications for the origin of tandemly repeated sequences. Genetics 2005, 170, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Wolfgruber, T.K.; Presting, G.G. Tandem repeats derived from centromeric retrotransposons. BMC Genom. 2013, 14, 142. [Google Scholar] [CrossRef] [Green Version]
- Vondrak, T.; Robledillo, L.A.; Novak, P.; Koblizkova, A.; Neumann, P.; Macas, J. Characterization of repeat arrays in ulyra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020, 101, 484–500. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.P. Evolution of repeated DNA sequences by unequal crossover. Science 1976, 191, 528–535. [Google Scholar] [CrossRef]
- Dover, G. Molecular drive. A cohesive mode of species evolution. Nature 1982, 299, 111–117. [Google Scholar] [CrossRef]
- Charlesworth, B.; Sniegowski, P.; Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994, 371, 215–220. [Google Scholar] [CrossRef]
- Alkhimova, O.G.; Mazurok, N.A.; Potapova, T.A.; Zakian, S.M.; Heslop-Harrison, J.S.; Vershinin, A.V. Diverse patterns of the tandem repeats organization in rye. Chromosoma 2004, 113, 42–52. [Google Scholar] [CrossRef]
- Xin, Z.-Y.; Appels, R. Occurrence of rye (Secale cereale) 350-family DNA sequences in Agropyron and other Triticeae. Plant Syst. Evol. 1987, 160, 65–76. [Google Scholar] [CrossRef]
- Vershinin, A.V.; Alkhimova, E.G.; Heslop-Harrison, J.S. Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res. 1996, 4, 517–525. [Google Scholar] [CrossRef]
- Gaut, B.S. Evolutionary dynamics of grass genomes. New Phytol. 2002, 154, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Contento, A.; Heslop-Harrison, J.S.; Schwarzacher, T. Diversity of a major repetitive DNA sequence in diploid and polyploidy Triticeae. Cytogenet. Genome Res. 2005, 109, 34–42. [Google Scholar] [CrossRef]
- Taketa, S.; Ando, H.; Takeda, K.; Harrison, G.E.; Heslop-Harrison, J.S. The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 2000, 100, 169–176. [Google Scholar] [CrossRef]
- Charles, M.; Belcram, H.; Just, J.; Huneau, C.; Viollet, A.; Couloux, A.; Segurens, B.; Carter, M.; Huteau, V.; Coriton, O.; et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 2008, 180, 1071–1086. [Google Scholar] [CrossRef] [Green Version]
- Wicker, T.; Taudient, S.; Houben, A.; Keller, B.; Graner, A.; Platzer, M.; Stein, N. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provide evidence for parallel evolution of genome size in wheat and barley. Plant J. 2009, 59, 712–722. [Google Scholar] [CrossRef] [Green Version]
- Martis, M.M.; Zhou, R.; Haseneyer, G.; Schmutzer, T.; Vrana, J.; Kubalakova, M.; Konig, S.; Kugler, K.G.; Scholz, U.; Hackauf, B.; et al. Reticulate evolution of the rye genome. Plant Cell 2013, 25, 3685–3698. [Google Scholar] [CrossRef]
- Peterson-Burch, B.D.; Nettleton, D.; Voytas, D.F. Genomic neighbourhoods for Arabidopsis retrotransposons: A role for targeted integration in the distribution of the Metaviridae. Genome Biol. 2004, 5, R78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicient, C.M.; Kalendar, R.; Schulman, A.H. Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J. Mol. Evol. 2005, 61, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.; Freeman, C.; Auton, A.; Donnelly, P.; McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 2008, 40, 1124–1129. [Google Scholar] [CrossRef]
- Devlin, H.H.; Bingham, B.; Wakimoto, B.T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 1990, 125, 129–140. [Google Scholar] [CrossRef]
- Li, M.; Sun, C.; Xu, N.; Bian, P.; Tian, X.; Wang, X.; Wang, Y.; Jia, X.; Heller, R.; Wang, M.; et al. De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for thousands of core genes on microchromosomes and subtelomeric regions. Mol. Biol. Evol. 2022, 39, msac066. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Birchler, J.A.; Yang, H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell 2022, 34, 2466–2474. [Google Scholar] [CrossRef]
- Jiang, X.; Assis, R. Rapid functional divergence after small-scale gene duplication in grasses. BMC Evol. Biol. 2019, 19, 97. [Google Scholar] [CrossRef]
- Rastogi, S.; Liberles, D.A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 2005, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Evtushenko, E.V.; Elisafenko, E.A.; Gatzkaya, S.S.; Lipikhina, Y.A.; Houben, A.; Vershinin, A.V. Conserved molecular structure of the centromeric histone CENH3 in Secale and its phylogenetic relationships. Sci. Rep. 2017, 7, 17628. [Google Scholar] [CrossRef]
- Zhong, C.X.; Marshall, J.B.; Topp, C.; Mroczek, R.; Kato, A.; Nagaki, K.; Birchler, J.A.; Jiang, J.M.; Dawe, K.R. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 2002, 14, 2825–2836. [Google Scholar] [CrossRef]
- Nagaki, K.; Cheng, Z.K.; Yang, S.O.; Talbert, P.B.; Kim, M.; Jones, K.M.; Henikoff, S.; Buell, C.R.; Jiang, J.M. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 2004, 36, 138–145. [Google Scholar] [CrossRef]
- Elisafenko, E.A.; Evtushenko, E.V.; Vershinin, A.V. The origin and evolution of a two-component system of paralogous genes encoding the centromeric histone CENH3 in cereals. BMC Plant Biol. 2021, 21, 541. [Google Scholar] [CrossRef] [PubMed]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filgueiras, T.S.; Davis, J.I.; Morrone, O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 2015, 53, 117–137. [Google Scholar] [CrossRef]
- Evtushenko, E.V.; Elisafenko, E.A.; Gatzkaya, S.S.; Schubert, V.; Houben, A.; Vershinin, A.V. Expression of two rye CENH3 variants and their loading into centromeres. Plants 2021, 10, 2043. [Google Scholar] [CrossRef] [PubMed]
- Kursel, L.E.; Malik, H.S. Recurrent gene duplication leads to diverse repertoires of centromeric histones in Drosophila species. Mol. Biol. Evol. 2017, 34, 1445–1462. [Google Scholar] [CrossRef] [Green Version]
- Fagundes, N.J.R.; Bisso-Machado, R.; Figueiedo, P.I.C.C.; Varal, M.; Zani, A.L.S. What we talk about when we talk about “junk DNA”. Genome Biol. Evol. 2022, 14, evac055. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 1978, 34, 247–278. [Google Scholar] [CrossRef]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 2017, 18, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Brenner, S. Refuge of spandrels. Curr. Biol. 1998, 8, R669. [Google Scholar] [CrossRef]
- Freeling, M.; Xu, J.; Woodhouse, M.; Lisch, D. A solution to the C-value paradox and the function of junk DNA: The genome balance hypothesis. Mol. Plant 2015, 8, 899–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engreitz, J.M.; Ollikainen, N.; Guttman, M. Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 2016, 17, 756–770. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rands, C.M.; Meader, S.; Ponting, C.P.; Lunter, G. 8.2% of the human genome is consytrained: Variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 2014, 10, e1004525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponting, C. Biological function in the twiling zone of sequence conservation. BMC Biol. 2017, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzo, A.F.; Koonin, E.V. Functional long non-coding RNAs evolve from junk transcrips. Cell 2020, 185, 1151–1161. [Google Scholar] [CrossRef]
Species | Locus CENH3, kb | IS1, kb | IS1, % | IS2, kb | IS2, % | IS3, kb | IS3, % | Genes, kb | Genes, % |
---|---|---|---|---|---|---|---|---|---|
Oryza sativa | 15.32 | 0.95 | 6.20 | 1.53 | 9.99 | 12.82 | 83.68 | ||
Stipa sibirica | 19.87 | 1.59 | 8.00 | 5.88 | 29.60 | 1.03 | 5.20 | 11.37 | 57.20 |
Brachypodiumsylvaticum | 14.85 | 0.80 | 5.40 | 2.61 | 17.60 | 1.50 | 10.10 | 9.93 | 66.90 |
Avena sativa | 67.02 | 15.51 | 23.14 | 43.61 | 65.07 | 0.67 | 1.00 | 12.91 | 19.26 |
Bromus tectorum | 127.34 | 32.47 | 25.50 | 69.86 | 54.86 | 7.07 | 5.55 | 17.27 | 13.56 |
Hordeum spontaneum | 62.96 | 11.14 | 17.70 | 38.34 | 60.90 | 1.64 | 2.60 | 11.84 | 18.80 |
Hordeum vulgare | 106.24 | 18.91 | 17.80 | 71.82 | 67.60 | 0.21 | 0.20 | 15.30 | 14.40 |
Triticum urartu | 37.23 | 1.86 | 5.00 | 23.49 | 63.10 | 0.86 | 2.30 | 11.02 | 29.60 |
Triticum aestivum, Agenome | 64.44 | 1.80 | 2.80 | 50.84 | 78.90 | 0.84 | 1.30 | 10.95 | 17.00 |
Secale cereale | 218.32 | 0.70 | 0.32 | 189.55 | 86.82 | 16.16 | 7.40 | 11.84 | 5.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vershinin, A.V.; Elisafenko, E.A.; Evtushenko, E.V. Genetic Redundancy in Rye Shows in a Variety of Ways. Plants 2023, 12, 282. https://doi.org/10.3390/plants12020282
Vershinin AV, Elisafenko EA, Evtushenko EV. Genetic Redundancy in Rye Shows in a Variety of Ways. Plants. 2023; 12(2):282. https://doi.org/10.3390/plants12020282
Chicago/Turabian StyleVershinin, Alexander V., Evgeny A. Elisafenko, and Elena V. Evtushenko. 2023. "Genetic Redundancy in Rye Shows in a Variety of Ways" Plants 12, no. 2: 282. https://doi.org/10.3390/plants12020282
APA StyleVershinin, A. V., Elisafenko, E. A., & Evtushenko, E. V. (2023). Genetic Redundancy in Rye Shows in a Variety of Ways. Plants, 12(2), 282. https://doi.org/10.3390/plants12020282