Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
Abstract
:1. Introduction
2. Results
2.1. Maximum Photochemical Efficiency and Stomatal Conductance
2.2. Pigments Contents
2.3. Leaf Optical Properties
3. Discussion
3.1. Plants Showed No Stress According to High Values of Maximum Photochemical Efficiency
3.2. Stomatal Conductance Rate Responded to Temperature Conditions More Than to UV Radiation
3.3. Stable Chlorophyll Contents
3.4. High UV Absorbing Compounds Contents throughout the Season
3.5. The Leaves Did Not Transmit any UV Spectrum
4. Materials and Methods
4.1. Experimental Sites
4.2. Measurements
4.2.1. Physiological Measurements
4.2.2. Pigment Analyses
Photosynthetic Pigments
Methanol-Extractable UV-B and UV-A Absorbing Compounds
4.2.3. Leaf Optical Properties
4.2.4. Data Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Körner, C. The Climate Plants Experience. In Alpine Plant Life; Springer: Berlin/Heidelberg, Germany, 2003; pp. 31–46. [Google Scholar]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant Phenotypic Plasticity in a Changing Climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.W.; Ryel, R.J.; Flint, S.D. UV Screening in Native and Non-Native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations. Front. Plant Sci. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Latola, K. UV-B Radiation, and Acclimation in Timberline Plants. Environ. Pollut. 2005, 137, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Huarancca Reyes, T.; Esparza, E.; Crestani, G.; Limonchi, F.; Cruz, R.; Salinas, N.; Scartazza, A.; Guglielminetti, L.; Cosio, E. Physiological Responses of Maca (Lepidium meyenii Walp.) Plants to UV Radiation in Its High-Altitude Mountain Ecosystem. Sci. Rep. 2020, 10, 2654. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.A.K. Ultraviolet-B Radiation Effects on Plants: Induction of Morphogenic Responses. Physiol. Plant 2002, 116, 423–429. [Google Scholar] [CrossRef]
- Robson, M.; Klem, K.; Urban, O.; Jansen, M. Re-Interpreting Plant Morphological Responses to UV-B Radiation. Plant Cell Environ. 2015, 38, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Nagel, L.M.; Bassman, J.H.; Edwards, G.E.; Robberecht, R.; Franceshi, V.R. Leaf Anatomical Changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa Exposed to Enhanced Ultraviolet-B Radiation. Physiol. Plant 1998, 104, 385–396. [Google Scholar] [CrossRef]
- Robson, T.M.; Aphalo, P.J. Species-Specific Effect of UV-B Radiation on the Temporal Pattern of Leaf Growth. Physiol. Plant 2012, 144, 146–160. [Google Scholar] [CrossRef]
- Bornman, J.F.; Vogelmann, T.C. Effect of UV-B Radiation on Leaf Optical Properties Measured with Fibre Optics. J. Exp. Bot. 1991, 42, 547–554. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Berlyn, G.P. The Effect of Increasing Elevation on Leaf Cuticle Thickness and Cuticular Transpiration in Balsam Fir. Can. J. Bot. 1984, 62, 2423–2431. [Google Scholar] [CrossRef]
- Holland, N.; Richardson, A.D. Stomatal Length Correlates with Elevation of Growth in Four Temperate Species. J. Sustain. For. 2009, 28, 63–73. [Google Scholar] [CrossRef]
- Wargent, J.J.; Moore, J.P.; Roland Ennos, A.; Paul, N.D. Ultraviolet Radiation as a Limiting Factor in Leaf Expansion and Development. Photochem. Photobiol. 2009, 85, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.; Heijde, M.; Heller, W.; Albert, A.; Seidlitz, H.K.; Ulm, R. Negative Feedback Regulation of UV-B–Induced Photomorphogenesis and Stress Acclimation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 20132–20137. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Degl’Innocenti, E.; Remorini, D.; Biricolti, S.; Fini, A.; Ferrini, F.; Nicese, F.P.; Tattini, M. The Impact of UV-Radiation on the Physiology and Biochemistry of Ligustrum vulgare Exposed to Different Visible-Light Irradiance. Environ. Exp. Bot. 2011, 70, 88–95. [Google Scholar] [CrossRef]
- Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B Exposure, ROS, and Stress: Inseparable Companions or Loosely Linked Associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Nogués, S.; Allen, D.J.; Morison, J.I.L.; Baker, N.R. Characterization of Stomatal Closure Caused by Ultraviolet-B Radiation. Plant Physiol. 1999, 121, 489–496. [Google Scholar] [CrossRef]
- Kataria, S.; Jajoo, A.; Guruprasad, K.N. Impact of Increasing Ultraviolet-B (UV-B) Radiation on Photosynthetic Processes. J. Photochem. Photobiol. B 2014, 137, 55–66. [Google Scholar] [CrossRef]
- Xu, J.; Gao, K. UV-A Enhanced Growth and UV-B Induced Positive Effects in the Recovery of Photochemical Yield in Gracilaria lemaneiformis (Rhodophyta). J. Photochem. Photobiol. B 2010, 100, 117–122. [Google Scholar] [CrossRef]
- Searles, P.S.; Flint, S.D.; Caldwell, M.M. A Meta-Analysis of Plant Field Studies Simulating Stratospheric Ozone Depletion. Oecologia 2001, 127, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Trošt Sedej, T.; Gaberščik, A. The Effects of Enhanced UV-B Radiation on Physiological Activity and Growth of Norway Spruce Planted Outdoors over 5 Years. Trees 2008, 22, 423–435. [Google Scholar] [CrossRef]
- Terfa, M.T.; Roro, A.G.; Olsen, J.E.; Torre, S. Effects of UV Radiation on Growth and Postharvest Characteristics of Three Pot Rose Cultivars Grown at Different Altitudes. Sci. Hortic. 2014, 178, 184–191. [Google Scholar] [CrossRef]
- Barnes, P.W.; Flint, S.D.; Slusser, J.R.; Gao, W.; Ryel, R.J. Diurnal Changes in Epidermal UV Transmittance of Plants in Naturally High UV Environments. Physiol. Plant 2008, 133, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Rono, P.C.; Dong, X.; Yang, J.X.; Mutie, F.M.; Oulo, M.A.; Malombe, I.; Kirika, P.M.; Hu, G.W.; Wang, Q.F. Initial Complete Chloroplast Genomes of Alchemilla (Rosaceae): Comparative Analysis and Phylogenetic Relationships. Front. Genet. 2020, 11, 560368. [Google Scholar] [CrossRef] [PubMed]
- Vitkova, A.; Nikolova, M.; Delcheva, M.; Tashev, A.; Gavrilova, A.; Aneva, I.; Dimitrov, D. Influence of Species Composition on Total Phenolic Content and Antioxidant Properties of Herba Alchemillae. Bulg. J. Agric. Sci. 2015, 21, 990–997. [Google Scholar]
- Mladenova, S.G.; Vasileva, L.V.; Savova, M.S.; Marchev, A.S.; Tews, D.; Wabitsch, M.; Ferrante, C.; Orlando, G.; Georgiev, M.I. Anti-Adipogenic Effect of Alchemilla monticola is Mediated via PI3K/AKT Signaling Inhibition in Human Adipocytes. Front. Pharmacol. 2021, 12, 707507. [Google Scholar] [CrossRef] [PubMed]
- Demmig, B.; Björkman, O. Comparison of the Effect of Excessive Light on Chlorophyll Fluorescence (77K) and Photon Yield of O2 Evolution in Leaves of Higher Plants. Planta 1987, 171, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Critchley, C. Photoinhibition. In Photosynthesis: A Comprehensive Treatise; Raghevendra, A., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 264–272. [Google Scholar]
- Yamasaki, T.; Yamakawa, T.; Yamane, Y.; Koike, H.; Satoh, K.; Katoh, S. Temperature Acclimation of Photosynthesis and Related Changes in Photosystem II Electron Transport in Winter Wheat. Plant Physiol. 2002, 128, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Hakala, M.; Tuominen, I.; Keränen, M.; Tyystjärvi, T.; Tyystjärvi, E. Evidence for the Role of the Oxygen-Evolving Manganese Complex in Photoinhibition of Photosystem II. Biochim. Et Biophys. Acta Bioenerg. 2005, 1706, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.W.; Flint, S.D.; Ryel, R.J.; Tobler, M.A.; Barkley, A.E.; Wargent, J.J. Rediscovering Leaf Optical Properties: New Insights into Plant Acclimation to Solar UV Radiation. Plant Physiol. Biochem. 2015, 93, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Bilger, W.; Rolland, M.; Nybakken, L. UV Screening in Higher Plants Induced by Low Temperature in the Absence of UV-Bb Radiation. Photochem. Photobiol. Sci. 2007, 6, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Mirecki, R.M.; Teramura, A.H. Effects of Ultraviolet-B Irradiance on Soybean. Plant Physiol. 1984, 74, 475–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julkunen-Tiitto, R.; Häggman, H.; Aphalo, P.J.; Lavola, A.; Tegelberg, R.; Veteli, T. Growth and Defense in Deciduous Trees and Shrubs under UV-B. Environ. Pollut. 2005, 137, 404–414. [Google Scholar] [CrossRef]
- Keiller, D.R.; Holmes, M.G. Effects of Long-Term Exposure to Elevated UV-B Radiation on the Photosynthetic Performance of Five Broad-Leaved Tree Species. Photosynth. Res. 2001, 67, 229–240. [Google Scholar] [CrossRef]
- Petropoulou, Y.; Kyparissis, A.; Nikolopoulos, D.; Manetas, Y. Enhanced UV-B Radiation Alleviates the Adverse Effects of Summer Drought in Two Mediterranean Pines under Field Conditions. Physiol. Plant 1995, 94, 37–44. [Google Scholar] [CrossRef]
- Urban, O.; Hrstka, M.; Holub, P.; Veselá, B.; Večeřová, K.; Novotná, K.; Grace, J.; Klem, K. Interactive Effects of Ultraviolet Radiation and Elevated CO2 Concentration on Photosynthetic Characteristics of European Beech Saplings during the Vegetation Season. Plant Physiol. Biochem. 2019, 134, 20–30. [Google Scholar] [CrossRef] [PubMed]
- González-Villagra, J.; Marjorie, R.D.; Alberdi, M.; Acevedo, P.; Loyola, R.; Tighe-Neira, R.; Arce-Johnson, P.; Inostroza-Blancheteau, C. Solar UV Irradiation Effects on Photosynthetic Performance, Biochemical Markers, and Gene Expression in Highbush Blueberry (Vaccinium corymbosum L.) Cultivars. Sci. Hortic. 2020, 259, 108816. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.W.; McGuire, M.A.; Teskey, R.O. Increase in Leaf Temperature Opens Stomata and Decouples Net Photosynthesis from Stomatal Conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 2017, 68, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Trošt Sedej, T.; Erznožnik, T.; Rovtar, J. Effect of UV Radiation and Altitude Characteristics on the Functional Traits and Leaf Optical Properties in Saxifraga hostii at the Alpine and Montane Sites in the Slovenian Alps. Photochem. Photobiol. Sci. 2020, 19, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Smith, J.; Burritt, D.; Bannister, P. Shoot Dry Weight, Chlorophyll and UV-B-Absorbing Compounds as Indicators of a Plant’s Sensitivity to UV-B Radiation. Ann. Bot. 2000, 86, 1057–1063. [Google Scholar] [CrossRef]
- Bassman, J.H.; Edwards, G.E.; Robberecht, R.; Professor, A. Photosynthesis and Growth in Seedlings of Five Forest Tree Species with Contrasting Leaf Anatomy Subjected to Supplemental UV-B Radiation. For. Sci. 2003, 49, 176–187. [Google Scholar] [CrossRef]
- Verdaguer, D.; Jansen, M.A.K.; Llorens, L.; Morales, L.O.; Neugart, S. UV-A Radiation Effects on Higher Plants: Exploring the Known Unknown. Plant Sci. 2017, 255, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.M.; Teramura, A.H. The Role of Flavonol Glycosides and Carotenoids in Protecting Soybean from Ultraviolet-B Damage. Plant Physiol. 1993, 103, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Teramura, A.H. Effects of Ultraviolet-B Radiation on the Growth and Yield of Crop Plants. Physiol. Plant 1983, 58, 415–427. [Google Scholar] [CrossRef]
- Barsig, M.; Malz, R. Fine Structure, Carbohydrates and Photosynthetic Pigments of Sugar Maize Leaves under UV-B Radiation. Environ. Exp. Bot. 2000, 43, 121–130. [Google Scholar] [CrossRef]
- Ibañez, S.; Rosa, M.; Hilal, M.; González, J.A.; Prado, F.E. Leaves of Citrus Aurantifolia Exhibit a Different Sensibility to Solar UV-B Radiation According to Development Stage in Relation to Photosynthetic Pigments and UV-B Absorbing Compounds Production. J. Photochem. Photobiol. B 2008, 90, 163–169. [Google Scholar] [CrossRef]
- Kelly, D.J.; Clare, J.J.; Bothwell, M.L. Attenuation of Solar Ultraviolet Radiation by Dissolved Organic Matter Alters Benthic Colonization Patterns in Streams. J. North Am. Benthol. Soc. 2001, 20, 96–108. [Google Scholar] [CrossRef]
- Biswas, D.K.; Jansen, M.A.K. Natural Variation in UV-B Protection amongst Arabidopsis Thaliana Accessions. Emir. J. Food Agric. 2012, 24, 621–631. [Google Scholar] [CrossRef]
- Barnes, P.W.; Tobler, M.A.; Keefover-Ring, K.; Flint, S.D.; Barkley, A.E.; Ryel, R.J.; Lindroth, R.L. Rapid Modulation of Ultraviolet Shielding in Plants is Influenced by Solar Ultraviolet Radiation and Linked to Alterations in Flavonoids. Plant Cell Environ. 2016, 39, 222–230. [Google Scholar] [CrossRef]
- Trošt Sedej, T.; Damjanič, R. UV Radiation and Temperature Effects on Functional Traits in Helianthemum nummularium Subsp. grandiflorum at the Alpine and Montane Site in the Slovenian Alps. Acta Biol. Slov. 2021, 64, 41–55. [Google Scholar]
- Qaderi, M.M.; Yeung, E.C.; Reid, D.M. Growth and Physiological Responses of an Invasive Alien Species, Silene noctiflora, during Two Developmental Stages to Four Levels of Ultraviolet-B Radiation. Écoscience 2008, 15, 150–159. [Google Scholar] [CrossRef]
- Jansen, M.A.K.; Le Martret, B.; Koornneef, M. Variations in Constitutive and Inducible UV-B Tolerance; Dissecting Photosystem II Protection in Arabidopsis thaliana Accessions. Physiol. Plant 2010, 138, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Sareedenchai, V.; Heller, W.; Seidlitz, H.K.; Zidorn, C. Temperature is the Key to Altitudinal Variation of Phenolics in Arnica montana L. Cv. ARBO. Oecologia 2009, 160, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ziska, L.H.; Teramura, A.H.; Sullivan, J.H. Physiological Sensitivity of Plants Along an Elevational Gradient to UV-B Radiation. Am. J. Bot. 1992, 79, 863–871. [Google Scholar] [CrossRef]
- Day, T.A.; Vogelmann, T.C.; DeLucia, E.H. Are Some Plant Life Forms More Effective than Others in Screening out Ultraviolet-B Radiation? Oecologia 1992, 92, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Liew, O.; Chong, P.; Li, B.; Asundi, A. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. Sensors 2008, 8, 3205–3239. [Google Scholar] [CrossRef] [PubMed]
- Ustin, S.L.; Jacquemoud, S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. In Remote Sensing of Plant Biodiversity; Springer International Publishing: Cham, Switzerland, 2020; pp. 349–384. ISBN 9783030331573. [Google Scholar]
- Björn, L.O.; Murphy, T. Computer Calculation of Solar UV Radiation at Ground Level. In Environmental UV Photobiology; Young, A., Björn, L., Moan, J., Nultsch, W., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 63–69. [Google Scholar]
- Caldwell, M.M.; Camp, L.B.; Warner, C.W.; Flint, S.D. Action Spectra and Their Key Role in Assessing Biological Consequences of Solar UV-B Radiation Change. In Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life; Springer: Berlin/Heidelberg, Germany, 1986; pp. 87–111. [Google Scholar]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochim. Biophys. Acta Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Caldwell, M.M. Solar Ultraviolet Radiation as an Ecological Factor for Alpine Plants. Ecol. Monogr. 1968, 38, 243–268. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
Measure | Month | 1500 m | 2000 m | ||
---|---|---|---|---|---|
UV | UV- | UV | UV- | ||
Chlorophyll a (mg g −1 DW) | July | 7.55 ± 0.09 a | 7.19 ± 0.21 a | 6.46 ± 0.28 a | 7.36 ± 0.35 a |
Chlorophyll b (mg g −1 DW) | 4.40 ± 0.10 ab | 3.79 ± 0.09 a | 3.78 ± 0.11 a | 5.33 ± 0.14 b | |
Chlorophyll a (mg g −1 DW) | August | 5.97 ± 0.11 a | 5.43 ± 0.26 a | 6.24 ± 0.16 a | 6.15 ± 0.29 a |
Chlorophyll b (mg g −1 DW) | 2.96 ± 0.18 ab | 2.69 ± 0.11 a | 2.84 ± 0.07 a | 3.88 ± 0.09 a | |
Chlorophyll a (mg g −1 DW) | September | 7.42 ± 0.37 a | 7.02 ± 0.25 a | 7.24 ± 0.21 a | 7.96 ± 0.36 a |
Chlorophyll b (mg g −1 DW) | 6.52 ± 0.26 a | 6.35 ± 0.25 a | 6.46 ± 0.10 a | 7.36 ± 0.23 a |
Measure | Two-Way ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|
July | August | September | |||||||
T | UV | T × UV | T | UV | T × UV | T | UV | T × UV | |
Fv/Fm | ns | ns | ns | *** | ns | ns | ns | ns | ns |
gs | ns | ns | ns | *** | ns | ns | ns | ns | ns |
Chlorophyll a | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Chlorophyll b | ns | ns | ns | ns | ns | ns | ns | ns | ns |
UV-A AC | ns | ns | ns | *** | ns | ns | *** | ns | * |
UV-B AC | ns | ns | ns | *** | ns | ** | *** | ns | * |
Spectral Range | T | UV | T × UV | T | UV | T × UV |
---|---|---|---|---|---|---|
Reflectance | Transmittance | |||||
UV-B | ns | * | ns | ns | ns | ns |
UV-A | ns | ns | ns | ns | ns | ns |
Violet | ns | ns | ns | ns | ns | ns |
Blue | ns | ns | ns | * | * | ns |
Green | ns | ns | ns | * | * | ns |
Yellow | ns | ns | ns | * | * | ns |
Red | ns | ns | ns | * | ns | ns |
Near-infrared | ns | ns | ns | * | *** | ns |
Filter | UV-B | UV-B Dose (kJ m−2 day−1) | |||||
---|---|---|---|---|---|---|---|
July | August | September | |||||
1500 m | 2000 m | 1500 m | 2000 m | 1500 m | 2000 m | ||
UV | Total | 55.91 | 57.58 | 47.75 | 49.27 | 34.52 | 35.73 |
Biologically active | 7.13 | 7.34 | 5.86 | 6.05 | 3.9 | 4.04 | |
UV- | Total | 16.77 | 17.28 | 14.32 | 14.78 | 10.36 | 10.38 |
Biologically active | 2.14 | 2.2 | 1.76 | 1.82 | 1.17 | 1.18 |
Δ T | July | August | September | |||
---|---|---|---|---|---|---|
1500 m | 2000 m | 1500 m | 2000 m | 1500 m | 2000 m | |
(°C) | 11.3 | 9.9 | 10.2 | 8.7 | 13.3 | 11.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trošt Sedej, T.; Turk, T. Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia. Plants 2022, 11, 2527. https://doi.org/10.3390/plants11192527
Trošt Sedej T, Turk T. Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia. Plants. 2022; 11(19):2527. https://doi.org/10.3390/plants11192527
Chicago/Turabian StyleTrošt Sedej, Tadeja, and Tajda Turk. 2022. "Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia" Plants 11, no. 19: 2527. https://doi.org/10.3390/plants11192527
APA StyleTrošt Sedej, T., & Turk, T. (2022). Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia. Plants, 11(19), 2527. https://doi.org/10.3390/plants11192527