Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize
Abstract
:1. Introduction
2. Results
2.1. Grain Yield and Yield Components
2.2. Grain Component Content
2.3. Starch Granule Size and Distribution
2.4. Pasting Properties of Waxy Maize Flour
2.5. Thermal Properties of Waxy Maize Flour
2.6. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Grain Yield and Yield Components
4.3. Grain Component Content
4.4. Preparation of Starch and Flour Samples
4.5. Starch Granule Size and Distribution
4.6. Pasting Property and Thermal Property of Waxy Maize Flour
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Wang, H.; Yang, H.; Wu, J.; Shi, B.; Cai, R.; Xu, Y.; Wu, A.; Luo, L. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS ONE 2013, 8, e66606. [Google Scholar] [CrossRef]
- Gu, X.; Yang, S.; Li, G.; Lu, W.; Lu, D. Starch morphological, structural, pasting, and thermal properties of waxy maize under different heat stress durations at grain formation stage. Food Energy Secur. 2022, 11, e378. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Szmigiel, A.; Zajac, T.; Kidacka, A. Some aspects of cultivation and utilization of waxy maize (Zea mays L. ssp. ceratina). Acta Agrobot. 2012, 65, 3–12. [Google Scholar] [CrossRef]
- Moore, C.O.; Tuschhoff, J.V.; Hastings, C.W.; Schanefelt, R.V. Chapter xix—applications of starches in foods. In Starch: Chemistry and Technology, 2nd ed.; Whistler, R.L., Bemiller, J.N., Paschall, E.F., Eds.; Food Science and Technology; Academic Press: San Diego, CA, USA, 1984; pp. 575–591. [Google Scholar]
- Tian, M.; Tan, G.; Liu, Y.; Rong, T.; Huang, Y. Origin and evolution of Chinese waxy maize: Evidence from the Globulin-1 gene. Genet. Resour. Crop Evol. 2009, 56, 247–255. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.L.; Xie, J.; Liu, Y.; Xie, J.; Anwar, S.; Fudjoe, S.K. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Front. Plant Sci. 2022, 12, 798119. [Google Scholar] [CrossRef]
- Gaj, R.; Gorski, D.; Przybyl, J. Effect of differentiated phosphorus and potassium fertilization on winter wheat yield and quality. J. Elem. 2013, 18, 55–67. [Google Scholar] [CrossRef]
- Ochieng, I.O.; Gitari, H.I.; Mochoge, B.; Rezaei Chiyaneh, E.; Gweyi Onyango, J.P. Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. J. Soil Sci. Plant Nutr. 2021, 21, 1867–1880. [Google Scholar] [CrossRef]
- Zhao, F.C.; Jing, L.Q.; Wang, D.C.; Bao, F.; Lu, W.P.; Wang, G.Y. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci. Rep. 2018, 8, 6343. [Google Scholar] [CrossRef]
- Olckers, S.L.; Osthoff, G.; Ng, P.K.W.; van Biljon, A.; Labuschagne, M. The impact of low nitrogen conditions on the chemical composition and flour pasting properties of quality protein maize. Cereal Res. Commun. 2022. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Z.R.; Fu, P.X.; Lu, W.P.; Lu, D.L. Effects of nitrogen rates on the physicochemical properties of waxy maize starch. Starch-Starke 2019, 71, 1900146. [Google Scholar] [CrossRef]
- Ullah, A. Response of maize hybrids to varying potassium application in Pakistan. Pak. J. Agr. Sci. 2009, 46, 179–184. [Google Scholar]
- Cheng, G.Q.; Wang, X.; Lu, D.L.; Lu, W.P. Effects of basic fertilizer ratio and nitrogen topdressing at jointing stage on thermal properties of fresh waxy maize grain. J. Maize Sci. 2014, 22, 102–107+113. [Google Scholar]
- Lu, D.L.; Wang, X.; Sun, X.; Xu, R.C.; Yan, F.B.; Lu, W.P. Effects of basic fertilizer ratio and nitrogen top-dressing at jointing stage on pasting properties of waxy maize flour. Sci. Agric. Sin. 2013, 46, 909–916. [Google Scholar]
- Zhou, T.Y.; Zhou, Q.; Li, E.P.; Yuan, L.M.; Wang, W.L.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Yang, J.C.; Gu, J.F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohyd. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef]
- Bahmaniar, M.A.; Ranjbar, G.A. Response of rice (Oryza sativa L.) cooking quality properties to nitrogen and potassium application. Pak. J. Bio. Sci. 2007, 10, 1880–1884. [Google Scholar] [CrossRef]
- Atapattu, A.J.; Prasantha, B.D.R.; Amaratunga, K.S.P.; Marambe, B. Increased rate of potassium fertilizer at the time of heading enhances the quality of direct seeded rice. Chem. Biol. Technol. Agric. 2018, 5, 22. [Google Scholar] [CrossRef]
- Gunaratne, A.; Sirisena, N.; Ratnayaka, U.K.; Ratnayaka, J.; Kong, X.; Vidhana Arachchi, L.P.; Corke, H. Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. J. Sci. Food Agric. 2011, 91, 1271–1276. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Nowotna, A.; Gambuś, H.; Kratsch, G.; Krawontka, J.; Gambuś, F.; Sabat, R.; Ziobro, R. Effect of nitrogen fertilization on the physico-chemical properties of starch isolated from german triticale varieties. Starch-Starke 2007, 59, 397–399. [Google Scholar] [CrossRef]
- Guttieri, M.J.; McLean, R.; Stark, J.C.; Souza, E. Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality. Crop Sci. 2005, 45, 2049–2059. [Google Scholar] [CrossRef]
- Zou, T.X.; Dai, T.B.; Jiang, D.; Jing, Q.; Cao, W.X. Effects of nitrogen and potassium on key regulatory enzyme activities for grain starch in winter wheat. Sci. Agric. Sin. 2008, 41, 3858–3864. [Google Scholar]
- Shi, Y.; Xu, L.; Zhao, J.; Lu, B.; Fan, Y. Waxy maize industry advantages in China and opportunities in the development of the belt and road. Crops 2019, 35, 15–19. [Google Scholar]
- Liu, Z.; Sun, K.; Liu, W.; Gao, T.; Li, G.; Han, H.; Li, Z.; Ning, T. Responses of soil carbon, nitrogen, and wheat and maize productivity to 10 years of decreased nitrogen fertilizer under contrasting tillage systems. Soil Tillage Res. 2020, 196, 104444. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.F.; Wu, W.H. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Yu, W.; Yue, Y.; Wang, F. The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain. Agric. Syst. 2022, 196, 103330. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.-P.; Honermeier, B. Mineral NPK and manure fertilisation affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Ebelhar, S.A.; Varsa, E.C. Applications in sustainable production. Commun. Soil Sci. Plan 2000, 31, 2367–2377. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Bordoli, J.M.; Borges, R. Phosphorus and potassium placement effects on early growth and nutrient uptake of no-till corn and relationships with grain yield. Agron. J. 1999, 91, 37–45. [Google Scholar] [CrossRef]
- Bruns, H.A.; Ebelhar, M.W. Nutrient uptake of maize affected by nitrogen and potassium fertility in a humid subtropical environment. Commun. Soil Sci. Plant Anal. 2006, 37, 275–293. [Google Scholar] [CrossRef]
- Rossini, M.A.; Maddonni, G.A.; Otegui, M.E. Inter-Plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Res. 2011, 121, 373–380. [Google Scholar] [CrossRef]
- Li, W.Y.; Tan, Z.; Li, R.; Yuan, J.X.; Yan, S.H.; Li, C.F. Starch accumulation, size distribution and related enzyme activity in superior and inferior kernels of maize under different nitrogen rates. Pak. J. Bot. 2021, 53, 105–111. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Rawat, J.; Pandey, N.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Yang, S.M.; Li, F.M.; Malhi, S.S.; Wang, P.; Suo, D.R.; Wang, J.G. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China. Agron. J. 2004, 96, 1039–1049. [Google Scholar] [CrossRef]
- Sedri, M.H.; Roohi, E.; Niazian, M.; Niedbala, G. Interactive effects of nitrogen and potassium fertilizers on quantitative-qualitative traits and drought tolerance indices of rainfed wheat cultivar. Agronomy 2022, 12, 30. [Google Scholar] [CrossRef]
- Yang, L.; Chi, Y.X.; Wang, Y.F.; Zeeshan, M.; Zhou, X.B. Gradual application of potassium fertilizer elevated the sugar conversion mechanism and yield of waxy and sweet fresh-eaten maize in the semiarid cold region. J. Food Qual. 2021, 2021, 6611124. [Google Scholar] [CrossRef]
- Simkova, D.; Lachman, J.; Hamouz, K.; Vokal, B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 2013, 141, 3872–3880. [Google Scholar] [CrossRef]
- Hasjim, J.; Li, E.; Dhital, S. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr. Polym. 2013, 92, 682–690. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Moller, I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of the Analysis, 11th ed.; The Association: St. Paul, MN, USA, 1999. [Google Scholar]
- Lu, D.L.; Lu, W.P. Effects of protein removal on the physicochemical properties of waxy maize flours. Starch-Starke 2012, 64, 874–881. [Google Scholar] [CrossRef]
- Yang, H.; Lu, D.L.; Shen, X.; Cai, X.M.; Lu, W.P. Heat stress at different grain filling stages affects fresh waxy maize grain yield and quality. Cereal Chem. 2015, 92, 258–264. [Google Scholar] [CrossRef]
Year | Fertilization | SYN5 | SYN11 | |||||
Kernels per | 1000-Kernel | Grain Yield | Kernels per | 1000-Kernel | Grain Yield | |||
Ear | Weight (g) | (kg ha−1) | Ear | Weight (g) | (kg ha−1) | |||
2020 | N180K0 | 415.7c | 261.5f | 7584.1e | 394.2e | 296.3e | 8148.1d | |
N180K75 | 462.2a | 266.3ef | 8587.6c | 416.8d | 315.0ab | 9159.0c | ||
N180K150 | 463.2a | 271.0de | 8757.3c | 449.4ab | 301.4de | 9450.8b | ||
N180K75 + 75 | 441.2b | 284.9c | 8769.4c | 443.3bc | 304.5cd | 9414.3b | ||
N225K0 | 410.8c | 275.8d | 7900.8d | 389.1e | 302.8d | 8218.4d | ||
N225K75 | 459.4a | 286.1bc | 9170.4b | 448.8ab | 309.7bc | 9696.4a | ||
N225K150 | 455.5a | 291.9b | 9275.4ab | 437.9c | 317.7a | 9705.7a | ||
N225K75 + 75 | 431.2b | 313.2a | 9423.4a | 458.5a | 310.4b | 9928.8a | ||
2021 | N180K0 | 497.1d | 247.1e | 8570.9f | 483.4d | 280.8de | 9468.3f | |
N180K75 | 520.3b | 253.3cd | 9193.9d | 498.0c | 280.0de | 9727.9de | ||
N180K150 | 541.6a | 250.7de | 9472.7bc | 485.3cd | 294.1c | 9955.1cd | ||
N180K75 + 75 | 523.2b | 261.8b | 9555.0b | 548.0a | 275.8e | 10540.9ab | ||
N225K0 | 485.5e | 264.2b | 8950.2e | 481.4d | 284.6d | 9556.0ef | ||
N225K75 | 506.9c | 264.9b | 9368.6c | 516.7b | 279.7de | 10081.6c | ||
N225K150 | 535.7a | 256.2c | 9575.6b | 483.8d | 310.2a | 10468.2b | ||
N225K75 + 75 | 508.5c | 275.2a | 9761.0a | 511.3b | 301.0b | 10738.8a | ||
F-value | ||||||||
N | 29.7 ** | 329.5 ** | 179.4 ** | 0.3 | 69.7 ** | 68.0 ** | ||
K | 148.4 ** | 107.5 ** | 347.5 ** | 126.2 ** | 35.9 ** | 217.6 ** | ||
Y | 1965.4 ** | 602.8 ** | 516.6 ** | 1328.2 ** | 345.0 ** | 493.7 ** | ||
N × K | 0.5 | 3.2 * | 0.9 | 17.6 ** | 19.9 ** | 4.5 * | ||
N × Y | 2.4 | 24.4 ** | 30.4 ** | 11.1 ** | 6.9 * | 0.5 | ||
K × Y | 16.2 ** | 22.0 ** | 24.7 ** | 29.9 ** | 25.7 ** | 24.3 ** | ||
N × K × Y | 0.6 | 5.5 ** | 5.0 ** | 12.5 ** | 5.8 ** | 2.7 |
Year | Treatment | SYN5 | SYN11 | |||||
Starch | Soluble Sugar | Protein | Starch | Soluble Sugar | Protein | |||
(mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | |||
2020 | N180K0 | 624.1e | 36.2cd | 90.9bcd | 556.8f | 32.8c | 96.3c | |
N180K75 | 701.5a | 32.4e | 89.9cd | 656.2b | 32.9c | 100.4a | ||
N180K150 | 625.0e | 35.5d | 82.7e | 589.3e | 31.3d | 98.5b | ||
N180K75 + 75 | 634.2d | 37.3bc | 86.8de | 619.7d | 33.0c | 90.6f | ||
N225K0 | 686.0b | 40.5a | 91.4bc | 647.9c | 37.6a | 94.6d | ||
N225K75 | 653.2c | 35.6d | 95.2ab | 596.3e | 36.0b | 99.9ab | ||
N225K150 | 650.5c | 38.2b | 98.6a | 626.3d | 33.3c | 92.6e | ||
N225K75 + 75 | 705.5a | 41.1a | 92.5bc | 673.4a | 38.1a | 93.0de | ||
2021 | N180K0 | 659.9d | 34.9c | 89.9d | 573.4f | 37.1c | 87.4de | |
N180K75 | 680.4b | 35.8b | 94.9a | 648.1c | 34.7e | 90.2bc | ||
N180K150 | 669.0c | 39.2a | 92.8c | 577.9f | 37.3c | 93.5a | ||
N180K75 + 75 | 663.1cd | 38.9a | 93.9b | 685.8b | 32.3f | 86.1de | ||
N225K0 | 679.4b | 31.5e | 83.2g | 637.3d | 40.6a | 90.8b | ||
N225K75 | 660.9d | 30.3f | 88.7e | 634.4d | 39.3b | 85.2e | ||
N225K150 | 645.8e | 31.1ef | 92.2c | 626.5e | 35.9d | 95.4a | ||
N225K75 + 75 | 699.1a | 34.0d | 88.0f | 700.7a | 30.3g | 88.1cd | ||
F-value | ||||||||
N | 140.7 ** | 25.1 ** | 4.0 | 583.7 ** | 532.3 ** | 1.6 | ||
K | 98.7 ** | 83.0 ** | 8.5 ** | 650.8 ** | 218.5 ** | 57.3 ** | ||
Y | 55.7 ** | 189.2 ** | 1.2 | 147.0 ** | 214.4 ** | 372.0 ** | ||
N × K | 233.5 ** | 11.5 ** | 21.3 ** | 386.9 ** | 73.5 ** | 13.5 ** | ||
N × Y | 88.2 ** | 544.0 ** | 135.0 ** | 0.8 | 147.0 ** | 10.1 ** | ||
K × Y | 19.4 ** | 22.7 ** | 8.5 ** | 88.2 ** | 343.7 ** | 55.4 ** | ||
N × K × Y | 47.5 ** | 3.0 * | 3.6 * | 63.0 ** | 73.5 ** | 18.7 ** |
Year | Treatment | SYN5 | SYN11 | ||||||||||||
ΔHgel (J g−1) | To (℃) | Tp (℃) | Tc (℃) | ΔHret (J g−1) | %R (%) | ΔHgel (J g−1) | To (℃) | Tp (℃) | Tc (℃) | ΔHret (J g−1) | %R (%) | ||||
2020 | N180K0 | 8.7a | 71.2a | 76.9ab | 83.6ab | 3.2c | 36.5bc | 8.0ab | 70.3b | 75.9bc | 82.7b | 3.2bc | 39.7a | ||
N180K75 | 8.3a | 71.2a | 76.5c | 82.8bc | 4.3a | 51.8a | 7.1ab | 70.9a | 76.2ab | 82.4b | 3.4abc | 47.4a | |||
N180K150 | 8.9a | 71.4a | 76.6bc | 83.2bc | 4.1ab | 45.6ab | 8.3a | 70.4b | 76.0abc | 82.4b | 3.6ab | 44.1a | |||
N180K75+75 | 7.2b | 71.5a | 77.2a | 83.5bc | 3.3bc | 46.1ab | 7.4ab | 69.8c | 75.3d | 82.0b | 3.4ab | 46.7a | |||
N225K0 | 9.0a | 70.5b | 76.0d | 82.6c | 3.6abc | 40.3bc | 8.0ab | 70.3b | 75.8c | 82.9b | 3.6ab | 44.6a | |||
N225K75 | 8.6a | 71.2a | 76.4c | 82.6bc | 3.3bc | 38.7bc | 8.2a | 70.8a | 76.2a | 83.8a | 4.1a | 50.4a | |||
N225K150 | 9.1a | 71.5a | 77.1a | 84.4a | 3.2c | 35.0c | 6.9b | 70.2b | 75.8c | 82.5b | 2.7c | 40.1a | |||
N225K75 + 75 | 8.7a | 71.4a | 76.7bc | 82.9bc | 3.9abc | 45.3ab | 7.8ab | 70.1bc | 75.4d | 82.2b | 3.7ab | 46.6a | |||
2021 | N180K0 | 9.0ab | 72.3ab | 77.6ab | 82.8a | 3.0c | 33.7bc | 8.3abc | 70.7b | 76.3bc | 83.2abc | 3.2bc | 38.5abc | ||
N180K75 | 7.8b | 72.3abc | 77.5bc | 83.2a | 3.1c | 39.6abc | 8.9a | 70.8b | 76.3bc | 83.4a | 3.4ab | 38.9abc | |||
N180K150 | 8.1b | 72.1abc | 77.4bcd | 83.3a | 3.1c | 38.4abc | 7.8cd | 70.8b | 76.3bc | 82.8cd | 2.7c | 35.3c | |||
N180K75 + 75 | 7.8b | 72.5a | 77.6ab | 83.1a | 3.2bc | 41.6ab | 8.6ab | 70.9b | 76.2c | 83.3ab | 3.8a | 44.7a | |||
N225K0 | 10.0a | 71.8c | 77.2de | 83.2a | 3.7ab | 37.2abc | 7.6d | 71.3a | 76.4b | 83.0bcd | 3.3b | 42.8ab | |||
N225K75 | 10.0a | 72.0bc | 77.3cde | 83.3a | 3.3bc | 33.1c | 8.2bc | 70.8b | 76.1d | 82.8cd | 3.0bc | 36.9bc | |||
N225K150 | 8.4b | 72.0bc | 77.8a | 83.2a | 3.0c | 36.4bc | 7.8cd | 71.4a | 76.6a | 82.9cd | 3.1bc | 39.1abc | |||
N225K75 + 75 | 9.1ab | 72.0bc | 77.2e | 83.6a | 4.0a | 44.7a | 8.7ab | 70.7b | 76.1d | 82.7d | 3.0bc | 35.1c | |||
F-value | |||||||||||||||
N | 22.3 ** | 15.5 ** | 20.0 ** | 0.1 | 1.2 | 4.5 * | 0.2 | 4.8 * | 0.3 | 1.1 | 0.9 | 0.7 | |||
K | 4.2 * | 5.1 ** | 12.8 ** | 2.9 * | 1.5 | 5.8 ** | 7.4 ** | 12.3 ** | 21.2 ** | 8.2 ** | 8.8 ** | 2.6 | |||
Y | 0.9 | 153.2 ** | 291.4 ** | 0.1 | 8.9 ** | 10.6 ** | 27.4 ** | 121.3 ** | 143.4 ** | 36.9 ** | 4.2 | 30.9 ** | |||
N × K | 2.3 | 3.7 * | 27.3 ** | 1.4 | 8.9 ** | 5.6 ** | 2.4 | 2.0 | 0.8 | 0.5 | 2.5 | 5.1 ** | |||
N × Y | 2.8 | 1.3 | 1.0 | 1.6 | 9.0 ** | 3.1 | 8.7 ** | 6.6 * | 0.4 | 19.8 ** | 0.9 | 1.5 | |||
K × Y | 2.8 | 3.5 * | 8.3 ** | 2.2 | 2.4 | 1.3 | 4.8 ** | 14.8 ** | 17.2 ** | 5.2 ** | 0.4 | 1.8 | |||
N × K × Y | 1.5 | 1.1 | 2.9 | 4.1 * | 1.3 | 0.5 | 8.4 ** | 6.2 ** | 3.3 * | 7.9 ** | 9.7 ** | 5.6 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, G.; Lu, W.; Lu, D. Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize. Plants 2022, 11, 2528. https://doi.org/10.3390/plants11192528
Zhang Q, Li G, Lu W, Lu D. Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize. Plants. 2022; 11(19):2528. https://doi.org/10.3390/plants11192528
Chicago/Turabian StyleZhang, Qijian, Guanghao Li, Weiping Lu, and Dalei Lu. 2022. "Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize" Plants 11, no. 19: 2528. https://doi.org/10.3390/plants11192528
APA StyleZhang, Q., Li, G., Lu, W., & Lu, D. (2022). Interactive Effects of Nitrogen and Potassium on Grain Yield and Quality of Waxy Maize. Plants, 11(19), 2528. https://doi.org/10.3390/plants11192528