The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant–Rhizosphere Interactions
Abstract
:1. Introduction
2. The Adverse Impacts of Heavy Metals on Legumes
3. Anatomical Basis Related to HM Uptake and Translocation in Legumes
3.1. Root
3.2. Stem
3.3. Leaf
4. Impacts of Legume–Rhizosphere Microbe Interaction on HM and Phytoremediation
4.1. Role of Rhizospheric Microbes in Plant Responses to HM
4.2. Rhizosphere Microbe-Assisted Phytoremediation
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Impacts of long-and short-term of irrigation with treated wastewater and synthetic fertilizers on the growth, biomass, heavy metal content, and energy traits of three potential bioenergy crops in arid regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [PubMed]
- Luo, L.; Wang, B.; Jiang, J.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; Zhang, H. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments. Front. Pharmacol. 2020, 11, 595335. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.S.; Xue, Y.; Wang, Y.L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev. Environ. Contam. Toxicol. 2013, 223, 33–52. [Google Scholar]
- Rai, K.K.; Pandey, N.; Meena, R.P.; Rai, S.P. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicol. Environ. Saf. 2021, 208, 111750. [Google Scholar] [CrossRef]
- Saha, S.; Saha, B.N.; Pati, S.; Pal, B.; Hazra, G.C. Agricultural use of sewage sludge in India: Benefits and potential risk of heavy metals contamination and possible remediation options–a review. Int. J. Environ. Technol. Manag. 2017, 20, 183–199. [Google Scholar] [CrossRef]
- Garg, N.; Singla, P. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environ. Chem. Lett. 2011, 9, 303–321. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Singh, R.P. Potential of plants and microbes for the removal of metals: Eco-friendly approach for remediation of soil and water. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherlands, 2016; pp. 469–482. [Google Scholar]
- Buhari, M.; Sulaiman, B.; Vyas, N.L.; Badaru, S.; Harisu, U. Role of biotechnology in phytoremediation. J. bioremediat. Biodegrad. 2016, 7, 330. [Google Scholar]
- Salem, H.M.; Abdel-Salam, A.; Abdel-Salam, M.A.; Seleiman, M.F. Phytoremediation of metal and metalloids from contaminated soil. In Plants under Metal and Metalloid Stress; Springer: Singapore, 2018; pp. 249–262. [Google Scholar]
- Whiting, S.N.; de Souza, M.P.; Terry, N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Technol. 2001, 35, 3144–3150. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, P.; Wu, X.; Li, M.; Sun, T.; Fang, P.; Pandey, A.K.; Xu, P. Mutant library resources for legume crops and the emerging new screening technologies. Euphytica 2022, 218, 27. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)-a review. IOSR J. Pharm. Biol. Sci. 2017, 7, 22–30. [Google Scholar] [CrossRef]
- Hu, Y.; Pandey, A.K.; Wu, X.; Fang, P.; Xu, P. The Role of Arbuscular Mycorrhiza Fungi in Drought Tolerance in Legume Crops: A Review. Legume Res.-Int. J. 2022, 1, 9. [Google Scholar] [CrossRef]
- Naeem, M.; Shabbir, A.; Ansari, A.A.; Aftab, T.; Khan, M.M.A.; Uddin, M. Hyacinth bean (Lablab purpureus L.)–An underutilised crop with future potential. Sci. Hortic. 2020, 272, 109551. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Mai, V.C.; Rucińska-Sobkowiak, R.; Jeandet, P. The role of heavy metals in plant response to biotic stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef]
- Pérez Chaca, M.V.; Vigliocco, A.; Reinoso, H.; Molina, A.; Abdala, G.; Zirulnik, F.; Pedranzani, H. Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.). Merr. Acta Physiol. Plant. 2014, 36, 2815–2826. [Google Scholar] [CrossRef]
- Abdo, F.A.; Nassar, D.M.A.; Gomaa, E.F.; Nassar, R.M.A. Minimizing the Harmful Effects of Cadmium on Vegetative Growth, Leaf Anatomy, Yield and Physiological Characteristics of Soybean Plant (Glycine max (L.) Merrill) by Foliar Spray with Active Yeast Extract or with Garlic Cloves Extract. Res. J. Agric. Biol. Sci. 2012, 8, 24–35. [Google Scholar]
- Skórzynska-Polit, E.; Bednara, J.; Baszynski, T. Some aspects of runner bean plant response to cadmium at different stages of the primary leaf growth. Acta Soc. Bot. Pol. 1995, 64, 165–170. [Google Scholar] [CrossRef]
- El Hocine, K.; Bellout, Y.; Amghar, F. Effect of cadmium stress on the polyphenol content, morphological, physiological and anatomical parameters of common bean (Phaeolus vulgaris L.). Appl. Ecol. Environ. Res. 2020, 18, 3757–3774. [Google Scholar] [CrossRef]
- Zornoza, P.; Vázquez, S.; Esteban, E.; Fernández-Pascual, M.; Carpena, R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol. Biochem. 2002, 40, 1003–1009. [Google Scholar] [CrossRef]
- Talano, M.A.; Cejas, R.B.; González, P.S.; Agostini, E. Arsenic effect on the model crop symbiosis Bradyrhizobium–soybean. Plant Physiol. Biochem. 2013, 63, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.H.; Reshi, Z.; Ahmad, J.; Iqbal, M. Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. J. Plant Biol. 2005, 48, 64–84. [Google Scholar] [CrossRef]
- Shi, G.; Sun, L.; Wang, X.; Liu, C. Leaf responses to iron nutrition and low cadmium in peanut: Anatomical properties in relation to gas exchange. Plant Soil 2014, 375, 99–111. [Google Scholar] [CrossRef]
- Shukry, W.M.; Al-Osaimi, A.A. Effect of sequential concentrations of zinc and its combination with calcium or glutathione on the growth, water relations and anatomy of roots, stems and leaves of Phaseolus vulgaris cv. Contender. Int. J. Res. Granthaalayah 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Armendariz, A.L.; Talano, M.A.; Travaglia, C.; Reinoso, H.; Oller, A.L.W.; Agostini, E. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol. Biochem. 2016, 98, 119–127. [Google Scholar] [CrossRef]
- Ibañez, S.G.; Travaglia, C.N.; Medina, M.I.; Agostini, E. Vicia villosa Roth: A cover crop to phytoremediate arsenic polluted environments. Environ. Sci. Pollut. Res. Int. 2021, 28, 38604–38612. [Google Scholar] [CrossRef]
- Pita-Barbosa, A.; Gonçalves, E.C.; Azevedo, A.A. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae). Environ. Sci. Pollut. Res. 2015, 22, 11265–11274. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Zaidi, A.; Khan, M.S.; Oves, M. Heavy metal toxicity to symbiotic nitrogen-fiXing microorganism and host legumes. In ToXicity of Heavy Metals to Legumes and Bioremediation; Springer: Vienna, Austria, 2012; pp. 29–44. [Google Scholar]
- D’Souza, M.R.; Devaraj, V.R. Oxidative stress biomarkers and metabolic changes associated with cadmium stress in hyacinth bean (Lablab purpureus). Afr. J. Biotechnol. 2013, 12, 4670–4682. [Google Scholar]
- Ruthrof, K.X.; Fontaine, J.B.; Hopkins, A.J.; McHenry, M.P.; O’Hara, G.; McComb, J.; Hardy, G.E.S.J.; Howieson, J. Potassium amendment increases biomass and reduces heavy metal concentrations in Lablab purpureus after phosphate mining. Land Degrad. Dev. 2018, 29, 398–407. [Google Scholar] [CrossRef]
- Palma, F.; Lo’pez-Go´mez, M.; Tejera, N.A.; Lluch, C. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fiXation inhibition. Plant Sci. 2013, 208, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.J.; Fern´andez-Aparicio, M.; Castellanos-Morales, V.; García-Garrido, J.M.; Ocampo, J.A.; Delgado, M.J.; Vierheilig, H. First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol. Biochem. 2010, 42, 383–385. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fikri-Benbrahim, K. Rhizobium-legume symbioses: Heavy metal effects and principal approaches for bioremediation of contaminated soil. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 205–233. [Google Scholar]
- Alam, M.Z.; Hoque, M.A.; Ahammed, G.J.; McGee, R.; Carpenter-Boggs, L. Arsenic accumulation in lentil (Lens culinaris) genotypes and risk associated with the consumption of grains. Sci. Rep. 2019, 9, 9431. [Google Scholar] [CrossRef]
- Laghlimi, M.; Baghdad, B.; El Hadi, H.; Bouabdli, A. Phytoremediation mechanisms of heavy metal contaminated soils: A review. Open Ecol. J. 2015, 5, 375. [Google Scholar] [CrossRef]
- Galal, T.M.; Hassan, L.M.; Ahmed, D.A.; Alamri, S.A.; Alrumman, S.A.; Eid, E.M. Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS ONE 2021, 16, e0252229. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Srivastava, D.; Tiwari, M.; Dutta, P.; Singh, P.; Chawda, K.; Kumari, M.; Chakrabarty, D. Chromium stress in plants: Toxicity, tolerance and phytoremediation. Sustainability 2021, 13, 4629. [Google Scholar] [CrossRef]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; et al. Bioaccumulation of Lead (Pb) and its effects in plants: A review. J. Hazard. Mater. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Dong, R.; Huang, R.; Liu, P.; Li, X.; Wang, Z.; Liu, G.; Chen, Z. Advances in the mechanisms of plant tolerance to manganese toxicity. Int. J. Mol. Sci. 2019, 20, 5096. [Google Scholar] [CrossRef] [PubMed]
- Akeel, A.; Jahan, A. Role of cobalt in plants: Its stress and alleviation. In Contaminants in Agriculture; Springer: Cham, Switzerland, 2020; pp. 339–357. [Google Scholar]
- Schmidt, W.; Thomine, S.; Buckhout, T.J. Iron nutrition and interactions in plants. Front. Plant Sci. 2020, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Fusconi, A.; Repetto, O.; Bona, E.; Massa, N.; Gallo, C.; Dumas-Gaudot, E.; Berta, G. Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ. Exp. Bot 2006, 58, 253–260. [Google Scholar] [CrossRef]
- Kazemi, E.M.; Kolahi, M.; Yazdi, M.; Goldson-Barnaby, A. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea (Cicer arientinum) seedlings under cadmium induction and identification of PCS and FC genes. Physiol. Mol. Biol. Plants 2020, 26, 1551–1568. [Google Scholar] [CrossRef]
- Murtaza, G.; Javed, W.; Hussain, A.; Wahid, A.; Murtaza, B.; Owens, G. Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environ. Sci. Pollut. Res. 2015, 22, 9136–9147. [Google Scholar] [CrossRef]
- Yadav, V.; Arif, N.; Kovac, J.; Singh, V.P.; Tripathi, D.K.; Chauhan, D.K.; Vaculik, M. Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiol. Biochem. 2021, 159, 100–112. [Google Scholar] [CrossRef]
- Lux, A.; Šottníková, A.; Opatrná, J.; Greger, M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol. Plant. 2004, 120, 537–545. [Google Scholar] [CrossRef]
- Batool, R.; Hameed, M.; Ashraf, M.; Ahmad, M.S.A.; Fatima, S. Physio-anatomical responses of plants to heavy metals. In Phytoremediation for Green Energy; Springer: Dordrecht, The Netherlands, 2015; pp. 79–96. [Google Scholar]
- Römer, W.; Kang, D.K.; Egle, K.; Gerke, J.; Keller, H. The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam. J. Plant Nutr. Soil Sci. 2000, 163, 623–628. [Google Scholar] [CrossRef]
- Page, V.; Weisskopf, L.; Feller, U. Heavy metals in white lupin: Uptake, root-to-shoot transfer and redistribution within the plant. New Phytol. 2006, 171, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Bouazizi, H.; Jouili, H.; Geitmann, A.; El Ferjani, E. Structural changes of cell wall and lignifying enzymes modulations in bean roots in response to copper stress. Biol. Trace Elem Res. 2010, 136, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Rahoui, S.; Martinez, Y.; Sakouhi, L.; Ben, C.; Rickauer, M.; El Ferjani, E.; Gentzbittel, L.; Chaoui, A. Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. Protoplasma 2017, 254, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D. Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol. Mol. Biol. Plants 2013, 19, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Liza, S.J.; Shethi, K.J.; Rashid, P. Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L.). Dhaka Univ. J. Biol. Sci. 2020, 29, 45–52. [Google Scholar] [CrossRef]
- Gzyl, J.; Chmielowska-bak, J.; Przymusinski, R. Gamma-tubulin distribution and ultrastructural changes in root cells of soybean (Glycine max L.) seedlings under cadmium stress. Environ. Exp. Bot. 2017, 143, 82–90. [Google Scholar] [CrossRef]
- Wang, S.; Ren, X.; Huang, B.; Wang, G.; Zhou, P.; An, Y. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci. Rep. 2016, 6, 30079. [Google Scholar] [CrossRef]
- Lavres Junior, J.; Malavolta, E.; Nogueira, N.D.L.; Moraes, M.F.; Reis, A.R.; Rossi, M.L.; Cabral, C.P. Changes in anatomy and root cell ultrastructure of soybean genotypes under manganese stress. R. Bras. Ci. Solo. 2009, 33, 395–403. [Google Scholar] [CrossRef]
- dos Santos, E.F.; Santini, J.M.K.; Paixão, A.P.; Júnior, E.F.; Lavres, J.; Campos, M.; Dos Reis, A.R. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol. Biochem. 2017, 113, 6–19. [Google Scholar] [CrossRef]
- Pandey, N.; Bhatt, R. Role of soil associated Exiguobacterium in reducing arsenic toxicity and promoting plant growth in Vigna radiate. Eur. J. Soil Biol. 2016, 75, 142–150. [Google Scholar] [CrossRef]
- Sresty, T.V.S.; Rao, K.V.M. Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 1999, 41, 3–13. [Google Scholar] [CrossRef]
- Schreiber, L.; Hartman, K.; Skrabs, M.; Zeier, J. Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 1999, 50, 1267–1280. [Google Scholar] [CrossRef]
- dos Reis, A.R.; Queiroz Barcelos, J.P.; Souza Osório, C.R.W.; Santos, E.F.; Lisboa, L.A.M.; Kondo Santini, J.M.; Santos, M.J.D.; Furlani Junior, E.; Campos, M.; Figueiredo, P.A.M.; et al. A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environ. Exp. Bot. 2017, 144, 76–87. [Google Scholar] [CrossRef]
- Tripathi, P.; Singh, P.C.; Mishra, A.; Chaudhry, V.; Mishra, S.; Tripathi, R.D.; Nautiyal, C.S. Trichoderma inoculation ameliorates arsenic induced phytotoxic changes in gene expression and stem anatomy of chickpea (Cicer arietinum). Ecotoxicol. Environ. Saf. 2013, 89, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.R.; Cai, Q.S. Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 2008, 46, 627–630. [Google Scholar] [CrossRef]
- Shi, G.R.; Cai, Q.S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biol. Plant. 2009, 53, 391–394. [Google Scholar] [CrossRef]
- Vezza, M.E.; Alemano, S.; Agostini, E.; Talano, M.A. Arsenic Toxicity in Soybean Plants: Impact on Chlorophyll Fluorescence, Mineral Nutrition and Phytohormones. J. Plant Growth Regul. 2021, 41, 2719–2731. [Google Scholar] [CrossRef]
- Gupta, P.; Bhatnagar, A.K. Spatial distribution of arsenic in different leaf tissues and its effecton structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek. Environ. Exp. Bot. 2015, 109, 12–22. [Google Scholar] [CrossRef]
- Bouazizi, H.; Jouili, H.; Geitmann, A.; El Ferjani, E. Cell wall accumulation of Cu ions and modulation of lignifying enzymes in primary leaves of bean seedlings exposed to excess copper. Biol. Trace Elem Res. 2011, 139, 97–107. [Google Scholar] [CrossRef]
- Minnocci, A.; Francini, A.; Romeoa, S.; Sgrignuoli, A.D.; Povero, G.; Sebastiani, L. Zn-localization and anatomical changes in leaf tissues of green beans (Phaseolus vulgaris L.) following foliar application of Zn-lignosulfonate and ZnEDTA. Sci. Hortic. 2018, 231, 15–21. [Google Scholar] [CrossRef]
- Kasim, W.A. Physiological Consequences of Structural and Ultra-structural Changes Induced by Zn Stress in Phaseolus vulgaris L. Growth and Photosynthetic Apparatus. Int. J. Bot. 2007, 3, 15–22. [Google Scholar] [CrossRef]
- Vezza, M.E.; Llanes, A.; Travaglia, C.; Agostini, E.; Talano, M.A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 2018, 123, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Rabani, M.S.; Hameed, I.; Mir, T.A.; Gupta, M.K.; Habib, A.; Jan, M.; Hussain, H.; Tripathi, S.; Pathak, A.; Ahad, M.B.; et al. Microbial-assisted phytoremediation. In Phytoremediation; Academic Press: Cambridge, MA, USA, 2022; pp. 91–114. [Google Scholar]
- Jan, R.; Khan, M.A.; Asaf, S.; Lee, I.J.; Kim, K.M. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants 2019, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Diwan, B. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Bilal, S.; Shahzad, R.; Khan, A.L.; Kang, S.M.; Imran, Q.M.; Al-Harrasi, A.; Yun, B.W.; Lee, I.J. Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front. Plant. Sci. 2018, 9, 1273. [Google Scholar] [CrossRef]
- Bianucci, E.; Godoy, A.; Furlan, A.; Peralta, J.M.; Hernández, L.E.; Carpena-Ruiz, R.O.; Castro, S. Arsenic toxicity in soybean alleviated by a symbiotic species of Bradyrhizobium. Symbiosis 2018, 74, 167–176. [Google Scholar] [CrossRef]
- Dary, M.; Chamber-Pérez, M.A.; Palomares, A.J.; Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 2010, 177, 323–330. [Google Scholar] [CrossRef]
- Sarathambal, C.; Khankhane, P.J.; Gharde, Y.; Kumar, B.; Varun, M.; Arun, S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int. J. Phytoremediat. 2017, 19, 360–370. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, Y.; Wu, A.; Huang, J. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE 2018, 13, e0196408. [Google Scholar] [CrossRef]
- Janeeshma, E.; Puthur, J.T. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch. Microbiol. 2020, 202, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, L.; Beiyuan, J.; Cui, Y.; Peng, Q.; Zhu, S.; Wang, M.; Zhang, X. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environ. Pollut. 2021, 277, 116758. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.Q.; Yan, X.W.; Wei, G.H.; Zhang, J.H.; Fang, L.C. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Ecotoxicol. Environ. Saf. 2018, 162, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Ismaila, H.Y.; Ijahb, U.J.J.; Riskuwac, M.L.; Allamina, I.A.; Isaha, M.A. Assessment of phytoremediation potentials of legumes in spent engine oil contaminated soil. Eur. J. Environ. Saf. Sci. 2014, 2, 59–64. [Google Scholar]
- Stambulska, U.Y.; Bayliak, M.M.; Lushchak, V.I. Chromium (VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Res. Int. 2018, 2018, 8031213. [Google Scholar] [CrossRef]
- Kong, Z.; Glick, B.R.; Duan, J.; Ding, S.; Tian, J.; McConkey, B.J.; Wei, G. Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil. 2015, 70, 5891–5897. [Google Scholar] [CrossRef]
- Singh, J.S.; Singh, D.P. Plant growth promoting rhizobacteria (PGPR): Microbes in sustainable agriculture. In Management of Microbial Resources in the Environment; Springer: Dordrecht, The Netherlands, 2013; pp. 361–385. [Google Scholar]
- Raklami, A.; Oufdou, K.; Tahiri, A.I.; Mateos-Naranjo, E.; Navarro-Torre, S.; Rodríguez-Llorente, I.D.; Meddich, A.; Redondo-Gómez, S.; Pajuelo, E. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms 2019, 7, 212. [Google Scholar] [CrossRef]
- Raklami, A.; Tahiri, A.I.; Bechtaoui, N.; Pajuelo, E.; Baslam, M.; Meddich, A.; Oufdou, K. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J. Environ. Sci. 2021, 99, 210–221. [Google Scholar] [CrossRef]
- Coninx, L.; Martinova, V.; Rineau, F. Mycorrhiza-assisted phytoremediation. Adv. Bot. Res. 2017, 83, 127–188. [Google Scholar]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Cabral, L.; Soares, C.R.F.S.; Giachini, A.J.; Siqueira, J.O. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World J. Microbiol. Biotechnol. 2015, 31, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, N.O.; Atayese, M.O.; Sakariyawo, O.S.; Azeez, J.O.; Abayomi Sobowale, S.P.; Olubode, A.; Mudathir, R.; Adebayo, R.; Adeoye, S. Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 2021, 18, 100325. [Google Scholar] [CrossRef]
- Pérez-Palacios, P.; Romero-Aguilar, A.; Delgadillo, J.; Doukkali, B.; Caviedes, M.A.; Rodríguez-Llorente, I.D.; Pajuelo, E. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environ. Sci. Pollut. Res. 2017, 24, 14910–14923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Cao, T.; Chen, J.; Rosen, B.P.; Zhao, F.J. Arsenic methylation by a genetically engineered Rhizobium-legume symbiont. Plant Soil. 2017, 416, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Zaefarian, F.; Rezvani, M.; Ardakani, M.R.; Rejali, F.; Miransari, M. Impact of mycorrhizae formation on the phosphorus and heavy-metal uptake of Alfalfa. Comm. Soil Sci. Plant Anal. 2013, 44, 1340–1352. [Google Scholar] [CrossRef]
- Amer, N.; Chami, Z.A.; Bitar, L.A.; Mondelli, D.; Dumontet, S. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int. J. Phytoremediat. 2013, 15, 498–512. [Google Scholar] [CrossRef]
- Chen, F.; Wang, S.; Mou, S.; Azimuddin, I.; Zhang, D.; Pan, X.; Al-Misned, F.A.; Mortuza, M.G. Physiological responses and accumulation of heavy metals and arsenic of Medicago sativa L. growing on acidic copper mine tailings in arid lands. J. Geochem. Explor. 2015, 157, 27–35. [Google Scholar] [CrossRef]
S.No | Heavy Metals | Functions in Plant | Adverse Effects on Plant | Concentration in Fruits | References | |
---|---|---|---|---|---|---|
Non-Polluted | Polluted | |||||
1 | Copper (Cu) | Constituent of enzymes; | Disruption of photosynthesis | 0.4 ± 0.14 | 12.6 ± 0.40 | [41,42] |
Role in photosynthesis and several physiological processes | Plant growth and reproductive processes | |||||
Involved in reproductive and in determining yield and quality in crops (disease resistance) | Decreases thylakoid surface area | |||||
2 | Nickel (Ni) | Constituent of enzymes | Reduction of: seed germination; protein production and chlorophyll and enzyme production | 0.9 ± 0.38 | 24.7 ± 0.76 | [41,42] |
Activation of urease | Accumulation of dry mass | |||||
3 | Zinc (Zn) | Constituent of cell membranes; | Reduces nickel toxicity and seed germination | 3.0 ± 4.35 | 25.8 ± 1.53 | [41,42] |
Component of a variety of enzymes; | Leaf discoloration called chlorosis | |||||
DNA transcription; | ||||||
Involved in reproductive phase and in determining yield and quality of crops; | ||||||
Resistance against biotic and abiotic stress; | ||||||
Legume nodulation and nitrogen fixation | ||||||
4 | Cadmium (Cd) | Decreases seed germination, lipid content, and plant growth | 3.0 ± 4.35 | 25.8 ± 1.53 | [41,42,43] | |
Disturbs enzyme activities, | ||||||
Inhibits the DNA-mediated transformation in micro-organisms, | ||||||
Interferes in the symbiosis between microbes and plants | ||||||
Increases plant predisposition to fungal invasion | ||||||
5 | Chromium (Cr) | Causes decrease in enzyme activity and plant growth; | 0.4 ± 0.14 | 12.6 ± 0.40 | [41,42,44] | |
Produces membrane damage, chlorosis, and root damage | ||||||
Reduces chlorophyll, chlorosis, necrosis; | ||||||
6 | Lead (Pb) | Inhibits root and shoot growth | 8.9 ± 1.76 | 121.0 ± 1.32 | [41,42,45] | |
Less biomass production | ||||||
affecting seed germination | ||||||
7 | Manganese (Mn) | Major contributor to various biological systems: photosynthesis, respiration, and nitrogen assimilation | Inhibiting plant growth: Chlorosis in young leaves, Necrotic dark spots on mature leaves, and crinkled leaves | 10.9 ± 1.94 | 61.6 ± 0.79 | [41,42,46] |
Pollen germination, pollen tube growth, root cell elongation and resistance to root pathogens | ||||||
8 | Cobalt (Co) | Several enzyme and coenzyme operations: Accelerating the nitrogen fixation in legumes | Reduced development and crop yield | 1.5 ± 0.00 | 2.3 ± 0.85 | [41,42,47] |
Stem development, coleoptile elongation, bud formation, plant growth enhancement | Chlorosis and necrosis and inhibition of root formation, hindering the nutrient translocation and water uptake | |||||
9 | Iron (Fe) | Involved in the synthesis of chlorophyll and maintenance of chloroplast structure and their function | Lack of iron causes yellowing in young leaves due to the plant not being able to produce chlorophyll | 583.5 ± 45.27 | 2098.0 ± 24.02 | [41,42,48] |
Helps the plant move oxygen throughout the roots, leaves, and other parts of the plant, producing the green color which showed plant is healthy | Excess iron can produce symptoms of stunted growth and discolored bronzing foliage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, A.K.; Zorić, L.; Sun, T.; Karanović, D.; Fang, P.; Borišev, M.; Wu, X.; Luković, J.; Xu, P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant–Rhizosphere Interactions. Plants 2022, 11, 2554. https://doi.org/10.3390/plants11192554
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant–Rhizosphere Interactions. Plants. 2022; 11(19):2554. https://doi.org/10.3390/plants11192554
Chicago/Turabian StylePandey, Arun K., Lana Zorić, Ting Sun, Dunja Karanović, Pingping Fang, Milan Borišev, Xinyang Wu, Jadranka Luković, and Pei Xu. 2022. "The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant–Rhizosphere Interactions" Plants 11, no. 19: 2554. https://doi.org/10.3390/plants11192554
APA StylePandey, A. K., Zorić, L., Sun, T., Karanović, D., Fang, P., Borišev, M., Wu, X., Luković, J., & Xu, P. (2022). The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant–Rhizosphere Interactions. Plants, 11(19), 2554. https://doi.org/10.3390/plants11192554