Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content
Abstract
:1. Rye, an Ally to Wheat Breeding
2. A Case Study for Wheat Quality Breeding: Dietary Fibre Content
3. The Main Features of Arabinoxylan in Rye and Wheat
3.1. General Structure and Characteristics
3.2. Grain Localisation and Functionality
3.3. Variation of Arabinoxylan Content and Composition in Response to Environmental Conditions
4. The Genetic Basis of Arabinoxylan Content
4.1. Studies in Rye
4.2. Studies in Wheat
Chromosome Location | Associated Trait(s) 1 | Explained Variance | Type of Analysis 2 |
---|---|---|---|
1BL [87,90,91] | A:X of TOT-AX; A:X of WE-AX | 35–42% | QTL mapping |
WE-AX extract viscosity | 32–37% | QTL mapping | |
WE-AX extract viscosity | ≈27% | Meta-QTL analysis + GWAS validation | |
RV flour aqueous extract | 16–24% | QTL mapping + GWAS validation | |
1BS [91] | TOT-AX content | - | QTL mapping |
2A [92] | TOT-AX concentration | 13% | QTL mapping |
3A [90] | WE-AX content | - | GWAS |
3DL [90] | WE-AX extract viscosity; WE-AX content | - | Meta-QTL analysis + GWAS validation |
3D [92] | TOT-AX concentration | 4% | QTL mapping |
4D [92] | TOT-AX concentration | 19% | QTL mapping |
5B [90] | A:X of TOT-AX | - | GWAS |
6BS [90,91] | WE-AX extract viscosity; A:X of TOT-AX | ≈58% | QTL mapping + GWAS validation |
RV flour aqueous extract | ≈12 | ||
6BL [86,90] | WE-AX extract viscosity | ≈59% | QTL mapping + Meta-QTL analysis |
6B [92] | TOT-AX concentration | 3% | QTL mapping |
7A [88,90] | A:X of TOT-AX | - | GWAS |
Dough viscosity ascribed to soluble pentosans | - | QTL mapping | |
7B [90] | A:X of TOT-AX | - | GWAS |
5. Challenges with the Introgression of Rye Chromatin
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oettler, G. The Fortune of a Botanical Curiosity—Triticale: Past, Present and Future. J. Agric. Sci. 2005, 143, 329–346. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Introgressions Between Wheat and Rye. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics; Molnár-Láng, M., Ceoloni, C., Doležel, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–189. ISBN 978-3-319-23494-6. [Google Scholar]
- Crespo-Herrera, L.A.; Garkava-Gustavsson, L.; Åhman, I. A Systematic Review of Rye (Secale cereale L.) as a Source of Resistance to Pathogens and Pests in Wheat (Triticum Aestivum L.). Hereditas 2017, 154, 14. [Google Scholar] [CrossRef]
- Ehdaie, B.; Whitkus, R.W.; Waines, J.G. Root Biomass, Water-Use Efficiency, and Performance of Wheat–Rye Translocations of Chromosomes 1 and 2 in Spring Bread Wheat ‘Pavon’. Crop Sci. 2003, 43, 710–717. [Google Scholar] [CrossRef]
- Bertholdsson, N.-O.; Andersson, S.C.; Merker, A. Allelopathic Potential of Triticum Spp., Secale Spp. and Triticosecale Spp. and Use of Chromosome Substitutions and Translocations to Improve Weed Suppression Ability in Winter Wheat. Plant Breed. 2012, 131, 75–80. [Google Scholar] [CrossRef]
- Alheit, K.V.; Busemeyer, L.; Liu, W.; Maurer, H.P.; Gowda, M.; Hahn, V.; Weissmann, S.; Ruckelshausen, A.; Reif, J.C.; Würschum, T. Multiple-Line Cross QTL Mapping for Biomass Yield and Plant Height in Triticale (× Triticosecale Wittmack). Theor. Appl. Genet. 2014, 127, 251–260. [Google Scholar] [CrossRef]
- Niedziela, A.; Bednarek, P.T.; Labudda, M.; Mańkowski, D.R.; Anioł, A. Genetic Mapping of a 7R Al Tolerance QTL in Triticale (× Triticosecale Wittmack). J. Appl. Genet. 2014, 55, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Parmar, S.; Fulrath, N.; Kasarda, D.D.; Miller, T.E. Chromosomal Locations of the Structural Genes for Secalins in Wild Perennial Rye (Secale Montanum Guss.) and Cultivated Rye (S. cereale L.) Determined by Two-Dimensional Electrophoresis. Can. J. Genet. Cytol. 1986, 28, 76–83. [Google Scholar] [CrossRef]
- Graybosch, R.A.; Peterson, C.J.; Hansen, L.E.; Worrall, D.; Shelton, D.R.; Lukaszewski, A. Comparative Flour Quality and Protein Characteristics of 1BL/1RS and 1AL/1RS Wheat-Rye Translocation Lines. J. Cereal Sci. 1993, 17, 95–106. [Google Scholar] [CrossRef]
- Graybosch, R.A. Mini Review: Uneasy Unions: Quality Effects of Rye Chromatin Transfers to Wheat. J. Cereal Sci. 2001, 33, 3–16. [Google Scholar] [CrossRef]
- Shewry, P.R.; Charmet, G.; Branlard, G.; Lafiandra, D.; Gergely, S.; Salgó, A.; Saulnier, L.; Bedő, Z.; Mills, E.N.C.; Ward, J.L. Developing New Types of Wheat with Enhanced Health Benefits. Trends Food Sci. Technol. 2012, 25, 70–77. [Google Scholar] [CrossRef]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Nyström, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fraś, A.; et al. Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; Lieshout, L.V.; Mejborn, H.; Burley, V.J. Dietary Fibre in Europe: Current State of Knowledge on Definitions, Sources, Recommendations, Intakes and Relationships to Health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a WHO-FAO Expert Consultation. In Joint WHO-FAO Expert Consultation on Diet, Nutrition, and the Prevention of Chronic Diseases; WHO technical report series; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-120916-8.
- JMares, D.; Stone, B.A. Studies on Wheat Endosperm I. Chemical Composition and Ultrastructure of the Cell Walls. Aust. J. Biol. Sci. 1973, 26, 793–812. [Google Scholar] [CrossRef]
- Shewry, P.; Kosik, O.; Pellny, T.; Lovegrove, A. Wheat Cell Wall Polysaccharides (Dietary Fibre). In Wheat Quality For Improving Processing And Human Health; Igrejas, G., Ikeda, T.M., Guzmán, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 255–272. ISBN 978-3-030-34163-3. [Google Scholar]
- Totland, T.H.; Melnæs, B.K.; Lundberg-Hallén, N.; Helland-Kigen, K.M.; Lund-Blix, N.A.; Myhre, J.B.; Johansen, A.M.W.; Løken, E.B.; Andersen, L.F. Norkost 3. En Landsomfattende Kostholdsundersøkelse blant Menn og Kvinner i Norge i Alderen 18–70 år, 2010–2011; Helsedirektoratet: Oslo, Norway, 2012. [Google Scholar]
- Krems, C.; Walter, C.; Heuer, T.; Hoffmann, I. Nationale Verzehrsstudie II Lebensmittelverzehr und Nährstoffzufuhr auf Basis von 24h-Recalls; Max Rubner-Institut Bundesforschungsinstitut für Ernährung und Lebensmittel: Karlsruhe, Germany, 2013; p. 16. [Google Scholar]
- Szeitz-Szabó, M.; Bíró, L.; Bíró, G.; Sali, J. Dietary Survey in Hungary, 2009. Part I. Macronutrients, Alcohol, Caffeine, Fibre. Acta Aliment. 2011, 40, 142–152. [Google Scholar] [CrossRef]
- Pietinen, P.; Paturi, M.; Reinivuo, H.; Tapanainen, H.; Valsta, L.M. FINDIET 2007 Survey: Energy and Nutrient Intakes. Public Health Nutr. 2010, 13, 920–924. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Fagt, S.; Groth, M.V.; Christensen, T.; Biltoft-Jensen, A.P.; Matthiessen, J.; Andersen, N.L.; Kørup, K.; Hartkopp, H.B.; Ygil, K.H.; et al. Danskernes Kostvaner 2003–2008: Hovedresultater; DTU Fødevareinstituttet: Søborg, Denmark, 2010. [Google Scholar]
- van Rossum, C.T.M.; Fransen, H.P.; Verkaik-Kloosterman, J.; Buurma-Rethans, E.J.; Ocké, M.C. Dutch National Food Consumption Survey 2007–2010; National Institute for Public Health and the Environment: Utrecht, The Netherlands, 2011. [Google Scholar]
- Enghardt Barbieri, H.; Pearson, M.; Becker, W. Riksmaten—Barn 2003: Livsmedels- Och Näringsintag Bland Barn i Sverige; Livsmedelsverket: Uppsala, Sweden, 2006. [Google Scholar]
- Elmadfa, I. Austrian Nutrition Report 2008; Federal Ministry of Health: Vienna, Austria, 2009. [Google Scholar]
- Walton, J. National Adult Nutrition Survey; Irish Universities Nutrition Alliance: Dublin, Ireland, 2011. [Google Scholar]
- Sette, S.; Le Donne, C.; Piccinelli, R.; Arcella, D.; Turrini, A.; Leclercq, C. The Third Italian National Food Consumption Survey, INRAN-SCAI 2005–06—Part 1: Nutrient Intakes in Italy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 922–932. [Google Scholar] [CrossRef]
- Lin, Y.; Huybrechts, I.; Vandevijvere, S.; Bolca, S.; Keyzer, W.D.; Vriese, S.D.; Polet, A.; Neve, M.D.; Oyen, H.V.; Camp, J.V.; et al. Fibre Intake among the Belgian Population by Sex–Age and Sex–Education Groups and Its Association with BMI and Waist Circumference. Br. J. Nutr. 2011, 105, 1692–1703. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas-Barba, L.; Salvador, G.; Jover, L.; Raidó, B.; Ngo, J.; Plasencia, A. Trends in Energy and Nutrient Intake and Risk of Inadequate Intakes in Catalonia, Spain (1992–2003). Public Health Nutr. 2007, 10, 1354–1367. [Google Scholar] [CrossRef]
- Bénetier, C.; Bertin, M.; Calamassi-Tran, G.; Dubuisson, C.; Dufour, A.; Gauchard, F.; Lafay, L.; Lioret, S. Touvier Étude Individuelle Nationale des Consommations Alimentaires 2 (INCA 2) 2006–2007; Agence Française de Sécurité Sanitaire des Aliments: Val-de-Marne, France, 2009. [Google Scholar]
- Public Health England & Food Standards Agency. National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012); Public Health England & Food Standards Agency: London, UK, 2014. [Google Scholar]
- Gartaula, G.; Dhital, S.; Netzel, G.; Flanagan, B.M.; Yakubov, G.E.; Beahan, C.T.; Collins, H.M.; Burton, R.A.; Bacic, A.; Gidley, M.J. Quantitative Structural Organisation Model for Wheat Endosperm Cell Walls: Cellulose as an Important Constituent. Carbohydr. Polym. 2018, 196, 199–208. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Courtin, C.M.; Verbeke, K.; Van de Wiele, T.; Verstraete, W.; Delcour, J.A. Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011, 51, 178–194. [Google Scholar] [CrossRef]
- Ward, J.L.; Poutanen, K.; Gebruers, K.; Piironen, V.; Lampi, A.-M.; Nyström, L.; Andersson, A.A.M.; Boros, D.; Rakszegi, M.; Bedő, Z.; et al. The HEALTHGRAIN Cereal Diversity Screen: Concept, Results, and Prospects. J. Agric. Food Chem. 2008, 56, 9699–9709. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Boros, D.; Fraś, A.; Dynkowska, W.; Bedő, Z.; Rakszegi, M.; Delcour, J.A.; Courtin, C.M. Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Morris, C.F.; Bettge, A.D. Genotype and Environment Variation for Arabinoxylans in Hard Winter and Spring Wheats of the U.S. Pacific Northwest. Cereal Chem. 2009, 86, 88–95. [Google Scholar] [CrossRef]
- Vignola, M.B.; Moiraghi, M.; Salvucci, E.; Baroni, V.; Pérez, G.T. Whole Meal and White Flour from Argentine Wheat Genotypes: Mineral and Arabinoxylan Differences. J. Cereal Sci. 2016, 71, 217–223. [Google Scholar] [CrossRef]
- Török, K.; Szentmiklóssy, M.; Tremmel-Bede, K.; Rakszegi, M.; Tömösközi, S. Possibilities and Barriers in Fibre-Targeted Breeding: Characterisation of Arabinoxylans in Wheat Varieties and Their Breeding Lines. J. Cereal Sci. 2019, 86, 117–123. [Google Scholar] [CrossRef]
- Glitsø, L.V.; Bach Knudsen, K.E. Milling of Whole Grain Rye to Obtain Fractions with Different Dietary Fibre Characteristics. J. Cereal Sci. 1999, 29, 89–97. [Google Scholar] [CrossRef]
- Jürgens, H.-U.; Jansen, G.; Wegener, C. Characterisation of Several Rye Cultivars with Respect to Arabinoxylans and Extract Viscosity. J. Agric. Sci. 2012, 4, p1. [Google Scholar] [CrossRef]
- Siekmann, D.; Jansen, G.; Zaar, A.; Kilian, A.; Fromme, F.J.; Hackauf, B. A Genome-Wide Association Study Pinpoints Quantitative Trait Genes for Plant Height, Heading Date, Grain Quality, and Yield in Rye (Secale cereale L.). Front. Plant Sci. 2021, 12, 718081. [Google Scholar] [CrossRef]
- Rakha, A.; Åman, P.; Andersson, R. Dietary Fiber in Triticale Grain: Variation in Content, Composition, and Molecular Weight Distribution of Extractable Components. J. Cereal Sci. 2011, 54, 324–331. [Google Scholar] [CrossRef]
- Saini, H.S.; Henry, R.J. Fractionation and Evaluation of Triticale Pentosans: Comparison with Wheat and Rye. Cereal Chem. 1989, 66, 11–14. [Google Scholar]
- Dennett, A.L.; Wilkes, M.A.; Trethowan, R.M. Characteristics of Modern Triticale Quality: The Relationship Between Carbohydrate Properties, α-Amylase Activity, and Falling Number. Cereal Chem. 2013, 90, 594–600. [Google Scholar] [CrossRef]
- Varughese, G.; Barker, T.; Saari, E. Triticale; CIMMYT: Texcoco, Mexico, 1987; pp. 5–6. ISBN 978-968-6127-11-9. [Google Scholar]
- Schneider, A.; Rakszegi, M.; Molnár-Láng, M.; Szakács, É. Production and Cytomolecular Identification of New Wheat-Perennial Rye (Secale cereanum) Disomic Addition Lines with Yellow Rust Resistance (6R) and Increased Arabinoxylan and Protein Content (1R, 4R, 6R). Theor. Appl. Genet. 2016, 129, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Szakács, É.; Szőke-Pázsi, K.; Kalapos, B.; Schneider, A.; Ivanizs, L.; Rakszegi, M.; Vida, G.; Molnár, I.; Molnár-Láng, M. 1RS Arm of Secale Cereanum ‘Kriszta’ Confers Resistance to Stripe Rust, Improved Yield Components and High Arabinoxylan Content in Wheat. Sci. Rep. 2020, 10, 1792. [Google Scholar] [CrossRef] [PubMed]
- Szakács, É.; Schneider, A.; Rakszegi, M.; Molnár-Láng, M. Addition of Chromosome 4R from Hungarian Rye Cultivar Lovászpatonai Confers Resistance to Stripe Rust and Outstanding End-Use Quality in Wheat. J. Cereal Sci. 2016, 71, 204–206. [Google Scholar] [CrossRef]
- Saulnier, L.; Sado, P.-E.; Branlard, G.; Charmet, G.; Guillon, F. Wheat Arabinoxylans: Exploiting Variation in Amount and Composition to Develop Enhanced Varieties. J. Cereal Sci. 2007, 46, 261–281. [Google Scholar] [CrossRef]
- Cyran, M.; Courtin, C.M.; Delcour, J.A. Structural Features of Arabinoxylans Extracted with Water at Different Temperatures from Two Rye Flours of Diverse Breadmaking Quality. J. Agric. Food Chem. 2003, 51, 4404–4416. [Google Scholar] [CrossRef]
- Cyran, M.; Courtin, C.M.; Delcour, J.A. Heterogeneity in the Fine Structure of Alkali-Extractable Arabinoxylans Isolated from Two Rye Flours with High and Low Breadmaking Quality and Their Coexistence with Other Cell Wall Components. J. Agric. Food Chem. 2004, 52, 2671–2680. [Google Scholar] [CrossRef]
- Piber, M.; Koehler, P. Identification of Dehydro-Ferulic Acid-Tyrosine in Rye and Wheat: Evidence for a Covalent Cross-Link between Arabinoxylans and Proteins. J. Agric. Food Chem. 2005, 53, 5276–5284. [Google Scholar] [CrossRef]
- Buksa, K.; Praznik, W.; Loeppert, R.; Nowotna, A. Characterization of Water and Alkali Extractable Arabinoxylan from Wheat and Rye under Standardized Conditions. J. Food Sci. Technol. 2016, 53, 1389–1398. [Google Scholar] [CrossRef]
- Dornez, E.; Holopainen, U.; Cuyvers, S.; Poutanen, K.; Delcour, J.A.; Courtin, C.M.; Nordlund, E. Study of Grain Cell Wall Structures by Microscopic Analysis with Four Different Staining Techniques. J. Cereal Sci. 2011, 54, 363–373. [Google Scholar] [CrossRef]
- Palmer, R.; Cornuault, V.; Marcus, S.E.; Knox, J.P.; Shewry, P.R.; Tosi, P. Comparative in Situ Analyses of Cell Wall Matrix Polysaccharide Dynamics in Developing Rice and Wheat Grain. Planta 2015, 241, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Chateigner-Boutin, A.-L.; Alvarado, C.; Devaux, M.-F.; Durand, S.; Foucat, L.; Geairon, A.; Grélard, F.; Jamme, F.; Rogniaux, H.; Saulnier, L.; et al. The Endosperm Cavity of Wheat Grains Contains a Highly Hydrated Gel of Arabinoxylan. Plant Sci. 2021, 306, 110845. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Z. Contrast Observation and Investigation of Wheat Endosperm Transfer Cells and Nucellar Projection Transfer Cells. Plant Cell Rep. 2011, 30, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.B.; Gifford, R.M. Accumulation and Conversion of Sugars by Developing Wheat Grains 1: VII. Effect of Changes in Sieve Tube and Endosperm Cavity Sap Concentrations on the Grain Filling Rate. Plant Physiol. 1987, 84, 341–347. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Biliaderis, C.G. Cereal Arabinoxylans: Advances in Structure and Physicochemical Properties. Carbohydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Landillon, V.; Morel, M.-H.; Rouau, X.; Doublier, J.-L.; Micard, V. Arabinoxylan Gels: Impact of the Feruloylation Degree on Their Structure and Properties. Biomacromolecules 2005, 6, 309–317. [Google Scholar] [CrossRef]
- Ying, R.; Rondeau-Mouro, C.; Barron, C.; Mabille, F.; Perronnet, A.; Saulnier, L. Hydration and Mechanical Properties of Arabinoxylans and β-D-Glucans Films. Carbohydr. Polym. 2013, 96, 31–38. [Google Scholar] [CrossRef]
- Ying, R.; Li, T.; Wu, C.; Huang, M. Role of Aleurone Cell Walls in Water Diffusion and Distribution within Cereal Grains. J. Cereal Sci. 2020, 93, 102952. [Google Scholar] [CrossRef]
- Gao, X.; Ying, R.; Zhao, D.; Zhu, J.; Gao, X.; Ying, R.; Zhao, D.; Zhu, J. Variation in Cell Wall Structure and Composition of Wheat Grain Based on Geography and Regulatory Effect of Cell Wall on Water Mobility. Funct. Plant Biol. 2020, 47, 840–852. [Google Scholar] [CrossRef]
- Toole, G.A.; Wilson, R.H.; Parker, M.L.; Wellner, N.K.; Wheeler, T.R.; Shewry, P.R.; Mills, E.N.C. The Effect of Environment on Endosperm Cell-Wall Development in Triticum Aestivum during Grain Filling: An Infrared Spectroscopic Imaging Study. Planta 2007, 225, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Toole, G.A.; Barron, C.; Le Gall, G.; Colquhoun, I.J.; Shewry, P.R.; Mills, E.N.C. Remodelling of Arabinoxylan in Wheat (Triticum Aestivum) Endosperm Cell Walls during Grain Filling. Planta 2009, 229, 667–680. [Google Scholar] [CrossRef]
- Dornez, E.; Gebruers, K.; Joye, I.J.; De Ketelaere, B.; Lenartz, J.; Massaux, C.; Bodson, B.; Delcour, J.A.; Courtin, C.M. Effects of Genotype, Harvest Year and Genotype-by-Harvest Year Interactions on Arabinoxylan, Endoxylanase Activity and Endoxylanase Inhibitor Levels in Wheat Kernels. J. Cereal Sci. 2008, 47, 180–189. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Andersson, A.A.M.; Åman, P.; Fraś, A.; et al. Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9372–9383. [Google Scholar] [CrossRef] [PubMed]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of Heat and Drought Stress on the Structure and Composition of Arabinoxylan and β-Glucan in Wheat Grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Chang, S.X.; Anyia, A.O. Water-Deficit and High Temperature Affected Water Use Efficiency and Arabinoxylan Concentration in Spring Wheat. J. Cereal Sci. 2010, 52, 263–269. [Google Scholar] [CrossRef]
- Boros, D.; Lukaszewski, A.J.; Aniol, A.; Ochodzki, P. Chromosome Location of Genes Controlling the Content of Dietary Fibre and Arabinoxylans in Rye. Euphytica 2002, 128, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A High-Quality Genome Assembly Highlights Rye Genomic Characteristics and Agronomically Important Genes. Nat. Genet. 2021, 53, 574–584. [Google Scholar] [CrossRef]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-Scale Genome Assembly Provides Insights into Rye Biology, Evolution and Agronomic Potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Kozlova, L.V.; Nazipova, A.R.; Gorshkov, O.V.; Gilmullina, L.F.; Sautkina, O.V.; Petrova, N.V.; Trofimova, O.I.; Ponomarev, S.N.; Ponomareva, M.L.; Gorshkova, T.A. Identification of Genes Involved in the Formation of Soluble Dietary Fiber in Winter Rye Grain and Their Expression in Cultivars with Different Viscosities of Wholemeal Water Extract. Crop J. 2022, 10, 532–549. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical Maps Refine the Bread Wheat Triticum Aestivum Cv. Chinese Spring Genome Assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Pellny, T.K.; Patil, A.; Wood, A.J.; Freeman, J.; Halsey, K.; Plummer, A.; Kosik, O.; Temple, H.; Collins, J.D.; Dupree, P.; et al. Loss of TaIRX9b Gene Function in Wheat Decreases Chain Length and Amount of Arabinoxylan in Grain but Increases Cross-Linking. Plant Biotechnol. J. 2020, 18, 2316–2327. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Wilkinson, M.D.; Freeman, J.; Pellny, T.K.; Tosi, P.; Saulnier, L.; Shewry, P.R.; Mitchell, R.A.C. RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content. Plant Physiol. 2013, 163, 95–107. [Google Scholar] [CrossRef]
- Pellny, T.K.; Lovegrove, A.; Freeman, J.; Tosi, P.; Love, C.G.; Knox, J.P.; Shewry, P.R.; Mitchell, R.A.C. Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq Transcriptome. Plant Physiol. 2012, 158, 612–627. [Google Scholar] [CrossRef]
- Zeng, W.; Jiang, N.; Nadella, R.; Killen, T.L.; Nadella, V.; Faik, A. A Glucurono(Arabino)Xylan Synthase Complex from Wheat Contains Members of the GT43, GT47, and GT75 Families and Functions Cooperatively. Plant Physiol. 2010, 154, 78–97. [Google Scholar] [CrossRef]
- Anders, N.; Wilkinson, M.D.; Lovegrove, A.; Freeman, J.; Tryfona, T.; Pellny, T.K.; Weimar, T.; Mortimer, J.C.; Stott, K.; Baker, J.M.; et al. Glycosyl Transferases in Family 61 Mediate Arabinofuranosyl Transfer onto Xylan in Grasses. Proc. Natl. Acad. Sci. USA 2012, 109, 989–993. [Google Scholar] [CrossRef]
- St-Pierre, B.; De Luca, V. Chapter Nine—Evolution of Acyltransferase Genes: Origin and Diversification of the BAHD Superfamily of Acyltransferases Involved in Secondary Metabolism. In Recent Advances in Phytochemistry; Romeo, J.T., Ibrahim, R., Varin, L., De Luca, V., Eds.; Evolution of Metabolic Pathways; Elsevier: Amsterdam, The Netherlands, 2000; Volume 34, pp. 285–315. [Google Scholar]
- Mota, T.R.; de Souza, W.R.; Oliveira, D.M.; Martins, P.K.; Sampaio, B.L.; Vinecky, F.; Ribeiro, A.P.; Duarte, K.E.; Pacheco, T.F.; Monteiro, N.d.K.V.; et al. Suppression of a BAHD Acyltransferase Decreases P-Coumaroyl on Arabinoxylan and Improves Biomass Digestibility in the Model Grass Setaria Viridis. Plant J. 2021, 105, 136–150. [Google Scholar] [CrossRef]
- de Souza, W.R.; Martins, P.K.; Freeman, J.; Pellny, T.K.; Michaelson, L.V.; Sampaio, B.L.; Vinecky, F.; Ribeiro, A.P.; da Cunha, B.A.D.B.; Kobayashi, A.K.; et al. Suppression of a Single BAHD Gene in Setaria Viridis Causes Large, Stable Decreases in Cell Wall Feruloylation and Increases Biomass Digestibility. New Phytol. 2018, 218, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Hyde, L.S.; Pellny, T.K.; Freeman, J.; Michaelson, L.V.; Simister, R.; McQueen-Mason, S.J.; Mitchell, R.A.C. Response of Cell-Wall Composition and RNA-Seq Transcriptome to Methyl-Jasmonate in Brachypodium Distachyon Callus. Planta 2018, 248, 1213–1229. [Google Scholar] [CrossRef]
- Burr, S.J.; Fry, S.C. Feruloylated Arabinoxylans Are Oxidatively Cross-Linked by Extracellular Maize Peroxidase but Not by Horseradish Peroxidase. Mol. Plant 2009, 2, 883–892. [Google Scholar] [CrossRef]
- Charmet, G.; Masood-Quraishi, U.; Ravel, C.; Romeuf, I.; Balfourier, F.; Perretant, M.R.; Joseph, J.L.; Rakszegi, M.; Guillon, F.; Sado, P.E.; et al. Genetics of Dietary Fibre in Bread Wheat. Euphytica 2009, 170, 155. [Google Scholar] [CrossRef]
- Martinant, J.P.; Cadalen, T.; Billot, A.; Chartier, S.; Leroy, P.; Bernard, M.; Saulnier, L.; Branlard, G. Genetic Analysis of Water-Extractable Arabinoxylans in Bread Wheat Endosperm. Theor. Appl. Genet. 1998, 97, 1069–1075. [Google Scholar] [CrossRef]
- Groos, C.; Bervas, E.; Chanliaud, E.; Charmet, G. Genetic Analysis of Bread-Making Quality Scores in Bread Wheat Using a Recombinant Inbred Line Population. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2007, 115, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Thi Bach Tuyet Lam; Iiyama, K.; Stone, B.A. Caffeic Acid: O-Methyltransferases and the Biosynthesis of Ferulic Acid in Primary Cell Walls of Wheat Seedlings. Phytochemistry 1996, 41, 1507–1510. [Google Scholar] [CrossRef]
- Quraishi, U.M.; Murat, F.; Abrouk, M.; Pont, C.; Confolent, C.; Oury, F.X.; Ward, J.; Boros, D.; Gebruers, K.; Delcour, J.A.; et al. Combined Meta-Genomics Analyses Unravel Candidate Genes for the Grain Dietary Fiber Content in Bread Wheat (Triticum aestivum L.). Funct. Integr. Genom. 2011, 11, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Wingen, L.U.; Plummer, A.; Wood, A.; Passmore, D.; Kosik, O.; Freeman, J.; Mitchell, R.A.C.; Hassall, K.; Ulker, M.; et al. Identification of a Major QTL and Associated Molecular Marker for High Arabinoxylan Fibre in White Wheat Flour. PLoS ONE 2020, 15, e0227826. [Google Scholar] [CrossRef]
- Nguyen, V.-L.; Huynh, B.-L.; Wallwork, H.; Stangoulis, J. Identification of Quantitative Trait Loci for Grain Arabinoxylan Concentration in Bread Wheat. Crop Sci. 2011, 51, 1143–1150. [Google Scholar] [CrossRef]
- Bouguennec, A.; Lesage, V.S.; Gateau, I.; Sourdille, P.; Jahier, J.; Lonnet, P. Transfer of Recessive Skr Crossability Trait into Well-Adapted French Wheat Cultivar Barok through Marker-Assisted Backcrossing Method. Cereal Res. Commun. 2018, 46, 604–615. [Google Scholar] [CrossRef]
- Alfares, W.; Bouguennec, A.; Balfourier, F.; Gay, G.; Bergès, H.; Vautrin, S.; Sourdille, P.; Bernard, M.; Feuillet, C. Fine Mapping and Marker Development for the Crossability Gene SKr on Chromosome 5BS of Hexaploid Wheat (Triticum Aestivum L.). Genetics 2009, 183, 469–481. [Google Scholar] [CrossRef]
- Riley, R.; Chapman, V. The Inheritance in Wheat of Crossability with Rye. Genet. Res. 1967, 9, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Molnár-Láng, M. The Crossability of Wheat with Rye and Other Related Species. In Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics; Molnár-Láng, M., Ceoloni, C., Doležel, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–120. ISBN 978-3-319-23494-6. [Google Scholar]
- Bauer, E.; Schmutzer, T.; Barilar, I.; Mascher, M.; Gundlach, H.; Martis, M.M.; Twardziok, S.O.; Hackauf, B.; Gordillo, A.; Wilde, P.; et al. Towards a Whole-Genome Sequence for Rye (Secale Cereale L.). Plant J. 2017, 89, 853–869. [Google Scholar] [CrossRef] [PubMed]
- Devos, K.M.; Atkinson, M.D.; Chinoy, C.N.; Francis, H.A.; Harcourt, R.L.; Koebner, R.M.D.; Liu, C.J.; Masojć, P.; Xie, D.X.; Gale, M.D. Chromosomal Rearrangements in the Rye Genome Relative to That of Wheat. Theor. Appl. Genet. 1993, 85, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, T.; Fernández-Rueda, P. Homoeology of Rye Chromosome Arms to Wheat. Theor. Appl. Genet. 1991, 82, 577–586. [Google Scholar] [CrossRef]
Chromosome Location | Rye Chromatin Source | Effect 1 | Observed In |
---|---|---|---|
1RS [47] | S. cereanum (S. cereale × S. montanum) | ↑ AX | Wheat–rye 1BL/1RS translocation line |
1R [46] | Secale cereanum (S. cereale × S. montanum) | ↑ TOT-AX, ↑ WE-AX | Wheat–rye disomic addition line |
2R [70] | S. cereale | ↑ Soluble DF, ↑ AX | Wheat–rye disomic addition line/centric wheat–rye translocation lines |
4R [46] | Secale cereanum (S. cereale × S. montanum) | ↑ TOT-AX, ↑ WE-AX | Wheat–rye disomic addition line |
4R [47] | S. cereale | ↑ TOT-AX, ↑ WE-AX | Wheat–rye disomic addition line |
5R [70] | S. cereale | ↑ Soluble DF, ↑ AX | Wheat–rye disomic addition/single D-substituted triticale |
6RS (or proximal L) [70] | S. cereale | ↑ Soluble DF, ↑ AX | Wheat–rye disomic addition/single D-substituted triticale |
6R [46] | S. cereanum (S. cereale × S. montanum) | ↑ TOT-AX, ↑ WE-AX | Wheat–rye disomic addition line |
No. of DEGs | Chromosome Locations | Putative Gene | Protein Family | Biochemical Process |
---|---|---|---|---|
2 | 2R, 7R | IRX14 | GT43 | Biosynthesis of xylan backbone |
5 | 1R, 3R, 7R | IRX9 | GT43 | |
5 | 2R, 3R, 5R | IRX10 | GT47 (clade D) | |
2 | 4R, 6R | XAT1 | GT61 (clade A) | (O)3 Arabinofuranosylmono-substitution |
1 | 3R | BAHD01 | BAHD | Feruloylation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piro, M.C.; Muylle, H.; Haesaert, G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. Plants 2023, 12, 737. https://doi.org/10.3390/plants12040737
Piro MC, Muylle H, Haesaert G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. Plants. 2023; 12(4):737. https://doi.org/10.3390/plants12040737
Chicago/Turabian StylePiro, Maria Chiara, Hilde Muylle, and Geert Haesaert. 2023. "Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content" Plants 12, no. 4: 737. https://doi.org/10.3390/plants12040737
APA StylePiro, M. C., Muylle, H., & Haesaert, G. (2023). Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. Plants, 12(4), 737. https://doi.org/10.3390/plants12040737