Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems
Abstract
:1. Introduction
2. Results
2.1. Seasonal Variation of CO2 and N2O Fluxes
2.2. Relationships between Gas Fluxes and Temperatures
2.3. Vertical Distributions and Relationships of Soil Properties
2.4. Relationships between Gas Fluxes and Soil Properties
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Experiment Design
4.3. Environmental Variables and Soil Sampling
4.4. CO2 and N2O Flux Measurements
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J.T.; Ding, Y.; Griggs, J.; Noguer, M.; Johnson, C.A. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535.
- Dobbie, K.E.; Smith, K.A. The effect of water table depth on emissions of N2O from a grassland soil. Soil Use Manag. 2006, 22, 22–28. [Google Scholar] [CrossRef]
- Mazzetto, A.; Barneze, A.; Feigl, B.; Van Groenigen, J.; Oenema, O.; Cerri, C. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biol. Biochem. 2014, 76, 242–248. [Google Scholar] [CrossRef]
- Mwagona, P.C.; Yao, Y.L.; Shan, Y.Q.; Yu, H.X. Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: A laboratory microcosm study. Environ. Sci. Pollut. R 2019, 26, 33702–33714. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.W.; Zou, X.Q.; Cao, L.G.; Zhamangulova, N.; Zhao, Y.F.; Tang, D.H.; Liu, D.W. Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China. Ecol. Eng. 2014, 73, 469–477. [Google Scholar] [CrossRef]
- Beringer, J.; Livesley, S.J.; Randle, J.; Hutley, L.B. Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. Agric. For. Meteorol. 2013, 182, 239–247. [Google Scholar] [CrossRef]
- Juszczak, R.; Augustin, J. Exchange of the greenhouse gases methane and nitrous oxide between the atmosphere and a temperate peatland in central Europe. Wetlands 2013, 33, 895–907. [Google Scholar] [CrossRef] [Green Version]
- Couwenberg, J.; Dommain, R.; Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Chang. Biol. 2010, 16, 1715–1732. [Google Scholar] [CrossRef]
- Ström, L.; Christensen, T.R. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol. Biochem. 2007, 39, 1689–1698. [Google Scholar] [CrossRef]
- Jacinthe, P.; Bills, J.; Tedesco, L.; Barr, R. Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency. J. Environ. Qual. 2012, 41, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, C.J.; Struwe, S.; Elberling, B. Temporal trends in N2O flux dynamics in a Danish wetland—Effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob. Chang. Biol. 2011, 18, 210–222. [Google Scholar] [CrossRef]
- Dinsmore, K.J.; Skiba, U.M.; Billett, M.F.; Rees, R.M. Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 2009, 318, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, G.H.; Xiong, Z.J.; Liu, W.Z. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau. Atmos. Environ. 2017, 171, 17–24. [Google Scholar] [CrossRef]
- Sun, Z.G.; Wang, L.L.; Tian, H.Q.; Jiang, H.H.; Mou, X.J.; Sun, W.L. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China. Chemosphere 2012, 90, 856–865. [Google Scholar] [CrossRef]
- Yu, B.; Stott, P.; Yu, H.X.; Li, X.Y. Methane emissions and production potentials of forest swamp wetlands in the eastern great Xing’an Mountains, Northeast China. Environ. Manag. 2013, 52, 1149–1160. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Y.D.; Hu, H.Q.; Sun, C.K.; Zhao, X.K.; Wei, C.L. Dynamics and controls of CO2 and CH4 emissions in the wetland of a montane permafrost region, northeast China. Atmos. Environ. 2015, 122, 454–462. [Google Scholar] [CrossRef]
- Cui, Q.; Song, C.C.; Wang, X.W.; Shi, F.X.; Yu, X.Y.; Tan, W.W. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Sci. Total Environ. 2018, 616, 427–434. [Google Scholar] [CrossRef]
- Chen, X.P.; Wang, G.X.; Zhang, T.; Mao, T.X.; Wei, D.; Hu, Z.Y.; Song, C.L. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ. 2017, 157, 111–124. [Google Scholar] [CrossRef]
- Voigt, C.; Lamprecht, R.E.; Marushchak, M.E.; Lind, S.E.; Novakovskiy, A.; Aurela, M.; Martikainen, P.J.; Biasi, C. Warming of subarctic tundra increases emissions of all three important greenhouse gases-carbon dioxide, methane, and nitrous oxide. Global Change Biol. 2017, 23, 3121–3138. [Google Scholar] [CrossRef]
- Repo, M.E.; Susiluoto, S.; Lind, S.E.; Jokinen, S.; Elsakov, V.; Biasi, C.; Virtanen, T.; Martikainen, P.J. Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci. 2009, 2, 189–192. [Google Scholar] [CrossRef]
- Mu, C.C.; Abbott, B.W.; Zhao, Q.; Su, H.; Wang, S.F.; Wu, Q.B.; Zhang, T.J.; Wu, X.D. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 8945–8952. [Google Scholar] [CrossRef]
- Hefting, M.M.; Bobbink, R.; Janssens, M.P. Spatial variation in denitrification and N2O emission in relation to nitrate removal efficiency in a N-stressed riparian buffer zone. Ecosystems 2006, 9, 550–563. [Google Scholar] [CrossRef]
- Song, C.C.; Yan, B.X.; Wang, Y.S.; Wang, Y.Y.; Lou, Y.J.; Zhao, Z.C. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chin. Sci. Bull. 2003, 48, 2749–2753. [Google Scholar] [CrossRef]
- Olsson, L.; Ye, S.; Yu, X.; Wei, M.; Krauss, K.W.; Brix, H. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences 2015, 12, 4965–4977. [Google Scholar] [CrossRef] [Green Version]
- Nag, S.K.; Liu, R.; Lal, R. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Environ. Monit. Assess. 2017, 189, 580. [Google Scholar] [CrossRef]
- Yu, C.Q.; Wang, J.W.; Shen, Z.X.; Fu, G. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau. Sci. Total Environ. 2019, 647, 1490–1497. [Google Scholar] [CrossRef]
- Zhong, Z.M.; Shen, Z.X.; Fu, G. Response of soil respiration to experimental warming in a highland barley of the Tibet. SpringerPlus 2016, 5, 137. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.X.; Wang, J.W.; Sun, W.; Li, S.W.; Fu, G.; Zhang, X.Z.; Zhang, Y.J.; Yu, C.Q.; Shi, P.L.; He, Y.T. The soil drying along the increase of warming mask the relation between temperature and soil respiration in an alpine meadow of Northern Tibet. Pol. J. Ecol. 2016, 64, 125–129. [Google Scholar] [CrossRef]
- Shen, Z.X.; Li, Y.L.; Fu, G. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Appl. Soil Ecol. 2015, 90, 35–40. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Shen, Z.X.; Fu, G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Appl. Soil Ecol. 2015, 87, 32–38. [Google Scholar] [CrossRef]
- Krauss, K.W.; Whitbeck, J.L.; Howard, R.J. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater). Plant Soil 2012, 358, 265–274. [Google Scholar] [CrossRef]
- Miao, Y.Q. Net Ecosystem Carbon Fluxes of Peatland in the Continuous Permafrost Zone, Great Hinggan Mountains. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Bai, J.; Cui, B.; Deng, W.; Yang, Z.; Wang, Q.; Ding, Q. Soil organic carbon contents of two natural inland saline-alkalined wetlands in northeastern China. J. Soil Water Conserv. 2007, 62, 447–452. [Google Scholar]
- Bernal, B.; Mitsch, W.J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 2008, 34, 311–323. [Google Scholar] [CrossRef]
- Wang, X.W.; Song, C.C.; Sun, X.X.; Wang, J.Y.; Zhang, X.H.; Mao, R. Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing’an Mountains, northeastern China. Catena 2013, 101, 31–37. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.Q.; Yu, Y.; Mitchell, M.J.; Zhang, L.J. Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China. J. Environ. Manage. 2011, 92, 2628–2633. [Google Scholar] [CrossRef]
- Moore, T.R.; Dalva, M. The influence of temperature and water-table position on carbon-dioxide and methane emissions from laboratory columns of peatland soils. Eur. J. Soil Sci. 1993, 44, 651–664. [Google Scholar] [CrossRef]
- Keith, H.; Jacobsen, K.L.; Raison, R.J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 1997, 190, 127–141. [Google Scholar] [CrossRef]
- Reth, S.; Reichstein, M.; Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model. Plant Soil 2005, 268, 21–33. [Google Scholar] [CrossRef]
- Sauze, J.; Ogee, J.; Maron, P.A.; Crouzet, O.; Nowak, V.; Wohl, S.; Kaisermann, A.; Jones, S.P.; Wingate, L. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, (COO)-O-18 and OCS exchange. Soil Biol. Biochem. 2017, 115, 371–382. [Google Scholar] [CrossRef]
- Søvik, A.K.; Augustin, J.; Heikkinen, K.; Huttunen, J.T.; Necki, J.M.; Karjalainen, S.M.; Klove, B.; Liikanen, A.; Mander, U.; Puustinen, M.; et al. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. J. Environ. Qual. 2006, 35, 2360–2373. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Mitsch, W.J. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands 2006, 26, 862–877. [Google Scholar] [CrossRef]
- Vermue, A.; Philippot, L.; Munier-Jolain, N.; Henault, C.; Nicolardot, B. Influence of integrated weed management system on N-cycling microbial communities and N2O emissions. Plant Soil 2013, 373, 501–514. [Google Scholar] [CrossRef]
- Teepe, R.; Brumme, R.; Beese, F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biol. Biochem. 2000, 32, 1807–1810. [Google Scholar] [CrossRef]
- Song, C.C.; Zhang, J.B.; Wang, Y.Y.; Wang, Y.S.; Zhao, Z.C. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. J. Environ. Manage. 2008, 88, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.B.; Liu, J.S.; Wang, J.D.; Sun, W.D.; Patrick, W.H.; Meixner, F.X. Nitrous oxide emission from Deyeuxia angustifolia freshwater marsh in Northeast China. Environ. Manag. 2007, 40, 613–622. [Google Scholar] [CrossRef]
- Dhondt, K.; Boeckx, P.; Hofman, G.; Van Cleemput, O. Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol. Fert. Soils 2004, 40, 243–251. [Google Scholar] [CrossRef]
- Li, C.F.; Cao, C.G.; Wang, J.P.; Zhan, M.; Yuan, W.L. Ahmad, S. Nitrous oxide emissions from wetland rice–duck cultivation systems in southern China. Arch. Environ. Con. Toxicol. 2009, 56, 21–29. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, X.Z.; Gao, Y.H.; Wu, N.; Zhu, D.; Wang, J.X. Nitrous Oxide Emissions from Newly Created Littoral Marshes in the Drawdown Area of the Three Gorges Reservoir, China. Water Air Soil Poll. 2010, 211, 25–33. [Google Scholar] [CrossRef] [Green Version]
- He, R.X.; Jin, H.J.; Chang, X.L.; Wang, Y.P.; Wang, L.Z. Freeze-thaw processes of active-layer soils in the Nanweng’he River National Natural Reserve in the Da Xing’anling Mountains, northern Northeast China. Sci. Cold Arid Reg. 2018, 10, 104–113. [Google Scholar]
- Liu, P.; Ren, C.Y.; Wang, Z.M.; Zhang, B.; Chen, L. Assessment of the eco-environmental quality in the Nanweng River Nature Reserve, Northeast China by remote sensing. J. Appl. Ecol. 2018, 29, 3347–3356. [Google Scholar]
- Jiang, H.Y.; Zhao, Y.S.; Chen, X.W.; Li, W.H.; Zhu, W.C.; Lv, W.B.; Li, X.P. Research on soil hydrology characteristics of some main forest type in south part of Daxing’anling. J. Soil Water Conserv. 2007, 21, 149–153. [Google Scholar]
- Lang, H.Q. Chinese Wetlands Vegetations; Science Press: Beijing, China, 1999; p. 664. [Google Scholar]
- Hedges, J.I.; Stern, J.H. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 1984, 29, 657–663. [Google Scholar] [CrossRef]
- Gullón, B.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 2008, 99, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Song, C.C.; Wang, Y.S.; Wang, Y.Y.; Zhao, Z.C. Emission of CO2, CH4 and N2O from freshwater marsh during freeze–thaw period in Northeast of China. Atmos. Environ. 2006, 40, 6879–6885. [Google Scholar] [CrossRef]
Sites | Equations | Variables | Ranges for the Variables | R2 | p |
---|---|---|---|---|---|
VSBP and VSLG | F = 19.183T − 184.912 | T at air | 9.6–23.4 °C | 0.688 | 0.041 * |
F = 16.546T − 147.717 | T at 0 cm depth | 8.6–25.7 °C | 0.685 | 0.042 * | |
F = 21.605T − 35.369 | T at 5 cm depth | 2.0–17.3 °C | 0.292 | 0.006 ** | |
F = 21.571T − 10.967 | T at 10 cm depth | 2.1–15.4 °C | 0.280 | 0.008 ** | |
F = 21.337T + 3.460 | T at 15 cm depth | 0.8–14.1 °C | 0.264 | 0.010 ** | |
F = 21.182T + 9.998 | T at 20 cm depth | 0.0–13.5 °C | 0.251 | 0.013 * | |
F = 20.323T + 23.991 | T at 30 cm depth | −0.2–12.5 °C | 0.217 | 0.022 * | |
F = 19.623T + 37.116 | T at 40 cm depth | −0.4–11.8 °C | 0.184 | 0.037 * | |
SBP and SLG | F = 10.986T − 45.153 | T at air | 3.6–28.0 °C | 0.281 | 0.008 ** |
F = 12.525T − 63.982 | T at 0 cm depth | 1.6–31.9 °C | 0.422 | 0.001 ** | |
F = 22.373T − 73.816 | T at 5 cm depth | 1.0–18.7 °C | 0.507 | 0.000 ** | |
F = 25.908T − 67.062 | T at 10 cm depth | 1.8–16.3 °C | 0.524 | 0.000 ** | |
F = 25.993T − 48.193 | T at 15 cm depth | 0.7–14.7 °C | 0.496 | 0.000 ** | |
F = 24.910T − 31.465 | T at 20 cm depth | 0.0–14.0 °C | 0.452 | 0.000 ** | |
F = 23.920T − 12.433 | T at 30 cm depth | −0.2–12.9 °C | 0.385 | 0.001 ** | |
F = 22.760T + 6.263 | T at 40 cm depth | −0.4–12.1 °C | 0.318 | 0.004 ** | |
VBP and VLG | F = −1.676T + 39.228 | T at air | 3.6–28.0 °C | 0.015 | 0.565 |
F = −1.363T + 34.439 | T at 0 cm depth | 2.4–33.2 °C | 0.013 | 0.602 | |
F = −2.445T + 31.283 | T at 5 cm depth | 2.0–17.3 °C | 0.011 | 0.623 | |
F = −2.486T + 28.883 | T at 10 cm depth | 2.1–15.4 °C | 0.011 | 0.623 | |
F = −2.361T + 26.490 | T at 15 cm depth | 0.8–14.1 °C | 0.010 | 0.647 | |
F = −2.603T + 27.633 | T at 20 cm depth | 0.0–13.5 °C | 0.011 | 0.620 | |
F = −2.331T + 24.781 | T at 30 cm depth | −0.2–12.5 °C | 0.009 | 0.667 | |
F = −2.014T + 21.757 | T at 40 cm depth | −0.4–11.8 °C | 0.006 | 0.723 |
Sites | Equations | Variables | Ranges for the Variables | R2 | p |
---|---|---|---|---|---|
VSBP and VSLG | F = −0.0025T + 0.0583 | T at air | 9.6–23.4 °C | 0.258 | 0.303 |
F = −0.0025T + 0.0567 | T at 0 cm depth | 8.6–25.7 °C | 0.301 | 0.259 | |
F = 0.0004T + 0.0108 | T at 5 cm depth | 2.0–17.3 °C | 0.002 | 0.844 | |
F = 0.0013T + 0.0042 | T at 10 cm depth | 2.1–15.4 °C | 0.016 | 0.577 | |
F = 0.0033T − 0.0129 | T at 15 cm depth | 3.8–12.5 °C | 0.159 | 0.433 | |
F = 0.0038T − 0.0154 | T at 20 cm depth | 3.4–12.1 °C | 0.205 | 0.367 | |
F = 0.0046T − 0.0196 | T at 30 cm depth | 2.7–11.4 °C | 0.290 | 0.271 | |
F = 0.0054T − 0.0221 | T at 40 cm depth | 2.3–10.7 °C | 0.353 | 0.214 | |
SBP and SLG | F = −0.0021T + 0.0633 | T at air | 3.6–28.0 °C | 0.148 | 0.077 |
F = −0.0013T + 0.0458 | T at 0 cm depth | 1.6–31.9 °C | 0.058 | 0.280 | |
F = −0.0008T + 0.0342 | T at 5 cm depth | 1.0–18.7 °C | 0.013 | 0.620 | |
F = 0.0004T + 0.0225 | T at 10 cm depth | 1.8–16.3 °C | 0.001 | 0.915 | |
F = 0.0008T + 0.0167 | T at 15 cm depth | 0.7–14.7 °C | 0.011 | 0.646 | |
F = 0.0013T + 0.0154 | T at 20 cm depth | 0.0–14.0 °C | 0.015 | 0.589 | |
F = 0.0029T + 0.0004 | T at 30 cm depth | 2.5–11.8 °C | 0.159 | 0.434 | |
F = 0.0042T − 0.0038 | T at 40 cm depth | 1.9–11.0 °C | 0.239 | 0.326 | |
VBP and VLG | F = 0.0017T − 0.0379 | T at air | 3.6–28.0 °C | 0.051 | 0.311 |
F = 0.0017T − 0.0363 | T at 0 cm depth | 2.4–33.2 °C | 0.054 | 0.298 | |
F = 0.0013T − 0.0213 | T at 5 cm depth | 2.0–17.3 °C | 0.012 | 0.631 | |
F = 0.0008T − 0.0167 | T at 10 cm depth | 4.9–13.4 °C | 0.043 | 0.693 | |
F = 0.0008T − 0.0167 | T at 15 cm depth | 3.8–12.5 °C | 0.046 | 0.684 | |
F = 0.0008T − 0.0167 | T at 20 cm depth | 3.4–12.1 °C | 0.051 | 0.666 | |
F = 0.0008T − 0.0167 | T at 30 cm depth | 2.7–11.4 °C | 0.050 | 0.670 | |
F = 0.0008T − 0.0163 | T at 40 cm depth | 2.3–10.7 °C | 0.047 | 0.680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Xu, W.; Yan, L.; Bao, H.; Yu, H. Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems. Plants 2022, 11, 2823. https://doi.org/10.3390/plants11212823
Yu B, Xu W, Yan L, Bao H, Yu H. Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems. Plants. 2022; 11(21):2823. https://doi.org/10.3390/plants11212823
Chicago/Turabian StyleYu, Bing, Wenjing Xu, Linlu Yan, Heng Bao, and Hongxian Yu. 2022. "Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems" Plants 11, no. 21: 2823. https://doi.org/10.3390/plants11212823
APA StyleYu, B., Xu, W., Yan, L., Bao, H., & Yu, H. (2022). Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems. Plants, 11(21), 2823. https://doi.org/10.3390/plants11212823