Punica granatum as Anticandidal and Anti-HIV Agent: An HIV Oral Cavity Potential Drug
Abstract
:1. Introduction
2. Brief Overview of HIV and Candida spp.
3. Generalities of P. granatum
Phytochemical and Pharmacological Profile of P. granatum
Pharmacological Effect | Assay | Reference |
---|---|---|
Antioxidant | Exhibited an IC50 = 1.9 ± 0.2 μg/mL in DPPH radical scavenger test. It also exerted significant ferrous chelating activity, lipid peroxidation inhibition, ferric-reducing antioxidant power, scavenging of superoxide anion, and reducing power ability in a dose-dependent manner. | [67,68,69] |
Anti-inflammatory | Decreased pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and down-regulated iNOS and COX-2 expression. Played a regulatory role in NF-κB, MAPK, IL-6/JAK/STAT3, and PI3K/Akt/mTOR signaling pathways. | [64,70] |
Anticancer | Apoptotic and cytotoxic effects were shown by nano-prototypes on MCF7 and MDA-MB-231 breast cancer cell lines. Expression levels of Cas-3 and Bax were up-regulated, while the expression levels of BCL-2, NF-ĸB, and PI3k were down-regulated. | [71] |
Exhibited cytotoxic effects by suppressing proliferation and promoting apoptosis and autophagy through the activation of caspase cascade. Bax and Bcl-2 were altered and via mTOR/ULK1 exhibited regulation of autophagy in acute leukemia. | [72] | |
Toxic effects and reactive oxygen species generation were induced in lung cancer A549 cells. Alterations in the mitochondrion membrane potential and apoptotic morphological changes were recorded. Punicalagin also inhibited STAT-3 translocation and induced apoptosis by inhibiting expression of Bcl-2 and enhanced expression of Bax, cytochrome-c, caspase-9, and caspase-3 in A549 cells. | [73] | |
Possessed chemopreventive and chemotherapeutic effects against human ovarian cancer through the inhibition of β-catenin signaling pathway. It also inhibited the cell viability of A2780 ovarian cells in a dose-dependent manner, as well as induced apoptosis by the up-regulation of Bax and down-regulation of BCL-2. | [74] | |
Inhibited the viability of cervical cancer cells in a dose-dependent manner via stimulating mitochondrial-mediated apoptosis. Stimulated cell apoptosis by suppressing NF-kappa B (NF-kB) activity, which was also affected by punicalagin, blocking cancer cell progression. | [75] | |
Antimicrobial | MIC values between 0.3 and 1.2 µg.mL−1, where the spectrum of activity targeted Gram-positive and Gram-negative bacteria, as well as a yeast strain. The three Gram-positive strains were Pseudomonas aeruginosa ATCC 9027, Salmonella enteritidis LC 216, and Escherichia coli ATCC 25922. The 13 Gram-positive bacteria strains comprised the following: Staphylococcus epidermidis ATCC 12228; Staphylococcus xylosus LC 57; Staphylococcus aureus ATCC 6538; Bacillus cereus CIP; Lactobacillus sakei ssp. sakei ATCC 15521; Lactobacillus plantarum CECT 4185; Pediococcus acidilactici LC P1; Enterococcus faecium DSMZ 10,663; Enterococcus faecalis ATCC 19,433; Enterococcus mundtii LC E23; Enterococcus sulfureus LC E28; Enterococcus casseliflavus LC E1; and Enterococcus columbae LC E2. The yeast strain employed was Candida albicans ATCC 10231. | [76] |
Induction of an increase in the extracellular concentrations of potassium and a release of cell constituents, but also an increase in intracellular pH, cell membrane depolarization, and damage in the structure of the cell membrane of Salmonella Typhimuriume. | [77] | |
Exerted activity against Plasmodium falciparum D6 and W2 clones with IC50 values of 7.5 and 8.8 μM. Revealed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Cryptococcus neoformans, Methicillin-resistant Staphylococcus aureus (MRSA), Aspergillus fumigatus, Mycobacterium intracellulare, P. aeruginosa, and C. neoformans. | [78] | |
Antiviral | Inhibited replication of influenza A and B viruses (several strains), including Oseltamivir-resistant virus (NA/H274Y) with a low micromolar IC50 value in tissue culture. | [79] |
Inhibitory action against the SARS-CoV-2 3CL-protease in a dose-dependent manner, with IC50 = 6.192 μg/mL for punicalagin. When punicalagin was combined with zinc sulfate monohydrate (punicalagin/Zn-II), the inhibitory activity became extremely strong in 3CL-protease activity (more than 4-fold approx.) No toxicity was observed by punicalagin, Zn-II, or punicalagin/Zn-II. | [80] | |
Reduced the viral cytopathic effect of enterovirus 71 on rhabdomyosarcoma cells with an IC50 = 15 μg/mL. In mouse treatment with a lethal dose of enterovirus 71, punicalagin reduced mortality and relieved clinical symptoms by inhibiting viral replication. | [81] |
4. P. granatum Products That Are Relevant for Oral Diseases
5. Anti-HIV and Anticandidal Properties of P. granatum
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HIV | Human Immunodeficiency Virus |
AIDS | Acquired Immunodeficiency Syndrome |
HAART | Highly Active AntiRetroviral Therapy |
OC | Oral Candidiasis |
ARV | Antiretroviral |
RT | Reverse Transcriptase |
IN | Integrase |
PR | Protease |
PLWA | People Living With AIDS |
ATCC | American Type Culture Colection |
MRSA | Methicillin-Resistant Staphylococcus aureus |
DSMZ | Leibniz Institute DSMZ |
GmbH | German Collection of Microorganisms and Cell Cultures |
NF-kB | Core Factor Kappa Beta |
GCF | Gingival Crevicular Fluid |
PI | Plaque Index |
BPI | Bleeding on Probing Index |
LC50 | Letal Concentration 50 |
CFU | Colony Forming Units |
MTCC | Microbial Type Culture Collection |
TPT | Total Pomegranate Tannin |
TEAC | Trolox Equivalent Antioxidant Capacity |
VEGF | Vascular Endothelial Growth Factor |
PARP | Poly(ADP-Ribose) Polymerase |
GSH | Glutathione |
TGF-β | Transforming Growth Factor Beta |
CK-19 | Cytokeratin-19 |
PgTeL | Chitin-Binding Lectin |
MICs | Minimum Inhibitory Concentrations |
MFC | Minimum Fungicidal Concentration |
NCPF | National Collection of Pathogenic Fungi |
CBS | Fungal Biodiversity Centre |
References
- Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century–The approach of the WHO Global Oral Health Program. Community Dent Oral Epidemiol. 2003, 31, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Keller Celeste, R.; Guarnizo-Herreño, C.C.; Kearns, C.C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Jin, L.J.; Lamster, I.B.; Greenspan, J.S.; Pitts, N.B.; Scully, C.; Warnakulasuriya, S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 2005, 83, 661–669. [Google Scholar]
- Villanueva-Vilchis, M.D.; López-Ríos, P.; García, I.M.; Gaitán-Cepeda, L.A. Impact of oral mucosa lesions on the quality of life related to oral health. An etiopathogenic study. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e178–e184. [Google Scholar] [CrossRef]
- Rafat, Z.; Sasani, E.; Salimi, Y.; Hajimohammadi, S.; Shenagari, M.; Roostaei, D. The prevalence, etiological agents, clinical features, treatment, and diagnosis of HIV-associated oral Candidiasis in pediatrics across the world: A systematic review and meta-analysis. Front. Pediatr. 2021, 9, 805527. [Google Scholar] [CrossRef]
- Gaitán-Cepeda, L.A.; Sánchez-Vargas, O.; Castillo, N. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy era. A literature analysis. Int. J. STD AIDS 2015, 26, 625–632. [Google Scholar] [CrossRef]
- Patel, P.K.; Erlandsen, J.E.; Kirkpatrick, W.R.; Berg, D.K.; Westbrook, S.D.; Louden, C.; Cornell, J.E.; Thompson, G.R.; Vallor, A.C.; Wickes, B.L.; et al. The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. AIDS Res. Treat. 2012, 2012, 262471. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.C.D.; de Jesus Pedro, R.; Aoki, F.H.; Resende, M.R.; Trabasso, P.; Colombo, A.L.; de Oliveira, M.S.M.; Mikami, Y.; Moretti, M.L. Clinical and microbiological assessment of patients with a long-term diagnosis of human immunodeficiency virus infection and Candida oral colonization. Clin. Microbiol. Infect. 2009, 15, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Thompson III, G.R.; Patel, P.K.; Kirkpatrick, W.R.; Westbrook, S.D.; Berg, D.; Erdlandsen, J.; Redding, S.W.; Patterson, T.F. Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Cherry-Peppers, G.; Daniels, C.O.; Meeks, V.; Sanders, C.F.; Reznik, D. Oral manifestations in the era of HAART. J. Natl. Med. Assoc. 2003, 95, 21S–32S. [Google Scholar]
- FDA-Approved HIV Medicines. Available online: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines (accessed on 27 June 2022).
- Hawkins, T. Understanding and managing the adverse effects of antiretroviral therapy. Antivir. Res. 2010, 85, 201–209. [Google Scholar] [CrossRef]
- Hima Bindu, A.; Naga Anusha, P. Adverse effects of highly active anti-retroviral therapy (HAART). J. Antivir. Antiretrovir. 2011, 3, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Vora, R.; Modi, M.; Sharma, A.; Marfatia, Y. Adverse effects of antiretroviral treatment. Indian J. Dermatol. Venereol. Leprol. 2008, 74, 234–237. [Google Scholar]
- Popović-Djordjević, J.; Quispe, C.; Giordo, R.; Kostić, A.; Katanić Stanković, J.S.; Tsouh Fokou, P.V.; Carbone, K.; Martorell, M.; Kumar, M.; Pintus, G.; et al. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur. J. Med. Chem. 2022, 233, 114217. [Google Scholar] [CrossRef]
- Fahmy, H.; Hegazi, N.; El-Shamy, S.; Farag, M.A. Pomegranate juice as a functional food: A comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct. 2020, 11, 5768–5781. [Google Scholar] [CrossRef]
- Ge, S.; Duo, L.; Wang, J.; Yang, J.; Li, Z.; Tu, Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. J. Ethnopharmacol. 2021, 271, 113877. [Google Scholar] [CrossRef]
- Boggula, N.; Peddapalli, H. Phytochemical analysis and evaluation of in vitro anti oxidant activity of Punica granatum leaves. Int. J. Pharm. Phytochem. Res. 2017, 9, 1110–1118. [Google Scholar] [CrossRef]
- Wu, S.; Tian, L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food Pomegranate (Punica granatum). Molecules 2017, 22, 1606. [Google Scholar] [CrossRef] [Green Version]
- Lichterfeld, M.; Gao, C.; Yu, X.G. An ordeal that does not heal: Understanding barriers to a cure for HIV-1 infection. Trends Immunol. 2022, 43, 608–616. [Google Scholar] [CrossRef]
- Shin, Y.H.; Park, C.M.; Yoon, C.H. An overview of Human Immunodeficiency Virus-1 antiretroviral drugs: General Principles and Current Status. Infect Chemother. 2021, 53, 29–45. [Google Scholar] [CrossRef]
- Mahboubi-Rabbani, M.; Abbasi, M.; Hajimahdi, Z.; Zarghi, A. HIV-1 Reverse Transcriptase/Integrase dual inhibitors: A review of recent advances and structure-activity relationship studies. Iran. J. Pharm. Res. 2021, 20, 333–369. [Google Scholar] [CrossRef]
- Mohamed, H.; Gurrola, T.; Berman, R.; Collins, M.; Sariyer, I.K.; Nonnemacher, M.R.; Wigdahl, B. Targeting CCR5 as a component of an HIV-1 therapeutic strategy. Front. Immunol. 2022, 12, 816515. [Google Scholar] [CrossRef] [PubMed]
- Tappuni, A.R. The global changing pattern of the oral manifestations of HIV. Oral Dis. 2020, 26 (Suppl. S1), 22–27. [Google Scholar] [CrossRef] [PubMed]
- Moosazadeh, M.; Shafaroudi, A.M.; Gorji, N.E.; Barzegari, S.; Nasiri, P. Prevalence of oral lesions in patients with AIDS: A systematic review and meta-analysis. Evid. Based Dent. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Peña, D.E.R.; Innocentini, L.M.A.R.; Saraiva, M.C.P.; Lourenço, A.G.; Motta, A.C.F. Oral candidiasis prevalence in human immunodeficiency virus-1 and pulmonary tuberculosis coinfection: A systematic review and meta-analysis. Microb. Pathog. 2021, 150, 104720. [Google Scholar] [CrossRef] [PubMed]
- Kumari, I.; Kaurav, H.; Chaudhary, G. Punica granatum L. (Dadim), Therapeutic importance of World’s most ancient fruit plant. J. Drug Deliv. Ther. 2021, 11, 113–121. [Google Scholar] [CrossRef]
- Pomergranate. Kew Royal Botanical Gardens. Available online: https://www.kew.org/plants/pomegranate (accessed on 8 April 2022).
- Guerrero-Solano, J.A.; Jaramillo-Morales, O.A.; Jiménez-Cabrera, T.; Urrutia-Hernández, T.A.; Chehue-Romero, A.; Olvera-Hernández, E.G.; Bautista, M. Punica protopunica Balf., the forgotten sister of the common pomegranate (Punica granatum L.): Features and medicinal properties—A review. Plants 2020, 9, 1214. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Pomergranate (Punica granatum)—Morphology, Taxonomy, Composition, and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 131–145. [Google Scholar]
- Pande, G.; Akoh, C.C. Chapter 27—Pomegranate Cultivars (Punica granatum L.). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 667–689. [Google Scholar]
- Herrera-Hernández, M.G.; Mondragón-Jacobo, C.; Soria-Lara, D.M.; Maldonado, S.H.G. Comparative study of physicochemical and functional characteristics in juices from new Mexican pomegranate cultivars (Punica granatum L.) and Wonderful variety. BAB 2013, 1, 35–42. [Google Scholar]
- Bhandari, P.R. Pomegranate (Punica granatum L.). Ancient seeds for modern cure? Review of potential therapeutic applications. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2, 171. [Google Scholar] [CrossRef]
- Puneeth, H.R.; Chandra, S.S.P. A review on potential therapeutic properties of Pomegranate (Punica granatum L.). Plant Sci. Today 2020, 7, 9–16. [Google Scholar] [CrossRef]
- Lansky, E.; Shubert, S.; Neeman, I. Pharmacological and therapeutic properties of pomegranate. In Production, Processing and Marketing of Pomegranate in the Mediterranean Region: Advances in Research and Technology; Melgarejo, P., Martínez-Nicolás, J.J., Martínez-Tomé, J., Eds.; CIHEAM: Zaragoza, Spain, 2000; pp. 231–235. [Google Scholar]
- Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A review study on Punica granatum L. J. Evid. Based Complementary Altern. Med. 2016, 21, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, A.; Girón, L.M.; Alvarado, S.R.; Torres, M.F. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. J. Ethnopharmacol. 1987, 20, 223–237. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm. 2010, 67, 511–516. [Google Scholar]
- Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of Medicinal Plants for Secondary metabolites. Middle-East J. Sci. Res. 2011, 8, 579–584. [Google Scholar]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Jasuja, N.D.; Saxena, R.; Chandra, S.; Sharma, R. Pharmacological characterization and beneficial uses of Punica granatum. Asian J. Plant Sci. 2012, 11, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Opara, U.L. Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: A review. Molecules 2020, 25, 4690. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoğlu, I.; Gan, Y.; Li, M. Antimicrobial activity of pomegranate peel and its applications on food preservation. J. Food Qual. 2020, 2020, 8850339. [Google Scholar] [CrossRef]
- Prakash, C.V.S.; Prakash, I. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel—A review. Int. J. Res. Chem. Environ. 2011, 1, 1–18. [Google Scholar]
- El-Hadary, A.E.; Ramadan, M.F. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J. Food Biochem. 2019, 43, e12803. [Google Scholar] [CrossRef]
- Du, C.T.; Wangm, P.L.; Francis, F.J. Anthocyanins of pomegranate, Punica granatum. J. Food. Sci. 1975, 40, 417–418. [Google Scholar] [CrossRef]
- Jacinto, A.M.T. Review of the Phytochemical, Pharmacological and Toxicological Properties of Punica granatum L., (Lythraceae) Plant. J. Sci. Food Agric. 2018, 2, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Guo, L.H.; GE, D.P.; Yuan, R.E.N.; Dong, J.M.; Zhao, X.Q.; Liu, X.Q.; Yuan, Z.H. The comparative analysis and identification of secondary metabolites between Tibet wild and cultivated pomegranates (Punica granatum L.) in China. J. Integr. Agric. 2022, 21, 736–750. [Google Scholar] [CrossRef]
- Boroushaki, M.T.; Mollazadeh, H.; Afshari, A.R. Pomegranate seed oil: A comprehensive review on its therapeutic effects. Int. J. Pharm. Sci. Res. 2016, 7, 430. [Google Scholar] [CrossRef]
- Sharma, J.; Maity, A. Pomegranate phytochemicals: Nutraceutical and therapeutic values. Fruit Veg. Cereal Sci. Biotech. 2010, 4, 56–76. [Google Scholar]
- Wang, R.F.; Xie, W.D.; Zhang, Z.; Xing, D.M.; Ding, Y.; Wang, W.; Ma, C.; Du, L.J. Bioactive compounds from the seeds of Punica granatum (pomegranate). J. Nat. Prod. 2004, 67, 2096–2098. [Google Scholar] [CrossRef]
- Bekir, J.; Mars, M.; Vicendo, P.; Fterrich, A.; Bouajila, J. Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers. J. Med. Food 2013, 16, 544–550. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, Q.; Zhang, Y. Composition of anthocyanins in pomegranate flowers and their antioxidant activity. Food Chem. 2011, 127, 1444–1449. [Google Scholar] [CrossRef]
- Wang, R.; Ding, Y.; Liu, R.; Xiang, L.; Du, L. Pomegranate: Constituents, bioactivities and pharmacokinetics. Fruit Veg. Cereal Sci. Biotech. 2010, 4, 77–87. [Google Scholar]
- Hussein, S.A.; Barakat, H.H.; Merfort, I.; Nawwar, M.A. Tannins from the leaves of Punica granatum. Phytochemistry 1997, 45, 819–823. [Google Scholar] [CrossRef]
- Nawwar, M.A.; Hussein, S.A.; Merfort, I. NMR spectral analysis of polyphenols from Punica granatum. Phytochemistry 1994, 36, 793–798. [Google Scholar] [CrossRef]
- Al-Shahwany, A.W.; Al-Hemiri, A.A.; Abed, K.M. Comparative evaluation of alkaloids extraction methods from the root bark of Punica granatum Linn. Adv. Biores. 2013, 4, 33–39. [Google Scholar]
- Glockzin, K.; D’Auria, J. Biosynthesis and production of granatane alkaloids in hairy root cultures of Punica granatum. FASEB J. 2018, 32, 796.28. [Google Scholar] [CrossRef]
- Neuhöfer, H.; Bachmann, P.; Witte, L.; Czygan, F.C. The occurrence of pelletierine derivatives in Punica granatum. Planta Med. 1989, 55, 604-604. [Google Scholar] [CrossRef]
- Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Cao, K.; Liu, X.; Zhao, L.; Feng, Z.; Liu, J. Punicalagin regulates signaling pathways in inflammation-associated chronic diseases. Antioxidants 2021, 11, 29. [Google Scholar] [CrossRef]
- Arun, N.; Singh, D.P. Punica granatum: A review on pharmacological and therapeutic properties. Int. J. Pharm. Phytochem. Res. 2012, 3, 1240–1245. [Google Scholar]
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef]
- Oudane, B.; Boudemagh, D.; Bounekhel, M.; Sobhi, W.; Vidal, M.; Broussy, S. Isolation, characterization, antioxidant activity, and protein precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum). J. Mol. Struct. 2018, 1156, 390–396. [Google Scholar] [CrossRef]
- Aloqbi, A.; Omar, U.; Yousr, M.; Grace, M.; Lila, M.A.; Howell, N. Antioxidant activity of pomegranate juice and punicalagin. Nat. Sci. 2016, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Q.; Tao, X.; Men, X.M.; Xu, Z.W.; Wang, T. In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin. J. Integr. Agric. 2017, 16, 1808–1818. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of MAPKs activation. J. Funct. Foods 2018, 43, 62–69. [Google Scholar] [CrossRef]
- Abd-Rabou, A.A.; Shalby, A.B.; Kotob, S.E. Newly synthesized punicalin and punicalagin nano-prototypes induce breast cancer cytotoxicity through ROS-mediated apoptosis. Asian Pac. J. Cancer Prev. 2022, 23, 363–376. [Google Scholar] [CrossRef]
- Subkorn, P.; Norkaew, C.; Deesrisak, K.; Tanyong, D. Punicalagin, a pomegranate compound, induces apoptosis and autophagy in acute leukemia. PeerJ 2021, 9, e12303. [Google Scholar] [CrossRef]
- Fang, L.; Wang, H.; Zhang, J.; Fang, X. Punicalagin induces ROS-mediated apoptotic cell death through inhibiting STAT3 translocation in lung cancer A549 cells. J. Biochem. Mol. Toxicol. 2021, 35, 1–10. [Google Scholar] [CrossRef]
- Tang, J.M.; Min, J.; Li, B.S.; Hong, S.S.; Liu, C.; Hu, M.; Hong, L. Therapeutic effects of punicalagin against ovarian carcinoma cells in association with β-Catenin signaling inhibition. Int. J. Gynecol. Cancer 2016, 26, 1557–1563. [Google Scholar] [CrossRef]
- Zhang, L.; Chinnathambi, A.; Alharbi, S.A.; Veeraraghavan, V.P.; Mohan, S.K.; Zhang, G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J. Biol. Sci. 2020, 27, 1100–1106. [Google Scholar] [CrossRef]
- Gosset-Erard, C.; Zhao, M.; Lordel-Madeleine, S.; Ennahar, S. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chem. 2021, 352, 129396. [Google Scholar] [CrossRef]
- Li, G.; Xu, Y.; Pan, L.; Xia, X. Punicalagin damages the membrane of Salmonella typhimurium. J. Food Prot. 2020, 83, 2102–2106. [Google Scholar] [CrossRef]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 53, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Du, R.; Chen, Z.; Wang, Y.; Zhan, P.; Liu, X.; Cui, Q. Punicalagin is a neuraminidase inhibitor of influenza viruses. J. Med. Virol. 2021, 93, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Saadh, M.J.; Almaaytah, A.M.; Alaraj, M.; Dababneh, M.F.; Sa’adeh, I.; Aldalaen, S.M.; Kharshid, A.M.; Alboghdadly, A.; Haila, M.; Khaleel, A.; et al. Punicalagin and zinc (II) ions inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3908–3913. [Google Scholar] [PubMed]
- Yang, Y.; Xiu, J.; Zhang, L.; Qin, C.; Liu, J. Antiviral activity of punicalagin toward human enterovirus 71 in vitro and in vivo. Phytomedicine 2012, 20, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Irani, S. Herbal medicine and oral health: A review. J. Int. Oral Health 2016, 8, 989–994. [Google Scholar] [CrossRef]
- Chinsembu, K.C. Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop. 2016, 154, 6–18. [Google Scholar] [CrossRef]
- Gowhar, O.; Singh, N.; Sultan, S.; Ain, T.; Mewara, A.; Shah, I. Natural herbs as alternative to synthetic antifungal drugs-the future challenging therapy. Br. Biomed. Bull. 2015, 3, 440–452. [Google Scholar]
- Ostrosky-Zeichner, L.; Casadevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat. Rev. Drug Discov. 2010, 9, 719–727. [Google Scholar] [CrossRef]
- Rajan, S.; Ravi, J.; Suresh, A.; Guru, S. Hidden secrets of Punica granatum use and its effects on oral health: A short review. J. Orofac. Res. 2013, 3, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Ferrazzano, G.F.; Scioscia, E.; Sateriale, D.; Pastore, G.; Colicchio, R.; Pagliuca, C.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A.; et al. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. BioMed Res. Int. 2017, 2017, 2152749. [Google Scholar] [CrossRef]
- El-Sharkawy, M.S. Evaluation of the antimicrobial effect of pomegranate extract on Streptococcus mutans. Al.-Azhar Dent. J. Girls 2019, 6, 467–473. [Google Scholar] [CrossRef]
- Damle, M.C.; Bhalekar, M.R.; Rao, S.; Godse, M. Formulation and evaluation of chewable tablets of pomegranate peel extract. J. Drug Deliver. Ther. 2019, 9, 318–321. [Google Scholar] [CrossRef]
- Kadam, N.S.; Kunte, S.S.; Patel, A.R.; Shah, P.P.; Lodaya, R.R.; Lakade, L.S. Comparative evaluation of the effect of pomegranate peel extract and chlorhexidine 0.2% mouthwash on salivary pH in children between 6 and 8 years of age: An in vivo study. J. Int. Oral Health 2019, 11, 40–44. [Google Scholar] [CrossRef]
- Nair, R.A.; Jain, J.; Praveena, J.; Pooja, M.R.; Shetty, S.; Gopalakrishnan, A.H. Effect of pomegranate juice extract on Streptococcus mutans—An in vitro study. J. Evol. Med. Dent. Sci. 2021, 10, 203–207. [Google Scholar] [CrossRef]
- Ahuja, S.; Dodwad, V.; Kukreja, B.J.; Mehra, P.; Kukreja, P. A comparative evaluation of efficacy of Punica granatum and chlorhexidine on plaque and gingivitis. J. Int. Clin. Dent. Res. Organ. 2011, 3, 29–32. [Google Scholar] [CrossRef]
- Eltay, E.G.; Gismalla, B.G.; Mukhtar, M.M.; Awadelkarim, M.O. Punica granatum peel extract as adjunct irrigation to nonsurgical treatment of chronic gingivitis. Complement. Ther. Clin. Pract. 2021, 43, 101383. [Google Scholar] [CrossRef]
- DiSilvestro, R.A.; DiSilvestro, D.J.; DiSilvestro, D.J. Pomegranate extract mouth rinsing effects on saliva measures relevant to gingivitis risk. Phytother. Res. 2009, 23, 1123–1127. [Google Scholar] [CrossRef]
- Prakash, J.; Bhatnagar, V.; Nath, S.; Pulikkotil, S.; Prajapati, V.K. Effect of Punica granatum extract gel on gingival crevicular fluid levels of Interleukin-1β, Interleukin-8 and CCL28 levels: Randomised controlled clinical trial. J. Clin. Diag. Res. 2017, 11, ZC12–ZC17. [Google Scholar] [CrossRef]
- De Medeiros Nóbrega, D.R.; Santos, R.L.; Soares, R.D.S.C.; Alves, P.M.; Medeiros, A.C.D.; Pereira, J.V. A randomized, controlled clinical trial on the clinical and microbiological efficacy of Punica granatum Linn mouthwash. Pesqui. Bras. Odontopediatria Clín. Integr. 2015, 15, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Widyarman, A.S.; Suhalim, O.P.; Nandary, D.; Theodorea, C.F. Pomegranate juice inhibits periodontal pathogens biofilm in vitro. SDJ 2018, 2, 101–108. [Google Scholar] [CrossRef]
- Kiany, F.; Niknahad, H.; Niknahad, M. Assessing the effect of pomegranate fruit seed extract mouthwash on dental plaque and gingival inflammation. J. Dent. Res. Rev. 2016, 3, 117–123. [Google Scholar] [CrossRef]
- El-Sherbini, G.T. In vitro effect of pomegranate extract on Trichomonas tenax. J. Bacteriol. Parasitol. 2012, 3, 1000143. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.A.P.; Figueiredo, L.M.A.; do Rosário Palma, A.L.; Geraldo, B.M.C.; Castro, K.C.I.; de Oliveira Fugisaki, L.R.; Junqueira, J.C. Punica granatum L. (pomegranate) extract: In vivo study of antimicrobial activity against Porphyromonas gingivalis in Galleria mellonella model. Sci. World J. 2016, 2016, 8626987. [Google Scholar] [CrossRef] [Green Version]
- Menezes, S.M.S.; Cordeiro, L.N.; Viana, G.S.B. Punica granatum (Pomegranate) extract is active against dental plaque. J. Herb. Pharmacother. 2006, 6, 79–92. [Google Scholar] [CrossRef]
- Esawy, M.A.; Ragab, T.I.; Basha, M.; Emam, M. Evaluated bioactive component extracted from Punica granatum peel and its Ag NPs forms as mouthwash against dental plaque. Biocatal. Agric. Biotechnol. 2019, 18, 101073. [Google Scholar] [CrossRef]
- Kote, S.; Kote, S.; Nagesh, L. Effect of pomegranate juice on dental plaque microorganisms (streptococci and lactobacilli). Anc. Sci. Life 2011, 31, 49–51. [Google Scholar]
- Morsy, R.A.; Abbass, E.A.; Hager, E.A.A.; Farid, M.H.; Ellithy, M.M.; Azmy, A. Assessment of anti-carcinogenic effect of pomegranate in oral squamous cell carcinoma (pre-clinical study). PJBS 2019, 22, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, J.H.; Schuck, A.G.; Silverman, M.S.; Ovits-Levy, C.G.; Solodokin, L.J.; Zuckerbraun, H.L.; Babich, H. Pomegranate extract, a prooxidant with antiproliferative and proapoptotic activities preferentially towards carcinoma cells. Anti-Cancer Agents Med. Chem. 2010, 10, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Hernawati, S. The inhibition of malignant epithelial cells in mucosal injury in the oral cavity of strains by pomegranate fruit extract (Punica granatum linn) through Bcl-2 expression. Dent. J. 2013, 46, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.; Elsherbini, A.; Esmaeil, D.; Abdulrahman, M. Pomegranate molasses and red grape vinegar: Can they alleviate dysplastic changes in chemically induced oral squamous cell carcinoma in hamsters? Egypt. Dent. J. 2021, 67, 3137–3146. [Google Scholar] [CrossRef]
- Chen, L.F.; Hoy, J.; Lewin, S.R. Ten years of highly active antiretroviral therapy for HIV infection. Med. J. Aust. 2007, 186, 146–151. [Google Scholar] [CrossRef]
- Bakır, S.; Yazgan, Ü.C.; İbiloğlu, İ.; Elbey, B.; Kızıl, M.; Kelle, M. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue. Arch. Physiol. Biochem. 2015, 121, 152–156. [Google Scholar] [CrossRef]
- Neurath, A.R.; Strick, N.; LI, Y.Y.; Debnath, A.K. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. Ann. N. Y. Acad. Sci. 2005, 1056, 311–327. [Google Scholar] [CrossRef]
- Neurath, A.R.; Strick, N.; Li, Y.Y.; Debnath, A.K. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. BMC Infect. Dis. 2004, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Seetaha, S.; Hannongbua, S.; Rattanasrisomporn, J.; Choowongkomon, K. Novel peptides with HIV-1 reverse transcriptase inhibitory activity derived from the fruits of Quercus infectoria. Chem. Biol. Drug Des. 2021, 97, 157–166. [Google Scholar] [CrossRef]
- Sanna, C.; Marengo, A.; Acquadro, S.; Caredda, A.; Lai, R.; Corona, A.; Tramontano, E.; Rubiolo, P.; Esposito, F. In vitro anti-HIV-1 Reverse Transcriptase and Integrase properties of Punica granatum L. leaves, bark, and peel extracts and their main compounds. Plants 2021, 10, 2124. [Google Scholar] [CrossRef]
- Kusumoto, I.T.; Nakabayashi, T.; Kida, H.; Miyashiro, H.; Hattori, M.; Namba, T.; Shimotohno, K. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother. Res. 1995, 9, 180–184. [Google Scholar] [CrossRef]
- Xu, H.X.; Wan, M.; Loh, B.N.; Kon, O.L.; Chow, P.W.; Sim, K.Y. Screening of traditional medicines for their inhibitory activity against HIV-1 protease. Phytother. Res. 1996, 10, 207–210. [Google Scholar] [CrossRef]
- Venkatalakshmi, P.; Vadivel, V.; Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm. 2016, 10, 1–18. [Google Scholar]
- Endo, E.H.; Cortez, D.A.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res. Microbiol. 2010, 161, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; de Moura, M.C.; Gomes, F.S.; da Silva Trentin, D.; de Oliveira, A.P.S.; de Mello, G.S.V.; da Rocha Pitta, M.G.; Barreto de Melo, M.J.R.; Breitenbach, L.C.; Macedoc, A.J.; et al. PgTeL, the lectin found in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei. Int. J. Biol. Macromol. 2018, 108, 391–400. [Google Scholar] [CrossRef]
- Ergin, M.A. Investigation of antimicrobial activity of Punica granatum L. fruit peel ash used for protection against skin infections as folk remedies especially after male circumcision. Afr. J. Microbiol. Res. 2011, 5, 3339–3342. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Tras, W.F. Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method. Mycoses 2010, 53, 117–122. [Google Scholar] [CrossRef]
- Vasconcelos, L.C.D.S.; Sampaio, F.C.; Sampaio, M.C.C.; Pereira, M.D.S.V.; Higino, J.S.; Peixoto, M.H.P. Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans. Braz. Dent. J. 2006, 17, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, L.C.D.S.; Sampaio, M.C.C.; Sampaio, F.C.; Higino, J.S. Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 2003, 46, 192–196. [Google Scholar] [CrossRef]
- Sousa, M.N.; Macedo, A.T.; Ferreira, G.F.; Furtado, H.L.A.; Pinheiro, A.J.M.C.R.; Lima-Neto, L.G.; Fontes, V.C.; Ferreira, R.L.P.S.; Monteiro, C.A.; Falcai, A.; et al. Hydroalcoholic leaf extract of Punica granatum, alone and in combination with calcium hydroxide, is effective against mono-and polymicrobial biofilms of Enterococcus faecalis and Candida albicans. Antibiotics 2022, 11, 584. [Google Scholar] [CrossRef]
- Höfling, J.F.; Anibal, P.C.; Obando-Pereda, G.A.; Peixoto, I.A.T.; Furletti, V.F.; Foglio, M.A.; Gonçalves, R.B. Antimicrobial potential of some plant extracts against Candida species. Braz. J. Biol. 2010, 70, 1065–1068. [Google Scholar] [CrossRef]
- Shafighi, M.; Amjad, L.; Madani, M. In vitro antifungal activity of methanolic extract of various parts of Punica granatum L. Int. J Sci. Eng. Res. 2012, 3, 2229–5518. [Google Scholar]
- Sadeghian, A.; Ghorbani, A.; Mohamadi-Nejad, A.; Rakhshandeh, H. Antimicrobial activity of aqueous and methanolic extracts of pomegranate fruit skin. Avicenna J. Phytomed. 2011, 1, 67–73. [Google Scholar]
- Jain, P.; Nafis, G. Antifungal activity and phytochemical analysis of aqueous extracts of Ricinus communis and Punica granatum. J. Pharm. Res. 2011, 4, 128–129. [Google Scholar]
- Kumar, A.; Misra, R.; Singh, V.D.; Mazumder, A.; Mazumder, R.; Kumar, A. A Review on therapeutic potential of Punica granatum. IJPR 2021, 13, 6374–6386. [Google Scholar] [CrossRef]
- Rohilla, S.; Bhatt, D.C.; Gupta, A. Therapeutic potential of phytomedicines and novel polymeric strategies for significant management of Candidiasis. Curr. Pharm. Des. 2018, 24, 1748–1765. [Google Scholar] [CrossRef]
- Serrano, D.R.; Fernandez-Garcia, R.; Mele, M.; Healy, A.M.; Lalatsa, A. Designing fast-dissolving orodispersible films of amphotericin B for oropharyngeal candidiasis. Pharmaceutics 2019, 11, 369. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.A.; Colombini Ishikiriama, B.L.; Ribeiro Lopes, M.M.; de Castro, R.D.; Garcia, C.R.; Porto, V.C.; Ferreira Santos, C.; Neppelenbroek, K.H.; Lara, V.S. Antifungal activity of punicalagin—Nystatin combinations against Candida albicans. Oral Dis. 2020, 26, 1810–1819. [Google Scholar] [CrossRef]
- Fernández, S.P.; Wasowski, C.; Paladini, A.; Marder, M. Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur. J. Pharmacol. 2005, 512, 189–198. [Google Scholar] [CrossRef]
- Türkcü, G.; Alabalık, U.; Keleş, A.N.; Bozkurt, M.; İbiloğlu, İ.; Fırat, U.; Büyükbayram, H. Protective effects of carvacrol and pomegranate against methotrexate-induced intestinal damage in rats. Int. J. Clin Exp. Med. 2015, 8, 15474–15481. [Google Scholar] [PubMed]
- Shaoul, R.; Moati, D.; Schwartz, B.; Pollak, Y.; Sukhotnik, I. Effect of pomegranate juice on intestinal recovery following methotrexate-induced intestinal damage in a rat model. J. Am. Coll. Nutr. 2018, 37, 406–414. [Google Scholar] [CrossRef] [PubMed]
Part of the Plant | Chemical Group | Compound | Reference |
---|---|---|---|
Fruit (pericarp, peel, skin, rind) | Anthocyanidins | Cyanidin, delphinidin, pelargonidin | [43,44] |
Hydrobenzoic acids | Gallic acid, ellagic acid | [44,45,46] | |
Hydroxycinnamic acids | Caffeic acid, chlorogenic acid, p-coumaric acid | [45] | |
Alkaloids | Pelletierine, caffeine | [43,47] | |
Tannins | Punicalagin, corilagin, casuarinin, punicallin, gallagyldilacton, pedunculagin, tellimagrandin, granatin A, granatin B, strictinin, punigluconin | [45,46] | |
Flavonoids | Quercetin, rutin, kaempferol, luteolin, naringin, catechin, kaempferol-3-O-glycoside, kaempferol-3-O-rhamnoglucoside, hesperetin, hesperidine, isoquercetrin, naringin, naringenin | [43,46,47] | |
Juice | Anthocyanidins | Cyanidin, delphinidin, chrysanthemin, pelargonidin, cyanidin-3-O-glucoside, cyanidine-3,5-di-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3,5-di-O-glucoside, pelargonidin-3-O-glucoside, pelargonidin-3,5-di-O-glucoside | [43,46,48] |
Hydrobenzoic acids | Quinic acid, callic acid, ellagic acid, protocatechuic acid | [46,49] | |
Hydroxycinnamic acids | Caffeic acid, chlorogenic acid, p-coumaric acid | [46,49] | |
Alkaloids | Pelletierine | [43] | |
Tannins | Punicalagin, corilagin, casuarinin, punicallin, gallagyldilacton, punicalagin B, punicalagin D | [50,51] | |
Flavonoids | Quercetin, rutin, naringin, kaempferol, luteolin, catechin, epicatechin, epigallocatechin-3-gallate, isoquercetin | [49,50,51] | |
Seeds | Fatty acids | Punicic acid, linoleic acid, oleic acid, palmitic acid, stearic acid, heneicosanoic acid, nonadecanoic acid, eicosenoic acid | [46,52] |
Hydrobenzoic acids | Ellagic acid, 3,3′-di-O-methylellagic acid, 3,3′,4′-tri-O-methylellagic acid | [52] | |
Sterols | Stigmasterol, β-sitosterol, daucosterol, campesterol, cholesterol, 17-α-estradiol, estrone, testosterone, estriol | [52,53] | |
Triterpenes | Ursolic acid, oleanolic acid, asiatic acid, betulinic acid | [46,52] | |
Lignins | Coniferyl-9-O-[β-dapiofuranosyl (1→6)-O-β-D-glucopyranoside, sinapyl-9-O-[β-D-apiofuranosyl (1→6)-O-β-D-glucopyranoside, phenylethyl rutinoside, icariside D1 | [54] | |
Flowers | Anthocyanidins | Pelargonidin 3,5-diglucoside, pelargonidin 3-glucoside | [35,55,56] |
Hydrobenzoic acids | Ellagic acid, gallic acid | [53,55] | |
Triterpenes | Ursolic acid, oleanolic acid, maslinic acid, asiatic acid | [53,57] | |
Flavonoids | Punicaflavone, tricetin, biochanin A | [55] | |
Sterols | Estradiol | [57] | |
Tannins | Punicalagin | [55] | |
Leaves | Anthocyanidins | Cyanidin | [52] |
Hydrobenzoic acids | Gallic acid, ellagic acid | [52] | |
Flavonoids | Luteolin, apigenin, luteolin 4′-O-glucopyranoside, luteolin 3′-O-glucopyranoside, apigenin 4′-O-glucopyranoside | [53,57] | |
Tannins | Punicalin, punicafolin, punicalagin, corilagin, granatin A, granatin B, 1,2,4-tri-O-galloyl-β-glucopyranose, 1,3,4-tri-O-galloyl-β-glucopyranose, 1,4-di-O-galloyl-3,6-(R)-hexahydroxydiphenyl-β-glucopyranose, 1,2,3-tri-O-galloyl-β-4C1,-glucose, brevifolin, tellimagrandin I | [58,59] | |
Roots | Alkaloids | Pelletierine, methylpelletierine, methyl-isopelletierine, isopelletierine, pseudopelletierine, sedridine, N-acetyl-sedridinehygrine, norhygrine, 2-(2′-hydroxypropyl) ∆1-piperideine, 2-(2-propenyl) ∆1-piperideine | [57,60,61,62] |
Tannins | Punicalin, punicalagin | [35,57] |
Oral Disease | Part of the Fruit/ Pharmaceutic Preparation | Microbial/ Measure of the Effect | Effect | Reference |
---|---|---|---|---|
Dental caries | Juice and hydroalcoholic extract of peel | Streptococcus mutans ATCC® 25175™ and Rothia dentocariosa clinical isolate | Peel extract inhibited S. mutans ATCC 25175 strain and R. dentocariosa clinical isolate with 10 μg/μL and 15 μg/μL of MIC and MBC values, respectively. Pomegranate juice exhibited high inhibitory activity against S. mutans ATCC 25175 strain with an MIC = 25 μg/μL and MBC value of 40 μg/μL, whereas against R. dentocariosa, showed MIC and MBC values of 20 μg/μL and 140 μg/μL, respectively. | [87] |
Two mouth rinses (pomegranate fresh juice and pomegranate peel extract) | Streptococcus mutans clinical isolate | Peel extract mouthwash exhibited potent reduction in Streptococcus mutans count (CFU) (100%), followed by fresh pomegranate juice (99.75%) in 45 children aged 5–10 years. | [88] | |
Chewable tablets containing pomegranate ethanolic peel extract | Streptococcus mutans (MTCC 497t) | MIC value = 6.24 mg/mL. Formulating chewable tablet is better than mouth washes regarding stay-in-mouth time with good organoleptic properties. | [89] | |
Aqueous pomegranate peel extract | Salivary pH | Aqueous pomegranate peel extract showed increase in the salivary pH (pH = 8.1) after 10 and 30 min of use in children aged between 6 and 8 years. | [90] | |
Juice | Streptococcus mutans (MTCC) 890 | The zones of inhibition of S. mutans were statistically highly significant (p = 0.008 and p = 0.007) in doses of 300 and 600 mg/mL. | [91] | |
Gingivitis | Mouthwash prepared with the entire fruit | Gingival index | Reduction in the gingival score (43.86%) after 15 days, better than the control, tested in 20 patients. | [92] |
Hydroalcoholic peel extract | Gingival index and IL-1β | Peel extract showed clinical and statistical significance for gingival index and the reduction in IL-1β levels due to the anti-inflammatory effects of peel extract. | [93] | |
PomElla® extract dissolved in water (standardized to 30% punicalagins; dose of 100 mg/day of flavonoids) | Total protein of saliva | ↓ total protein ↓ activities of aspartate aminotransferase ↓ alpha-glucosidase activity ↑ activities of the antioxidant enzyme ceruloplasmin ↑ radical scavenging capacity | [94] | |
Seed extract gel (10% concentration) | IL-1β, IL-8 and, CCL28 levels from Gingival Crevicular Fluid (GCF) in the first 14 days. After 14 and until 60 days: gingival index (GI), Bleeding on Probing (BOP), and Probing Depth (PD). | ↓ IL-1β ↓ IL-8 = CCL28 ↓ GI ↓ BOP = PD | [95] | |
Hydroalcoholic peel extract | Plaque Index (PI), Bleeding on Probing Index (BPI), oral streptococci from saliva samples | ↓ PI ↓ BPI ↓ streptococci | [96] | |
Periodontitis | Juice | Treponema denticola, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans | Pomegranate juice caused a significant decrease in the biofilm mass of the three microbes but at different concentrations: P. gingivalis with 100% concentration; A. actinomycetemcomitans, 50% concentration; and T. denticola, 25% concentration. | [97] |
Mouthwash prepared with the fruit without peel | Plaque Index (PI), Bleeding Index (BI) | ↓ PI ↓ BI | [98] | |
Ethanolic peel extract | Trichomonas tenax | Potent anti T. tenax activity was recorded for pomegranate ethanol extract (60%). | [99] | |
Glycolic extract of the whole fruit | Porphyromonas gingivalis | Glycolic extract exhibited in vivo antimicrobial activity against P. gingivalis using Galleria mellonella model. | [100] | |
Dental plaque | Hydroalcoholic extract of the entire fruit | Staphylococcus aureus, S. epidermidis, S. β-hemolyticus, Pseudomonas spp., P. aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, Escherichia coli, and Candida albicans | Potent antimicrobial effect at the minimal dose tested (15 mg/mL). Microbials were isolated from 60 patients with good oral health (no caries, no gingivitis). | [101] |
Mouthwash prepared with the whole fruit | Plaque index | Reduction in plaque score (22.13%) after 15 days, tested in 20 patients. | [92] | |
Mouthwash that contained silver nitrate nanoparticles using peel crude extract and its methanolic fraction | Lysinibacillus cresolivorans, L. cresolivorans, and L. boronitolerans | Inhibition zone ranging from 18.03–29.60 mm, exhibiting a potent effect. Cytotoxic activity against the normal skin fibroblast (BJ-1) showed LC50 values >134 µg/mL after 48 hr, showing that the pomegranate extract is safe. | [102] | |
Juice without sugar | Streptococci and Lactobacilli | Reduction in the number of colony forming units (CFU) was 23% for the case of Streptococci strains, while 46% was observed to Lactobacilli strains. | [103] | |
Oral cancer | Juice, punicalagin, ellagic acid, and a standardized total pomegranate tannin (TPT) extract | Antiproliferative (on KB, CAL27 human oral tumor cells) and antioxidant activities ((inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC)) | Juice showed the greatest antiproliferative activity against cell lines by inhibiting proliferation from 30–100%. The trend in antioxidant activity was juice > TPT > punicalagin > ellagic acid. | [55] |
POMx, a commercial pomegranate-derived polyphenol-rich aqueous extract powder (POM Wonderful, LLC, Los Angeles, CA, USA) | Hep-2 cell proliferation, vascular endothelial growth factor (VEGF) expression, and caspase-3 expression | ↓ cell proliferation ↓ VEGF expression ↑ caspase-3 expression | [104] | |
POMx, a commercial pomegranate derived polyphenols-rich aqueous extract powder (POM Wonderful, LLC, Los Angeles, CA, USA) | Cytotoxicity (carcinoma cells lines: HSC-2, CAL27, and SCC1483) and apoptotic activities | Midpoint cytotoxicity (NR50) values were 100 g/mL for the HSC-2 and CAL 27 cells, and 125 g/mL for the SCC1483 cells, through activation of caspase-3, cleavage of poly(ADP-ribose) polymerase (PARP), and reduction in glutathione (GSH) levels | [105] | |
Extract of the whole fruit | Expression of BCL-2 (proto-oncogene) | ↓ BCL-2 expression in the malignant epithelial cells of the oral mucosa of mice | [106] | |
Molasses (PM) | Transforming growth factor β (TGF-β) and Cytokeratin-19 (CK-19) expressions and dysplastic changes | ↓ TGF-β ↓ CK-19 ↓ dysplastic changes | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Reyes, M.; Gaitán-Cepeda, L.A.; Sánchez-Vargas, L.O. Punica granatum as Anticandidal and Anti-HIV Agent: An HIV Oral Cavity Potential Drug. Plants 2022, 11, 2622. https://doi.org/10.3390/plants11192622
Huerta-Reyes M, Gaitán-Cepeda LA, Sánchez-Vargas LO. Punica granatum as Anticandidal and Anti-HIV Agent: An HIV Oral Cavity Potential Drug. Plants. 2022; 11(19):2622. https://doi.org/10.3390/plants11192622
Chicago/Turabian StyleHuerta-Reyes, Maira, Luis A. Gaitán-Cepeda, and Luis O. Sánchez-Vargas. 2022. "Punica granatum as Anticandidal and Anti-HIV Agent: An HIV Oral Cavity Potential Drug" Plants 11, no. 19: 2622. https://doi.org/10.3390/plants11192622
APA StyleHuerta-Reyes, M., Gaitán-Cepeda, L. A., & Sánchez-Vargas, L. O. (2022). Punica granatum as Anticandidal and Anti-HIV Agent: An HIV Oral Cavity Potential Drug. Plants, 11(19), 2622. https://doi.org/10.3390/plants11192622