Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata)
Abstract
:1. Introduction
2. Results
2.1. Yield of Acetone Extracts
2.2. TLC, HPLC, and NMR Analysis of Extract and Fractions
2.3. Identification of Species-Specific Compounds
2.4. Isolation and Structural Elucidation of Compounds Kaempferol−3−O−Glucopyranoside (7) and Kaempferol−3−(3″,4″−Diacetyl−2″,6″−di−E−p−Coumaroyl)−Glucopyranoside (15)
3. Discussion
4. Materials and Methods
4.1. Equipment and Reagents
4.2. Plant Material
4.3. Extracts
4.4. Isolation and Identification of Compounds (1–16)
4.5. Isolation and Identification of Compounds (17–19)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wink, M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 1988, 75, 225–233. [Google Scholar] [CrossRef]
- Demain, A.L.; Fang, A. The natural functions of secondary metabolites. In History of Modern Biotechnology I: Advances in Biochemical Engineering/Biotechnology; Fiechter, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 2–33. [Google Scholar]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. Sci. 2015, 5, 661–670. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.F.; et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrón, E.; Averyanova, A.; Kvaček, Z.; Momohara, A.; Pigg, K.B.; Popova, S.; Postigo-Mijarra, J.M.; Tiffney, B.H.; Utescher, T.; Zhou, Z.K. The Fossil History of Quercus. Oaks Physiological Ecology. In Exploring the Functional Diversity of Genus Quercus L.; Gil-Pelegrín, E., Peguero-Pina, J.J., Sancho-Knapik, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–105. [Google Scholar]
- Kremer, A.; Abbott, A.G.; Carlson, J.E.; Manos, P.S.; Plomion, C.; Sisco, P.; Staton, M.E.; Ueno, S.; Vendramin, G.G. Genomics of Fagaceae. Tree Genet. Genomes 2012, 8, 583–610. [Google Scholar] [CrossRef] [Green Version]
- Aldrich, P.R.; Cavender-Bares, J. Quercus. In Wild Crop Relatives: Genomic and Breeding Resources, Forest Trees; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–129. [Google Scholar]
- Govaerts, R.; Frodin, D.G. World Checklist and Bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae), 1st ed.; Royal Botanic Gardens: Chicago, IL, USA, 1998. [Google Scholar]
- Valencia, A.S. Diversidad del género Quercus (Fagaceae) en México. Bol. Soc. Bot. Méx. 2004, 75, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Jardel-Peláez, E.J. El Manejo Forestal en México: Estado Actual y Perspectivas, 1st ed.; Consejo Civil Mexicano para la Silvicultura Sostenible: Mexico City, México, 2012. [Google Scholar]
- Rodríguez-Correa, H.; Oyama, K.; MacGregor-Fors, I.; González-Rodríguez, A. How are oaks distributed in the neotropics? a perspective from species turnover, areas of endemism, and climatic niches. Int. J. Plant Sci. 2015, 176, 222–231. [Google Scholar] [CrossRef]
- Hipp, A.L.; Manos, P.S.; González-Rodríguez, A.; Hahn, M.; Kaproth, M.; McVay, J.D.; Valencia-Avalos, S.; Cavender-Bares, J. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 2018, 217, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Bowyer, J.L.; Shmulsky, R.; Haygreen, J.G. Forest Products and Wood Science: An Introduction, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar]
- Deguilloux, M.F.; Pemonge, M.H.; Petit, R.J. DNA-based control of oak wood geographic origin in the context of the cooperage industry. Ann. Forest Sci. 2004, 61, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Oishi, M.; Yokota, T.; Teramoto, N.; Sato, H. Japanese oak silkmoth feeding preference for and performance on uppercrown and lower-crown leaves. Entomol. Sci. 2005, 9, 161–169. [Google Scholar] [CrossRef]
- Bargali, K.; Joshi, B.; Bargali, S.S.; Singh, S.P. Oaks and the biodiversity they sustain. Int. Oaks 2015, 26, 65–76. [Google Scholar]
- Cantos, E.; Espín, J.C.; López-Bote, C.; de La Hoz, L.; Ordoñez, J.A.; Tomás-Barberán, F.A. Phenolic compounds and fatty acids from acorns (Quercus spp.): The main dietary constituent of free-ranged Iberian pigs. J. Agr. Food Chem. 2003, 51, 6248–6255. [Google Scholar] [CrossRef]
- Tejerina, D.S.; García-Torres, M.; Cabeza de Vaca, F.M.; Vázquez, R.C.; Cava, R. Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “montanera” feeding of Iberian pigs: Intra-and interanual variations. Food Chem. 2011, 124, 997–1004. [Google Scholar] [CrossRef]
- Hadidi, L.; Babou, L.; Zaidi, F.; Valentão, P.; Andrade, P.B.; Grosso, C. Quercus ilex L.: How season, plant organ and extraction procedure can influence chemistry and bioactivities. Chem. Biodivers. 2017, 14, e1600187. [Google Scholar] [CrossRef]
- Glasby, J.S. Dictionary of Plants Containing Secondary Metabolites, 1st ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Yarnes, C.T.; Boecklen, W.J.; Tuominen, K.; Salminen, J.P. Hybridization affects seasonal variation of phytochemical phenotypes in an oak hybrid complex (Quercus gambelii × Quercus grisea). Int. J. Plant Sci. 2008, 169, 567–578. [Google Scholar] [CrossRef]
- Noori, M.; Talebi, M.; Ahmadi, T. Comparative studies of leaf, gall and bark flavonoids in collected Quercus brantii Lindl. (Fagaceae) from Lorestan province. Iran Int. J. Plant Res. 2015, 5, 42–49. [Google Scholar] [CrossRef]
- Subhashini, S.; Maleeka-Begum, S.F.; Rajesh, G. Phytochemical screening and tlc analysis of different Quercus species. Int. J. Pharm. Sci. 2015, 5, 1220–1226. [Google Scholar]
- Yarnes, C.T.; Boecklen, W.J.; Tuominen, K.; Salminen, J.P. Defining phytochemical phenotypes: Size and shape analysis of phenolic compounds in oaks (Fagaceae, Quercus) of the Chihuahuan Desert. Can. J. Bot. 2006, 84, 1167–1185. [Google Scholar] [CrossRef]
- Moctezuma, C.; Hammerbacher, A.; Heil, M.; Gershenzon, J.; Méndez-Alonzo, R.; Oyama, K. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J. Chem. Ecol. 2014, 40, 458–467. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Cuevas-Reyes, P.; González-Rodríguez, A.; Pérez-López, G.; Acosta-Gómez, C.; Oyama, K. Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecol. Res. 2015, 30, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Mendoza, E.; Salinas-Sánchez, D.; Valencia-Cuevas, L.; Zamilpa, A.; Tovar-Sánchez, E. Natural hybridisation among Quercus glabrescens, Q. rugosa and Q. obtusata (Fagaceae): Microsatellites and secondary metabolites markers. Plant Biol. 2019, 21, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Castillo, S.M.; Álvarez-Moctezuma, J.G.; Zavala-Chávez, F.; Espinosa-Robles, P. Meiotic morphology and behavior in Quercus glabrescens × Q. rugosa (fagaceae) natural hybrid. Rev. Chapingo Ser. Cienc. For. Ambiente. 2010, 16, 171–177. [Google Scholar] [CrossRef]
- Karioti, A.; Bilia, A.R.; Skaltsa, H. Quercus ilex L.: A rich source of polyacylated flavonoid glucosides. Food Chem. 2010, 123, 131–142. [Google Scholar] [CrossRef]
- Aisyah, L.S.; Yun, Y.F.; Herlina, T.; Julaeha, E.; Zainuddin, A.; Nurfarida, I.; Hidayat, A.T.; Supratman, U.; Shiono, Y. Flavonoid compounds from the leaves of Kalanchoe prolifera and their cytotoxic activity against P-388 murine leukemia cells. Nat. Prod. Sci. 2017, 23, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Karioti, A.; Ceruso, M.; Carta, F.; Bilia, A.R.; Supuran, C.T. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Planta Med. 2016, 82, S1–S381. [Google Scholar] [CrossRef]
- Chauhan, S.M.S.; Singh, M.; Kumar, A. Isolation and characterization of selected secondary metabolites from dry leaves of Quercus semicarpifolia. Indian J. Chem. 2004, 438, 223–226. [Google Scholar]
- Irchhaiya, R.; Kumar, A.; Yadav, A.; Gupta, N.; Kumar, S.; Gupta, N.; Kumar, S.; Yadav, V.; Prakash, A.; Gurjar, H. Metabolites in plants and its classification. World J. Pharm. Sci. 2014, 4, 287–305. [Google Scholar]
- Usié, A.; Simões, F.; Barbosa, P.; Meireles, B.; Chaves, I.; Gonçalves, S.; Folgado, A.; Almeida, M.H.; Matos, J.; Ramos, A.M. Comprehensive analysis of the cork oak (Quercus suber) transcriptome involved in the regulation of bud sprouting. Forests 2017, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits, 1st ed.; Sinauer Associates: Sunderland, UK, 1998. [Google Scholar]
- Kai, K.; Shimizu, B.; Mizutani, M.; Watanabe, K.; Sakata, K. Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 2006, 67, 379–386. [Google Scholar] [CrossRef]
- Scioneaux, A.N.; Schmidt, M.A.; Moore, M.A.; Lindroth, R.L.; Wooley, S.C.; Hagerman, A.E. Qualitative variation in proanthocyanidin composition of Populus species and hybrids: Genetics is the key. J. Chem. Ecol. 2011, 37, 57–70. [Google Scholar] [CrossRef]
- Barbour, M.A.; Rodriguez-Cabal, M.A.; Wu, E.T.; Julkunen-Tiitto, R.; Ritland, C.E.; Miscampbell, A.E.; Jules, E.S.; Crutsinger, G.M. Multiple plant traits shape the genetic basis of herbivore community assembly. Funct. Ecol. 2015, 29, 995–1006. [Google Scholar] [CrossRef]
- Caseys, C.; Stritt, C.; Glauser, G.; Blanchard, T.; Lexer, C. Effects of hybridization and evolutionary constraints on secondary metabolites: The genetic architecture of phenylpropanoids in european Populus species. PLoS ONE 2013, 10, e0128200. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.H.; Schmidt, W. Mobilization of Iron by plant-borne coumarins. Trends. Plant Sci. 2017, 22, 538–548. [Google Scholar] [CrossRef]
- Barker, H.L.; Holeski, L.M.; Lindroth, R.L. Genotypic variation in plant traits shapes herbivorous insect and ant communities on a foundation tree species. PLoS ONE 2018, 13, e0200954. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Oyama, K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: Morphological and molecular evidence. Am. J. Bot. 2004, 91, 1352–1363. [Google Scholar] [CrossRef]
- Glassmire, A.E.; Jeffrey, C.S.; Forister, M.L.; Parchman, T.L.; Nice, C.C.; Jahner, J.P.; Wilson, J.S.; Walla, T.R.; Richards, L.A.; Smilanich, A.M.; et al. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytol. 2016, 212, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Vrieling, K.; Klinkhamer, P.G.L. The effect of hybridization on secondary metabolites and herbivore resistance: Implications for the evolution of chemical diversity in plants. Phytochem. Rev. 2011, 10, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, A.L.H.; Lamant, T. Guide Illustré des Chênes, 1st ed.; Edilens: Geer, Belgium, 2010. [Google Scholar]
- Makkar, H.P.S.; Dawra, R.K.; Singh, B. Changes in tannin content, polymerisation and protein precipitation capacity in oak (Quercus incana) leaves with maturity. J. Sci. Food Agric. 1988, 44, 301–307. [Google Scholar] [CrossRef]
- Vaca-Sánchez, M.S.; González-Rodríguez, A.; Maldonado-López, Y.; Fernandes, G.W.; Cuevas-Reyes, P. Importancia de los taninos en especies del género Quercus como metabolitos secundarios asociados a defensa contra insectos herbívoros. Biológicas 2016, 18, 10–20. [Google Scholar]
- De Visser, P.H.B. The relations between chemical composition of oak tree rings, leaf, bark, and soil solution in a partly mixed stand. Can. J. For. Res. 1992, 22, 1824–1831. [Google Scholar] [CrossRef]
- Fischbach, R.J.; Staudt, M.; Zimmer, I.; Rambal, S.; Schnitzler, J.P. Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex L. Physiol. Plant. 2002, 114, 354–360. [Google Scholar] [CrossRef]
- Kilic, U.; Boga, M.; Guven, I. Chemical composition and nutritive value of oak (Quercus robur) nut and leaves. J. Appl. Anim. Res. 2010, 38, 101–104. [Google Scholar] [CrossRef]
- Sohretoglu, D.; Kuruüzüm-Uz, A.; Simon, A.; Patócs, T.; Dékány, M. New secondary metabolites from Quercus coccifera L. Rec. Nat. Prod. 2014, 8, 323–329. [Google Scholar]
- Zhang, B.; Cai, J.; Duan, C.Q.; Reeves, M.J.; He, F. A review of polyphenolics in oak woods. Int. J. Mol. Sci. 2015, 27, 6978–7014. [Google Scholar] [CrossRef] [Green Version]
- Gille, G.; Sigler, K. Oxidative stress and living cells. Folia Microbiol. 1995, 40, 131–152. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Sharma, S.S.; Dietz, K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant. Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Jesús, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based Complement. Alternat. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, L.; Skapska, S.; Marszałek, K. Ursolic acid-a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015, 19, 20614–20641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic acid in health and disease. Korean J. Physiol. Pharmacol. 2018, 22, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Vázquez, L.; Palazon, J.; Navarro-Ocaña, A. The Pentacyclic Triterpenes α, β-amyrins: A review of sources and biological activities. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; InTechOpen: London, UK, 2012; pp. 487–502. [Google Scholar] [CrossRef] [Green Version]
- Bin Sayeed, M.S.; Rezaul-Karim, S.M.; Sharmin, T.; Morshed, M.M. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol. Medicines 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Q.; Selimi, D.; Wang, Q.; Charkowski, A.O.; Chen, X.; Yang, C.H. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl. Environ. Microbiol. 2009, 75, 1223–1228. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Li, W.; Li, Q.; Wang, L.; Cao, J.; Jiang, W. Defense responses, induced by p-coumaric acid and methyl p-coumarate, of jujube (Ziziphus jujuba Mill.) fruit against black spot rot caused by Alternaria alternata. J. Agric. Food Chem. 2019, 67, 2801–2810. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Riaz, U.; Kharal, M.A.; Murtaza, G.; Zaman, Q.; Javaid, S.; Malik, H.A.; Aziz, H.; Abbas, Z. Prospective roles and mechanisms of caffeic acid in counter plant stress: A mini review. Pak. J. Agric. Sci. 2019, 32, 8–19. [Google Scholar] [CrossRef]
- Agati, G.; Tattini, M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010, 186, 786–793. [Google Scholar] [CrossRef]
- Kim, T.H.; Ku, S.K.; Lee, I.C.; Bae, J.S. Anti-inflammatory effects of kaempferol-3-O-sophoroside in human endothelial cells. Inflamm. Res. 2012, 61, 217–224. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A Review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Campos-Vidal, Y.; Herrera-Ruiz, M.; Trejo-Tapia, G.; González-Cortázar, M.; Jiménez-Aparicio, A.; Zamilpa, A. Gastroprotective activity of kaempferol glycosides from Malvaviscus arboreus Cav. J. Ethnopharmacol. 2021, 268, 113633. [Google Scholar] [CrossRef]
- Caporali, S.; De Stefano, A.; Calabrese, C.; Giovannelli, A.; Pieri, M.; Savini, I.; Tesauro, M.; Bernardini, S.; Minieri, M.; Terrinoni, A. Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-Glucoside. Nutrients 2022, 14, 1155. [Google Scholar] [CrossRef]
- Yang, L.; Yin, P.; Ho, C.-T.; Yu, M.; Sun, L.; Liu, Y. Effects of thermal treatments on 10 major phenolics and their antioxidant contributions in Acer truncatum leaves and flowers. R. Soc. Open. Sci. 2018, 5, 180364. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Song, J.H.; Park, K.S.; Kwon, D.H. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 2009, 7, 329–333. [Google Scholar] [CrossRef]
- Benoit, G.J.; Sanni, A.; Brimer, L. Review scopoletin—A coumarin phytoalexin with medicinal properties. Crit. Rev. Plant Sci. 2012, 31, 47–56. [Google Scholar] [CrossRef]
- Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P. Comparative study of rosmarinic acid content in some plants of Labiatae family. Phcog. Mag. 2012, 8, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.P.; Fernandes, D.A.; Ferreira, M.D.L.; Cordeiro, L.V.; Souza, M.F.V.; Pessoa, H.L.F.; Oliveira Filho, A.A.; Sá, R.C.S. Analysis of the toxicological and pharmacokinetic profile of kaempferol-3-O-β-D-(6”-E-p-coumaryl) glucopyranoside-tiliroside: In silico, in vitro and ex vivo assay. Braz. J. Biol. 2021, 83, e244127. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Liu, Y.; Chu, H.; Duan, H. Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents. Molecules 2010, 15, 9174–9183. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tian, Y.; Wang, T.; Lin, Q.; Feng, X.; Jiang, Q.; Liu, Y.; Chen, D. Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: Comparison of astragalin and tiliroside. Molecules 2017, 22, 1165. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhou, Y.; Lu, J.; Sugahara, K.; Xu, S.; Kodama, H. Effect of five flavonoid compounds isolated from Quercus dentata Thunb on superoxide generation in human neutrophils and phosphorylation of neutrophil proteins. Clin. Chim. Acta 2001, 306, 97–102. [Google Scholar] [CrossRef]
- Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem. 2009, 16, 4236–4260. [Google Scholar] [CrossRef]
- Ble-González, E.A.; Gómez-Rivera, A.; Zamilpa, A.; López-Rodríguez, R.; Lobato-García, C.E.; Álvarez-Fitz, P.; Gutierrez-Roman, A.S.; Perez-García, M.D.; Bugarin, A.; González-Cortazar, M. Ellagitannin, Phenols, and Flavonoids as Antibacterials from Acalypha arvensis (Euphorbiaceae). Plants 2022, 11, 300. [Google Scholar] [CrossRef]
Study Species | |||||
---|---|---|---|---|---|
Q. rugosa | Q. obtusata | Q. glabrescens | Retention Time | Identification Technique | |
Compound | [% au] | [% au] | [% au] | (min) | |
1 chlorogenic acid | (3.06) | ND | (1.38) | 8.601 | HPLC |
2 coumaric acid | (2.13) | ND | ND | 8.834 | HPLC |
3 quercetin−3−O−rutinoside | (2.64) | (2.39) | (1.11) | 9.071 | HPLC |
4 caffeic acid | (2.20) | ND | (0.56) | 9.226 | HPLC |
5 quercetin−3−O−glucoside | (0.43) | (0.05) | (1.14) | 9.530 | HPLC |
6 kaempferol−3−O−sophoroside | (1.85) | ND | (8.20) | 9.681 | HPLC |
7 kaempferol−3−O−glucopyranoside | (0.12) | (0.38) | (0.14) | 9.715 | NMR |
8 kaempferol−3−O−sambubioside | (25.83) | (87.28) | ND | 9.816 | HPLC |
9 luteolin−7−O−glucoside | ND | (0.40) | ND | 9.340 | HPLC |
10 quercetin−3−O−rhamnoside | (5.03) | (7.63) | (5.11) | 10.067 | HPLC |
11 scopoletin | (0.11) | (0.09) | (0.14) | 10.524 | HPLC |
12 rosmarinic acid | ND | ND | (3.32) | 10.973 | HPLC |
13 tiliroside | (1.48) | ND | ND | 12.516 | HPLC |
14 coumaric acid derivative | (3.75) | ND | ND | 25.315 | HPLC, only UV spectrum |
15 kaempferol−3−O− (3″,4″−Diacetyl−2″,6″−di−E−p−coumaroyl)−glucopyranoside | (51.31) | (1.76) | (74.18) | 27.932 | NMR |
16 coumarin | ND | ND | (4.70) | 29.016 | HPLC, only UV spectrum |
Specialized Metabolites | Function | Reference |
---|---|---|
ursolic acid | Antioxidants, antibacterial, anti-inflammatory, antiparasitic, antiviral, anticancer | [59,60,61] |
β−amyrin | Antioxidant, antibacterial, antifungal | [62] |
β−sitosterol | Antioxidant, antibacterial, antiparasitic | [63] |
chlorogenic acid | Antioxidant, antibacterial, antifungal, antiviral | [64] |
coumaric acid | Antioxidant, antibacterial, antifungal | [65,66] |
quercetin−3−O−rutinoside | Antioxidant | [67] |
caffeic acid | Antioxidant | [68] |
quercetin−3−O−glucoside | Antioxidant | [69] |
kaempferol−3−O−sophoroside | Anti-inflammatory | [70] |
kaempferol−3−O−glucopyranoside | Antioxidant, antibacterial, anti-inflammatory, anti-cancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic, antiallergic | [71] |
kaempferol−3−O−sambubioside | Gastroprotective | [72] |
luteolin−7−O−glucoside | Antioxidant, anti-inflammatory | [73] |
quercetin−3−O−rhamnoside | Antioxidant, antiviral | [74,75] |
scopoletin | Antioxidant, antibacterial, antifungal | [76] |
rosmarinic acid | Antioxidant, antibacterial, antiviral, anti-carcer, anti-allergic, anti-thrombotic | [77] |
tiliroside | Antioxidant, anti-inflammatory, anti-diabetic, cytoprotective, anti-cancer, antineoplastic, anti-hemorrhagic and antithrombotic activities | [78,79,80,81] |
coumarate | Currently no reported medical functions | |
kaempferol acetyl glucoside | Antioxidant | [82] |
coumarin | Antioxidant, antibacterial, anti-inflammatory, anti-cancer, anti-coagulant, anti-platelet | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Mendoza, E.; Zamilpa, A.; González-Cortazar, M.; Ble-González, E.A.; Tovar-Sánchez, E. Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata). Plants 2022, 11, 2610. https://doi.org/10.3390/plants11192610
Castillo-Mendoza E, Zamilpa A, González-Cortazar M, Ble-González EA, Tovar-Sánchez E. Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata). Plants. 2022; 11(19):2610. https://doi.org/10.3390/plants11192610
Chicago/Turabian StyleCastillo-Mendoza, Elgar, Alejandro Zamilpa, Manasés González-Cortazar, Ever A. Ble-González, and Efraín Tovar-Sánchez. 2022. "Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata)" Plants 11, no. 19: 2610. https://doi.org/10.3390/plants11192610
APA StyleCastillo-Mendoza, E., Zamilpa, A., González-Cortazar, M., Ble-González, E. A., & Tovar-Sánchez, E. (2022). Chemical Constituents and Their Production in Mexican Oaks (Q. Rugosa, Q. Glabrescens and Q. Obtusata). Plants, 11(19), 2610. https://doi.org/10.3390/plants11192610