The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae
Abstract
:1. Introduction
2. Results
2.1. Bacterial Consortium
2.2. Influence of Bacterial Consortium on the Growth or Survival of P. syringae Cells on Leaves
2.3. Influence of Bacterial Consortium on Plant Growth
2.4. Influence of Bacterial Consortium on Leaf N and Chlorophyll Content
2.5. Influence of Bacterial Consortium on Plant Physiology
3. Discussion
4. Materials and Methods
4.1. Experimental Overview
4.2. Isolation of Bacterial Species and Development of Bacterial Consortium
4.3. Microbial DNA Extraction and 16S rRNA Amplification
4.4. Bacterial Identification and Phylogenetic Analysis
4.5. Pathogen Culture
4.6. Sterilizing Seeds and Planting
4.7. Pseudomonas Syringae Pathovar Glycinea Quantification
4.8. Plant Growth
4.9. Measurement of Chlorophyll
4.10. Gas Exchange
4.11. Percent Nitrogen
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vorholt, J.A. Microbial Life in the Phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Lindow, S.E.; Brandl, M.T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, G.; Coaker, G.L.; Leveau, J.H. New Insights into the Structure and Function of Phyllosphere Microbiota through High-Throughput Molecular Approaches. FEMS Microbiol. Lett. 2013, 348, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.; Kinkel, L. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. In Phyllosphere Microbiology; Lindow, S., Hecht-Poinar, E., Eds.; APS Press: St. Paul, MN, USA, 2002; pp. 365–375. [Google Scholar]
- Andrews, J.H.; Harris, R.F. The Ecology and Biogeography of Microorganisms on Plant Surfaces. Annu. Rev. Phytophathol. 2000, 38, 145–180. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; O’Connor, T.K.; Arnold, H.K.; Hubbell, S.P.; Wright, S.J.; Green, J.L. Relationships Between Phyllosphere Bacterial Communities and Plant Functional Traits in a Neotropical Forest. Proc. Natl. Acad Sci. 2014, 111, 13715–13720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, A.; Maillard, F.; Alvarez-Lopez, V.; Guinchard, S.; Bertheau, C.; Valot, B.; Blaudez, D.; Chalot, M. Bacterial Diversity Associated with Poplar Trees Grown on a Hg-Contaminated Site: Community Characterization and Isolation of Hg-Resistant Plant Growth Promoting Bacteria. Sci. Total Environ. 2018, 622–623, 1165–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, J.K.; Yuan, L.; Layeghifard, M.; Wang, P.W.; Guttman, D.S. Seasonal Community Succession of the Phyllosphere Microbiome. Mol. Plant Microbe Interact. 2015, 28, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Kuklinsky-Sobral, J.; Araújo, W.L.; Mendes, R.; Geraldi, I.O.; Pizzirani-Kleiner, A.A.; Azevedo, J.L. Isolation and Characterization of Soybean Associated Bacteria and their Potential for Plant Growth Promotion. Environ. Microbial. 2004, 6, 1244–1251. [Google Scholar] [CrossRef]
- Moroenyane, I.; Tremblay, J.; Yergeau, É. Temporal and Spatial Interactions Modulate the Soybean Microbiome. FEMS Microbiol. Ecol. 2021, 97, fiaa206. [Google Scholar] [CrossRef]
- Delmotte, N.; Kniefa, C.; Chaffronb, S.; Innerebnera, G.; Roschitzkic, B.; Schlapbachc, R.; von Meringb, C.; Vorhol, J.A. Community Proteogenomics Reveals Insights into the Physiology of Phyllosphere Bacteria. Proc. Natl. Acad. Sci. 2009, 106, 16428–16433. [Google Scholar] [CrossRef]
- Wensing, A.; Braun, S.D.; Büttner, P.; Expert, D.; Völksch, B.; Ullrich, M.S.; Weingart, H. Impact of Siderophore Production by Pseudomonas syringae pv. syringae 22d/93 on Epiphytic Fitness and Biocontrol Activity Against Pseudomonas Syringae pv. Glycinea 1a/96. Appl. Environ. Microbiol. 2010, 76, 2704–2711. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.S.; Sagardoy, M.A.; van Vuurde, J.W.L. Spatiotemporal Distribution of Naturally Occurring Bacillus Spp. and Other Bacteria on the Phylloplane of Soybean Under Field Conditions. J. Basic Microbiol. 1999, 39, 283–292. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-Acetic Aid in Microbial and Microorganism-Plant Signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, M. Nitrogen: Give and take from phyllosphere microbes. In Ecological Aspects of Nitrogen Metabolism in Plants, 1st ed.; Ploacco, J.C., Todd, C.D., Eds.; Wiley: New York, NY, USA, 2011; pp. 217–230. [Google Scholar]
- Innerebner, G.; Knief, C.; Vorholt, J.A. Protection of Arabidopsis thaliana Against Leaf-Pathogenic Pseudomonas syringae by Sphingomonas Strains in a Controlled Model System. Appl. Environ. Microbiol. 2011, 77, 3202–3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Ruiz, M.; Font-Verdera, F.; Díaz-Gil, C.; Urdiain, M.; Rodríguez-Valdecantos, G.; González, B.; Orfila, A.; Rosselló-Móra, R. Moderate Halophilic Bacteria Colonizing the Phylloplane of Halophytes of the Subfamily Salicornioideae (Amaranthaceae). Syst. Appl. Microbiol. 2015, 38, 406–416. [Google Scholar] [CrossRef]
- Andreote, F.D.; Gumiere, T.; Durrer, A. Exploring Interactions of Plant Microbiomes. Sci. Agric. 2014, 71, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Tao, J.; Liu, T.; Liu, Y.; Xiao, N.; Li, T.; Gu, Y.; Yin, H.; Meng, D. Responses of Phyllosphere Microbiota and Plant Health to Application of Two Different Bio Control Agents. AMB Express 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichinose, Y.; Taguchi, F.; Mukaihara, T. Pathogenicity and Virulence Factors of Pseudomonas syringae. J. Gen. Plant Pathol. 2013, 79, 285–296. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a Pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef]
- Whitham, S.A.; Qi, M.; Innes, R.W.; Ma, W.; Lopes-Caitar, V.; Hewezi, T. Molecular Soybean-Pathogen Interactions. Annu. Rev. Phytopathol. 2016, 54, 443–468. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.W.; Bradley, C.A.; Sisson, A.J.; Byamukama, E.; Chilvers, M.I.; Coker, C.M.; Collins, A.A.; Damicone, J.P.; Dorrance, A.E.; Dufault, N.S.; et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog. 2017, 18, 19–27. [Google Scholar] [CrossRef] [Green Version]
- May, R.; Voelksch, B.; Kampmann, G. Antagonistic Activities of Epophytic Bacteria from Soybean Leaves Against Pseudomonas syringae pv. glycinea in Vitro and in Planta. Microb. Ecol. 1997, 34, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Vidic, M.; Balaz, J. Response of Soybean Genotypes to Pseudomonas syringae pv. glycinea. Plant Prot. 1997, 48, 119–125. [Google Scholar]
- Budde, I.P.; Ullrich, M.S. Interactions of Pseudomonas syringae pv. glycinea with Host and Non Host Plants in Relation to Temperature and Phytotoxin Synthesis. Mol. Plant Microbe Interact. 2000, 13, 951–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.; Koskella, B. Nutrient and Dose Dependent Microbiome Mediated Protection Against a Plant Pathogen. Curr. Biol. 2018, 28, 2487–2492.e3. [Google Scholar] [CrossRef] [Green Version]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions and Emerging Trends in Microbial Application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.R.; James, E.K.; Poole, P.S. The Plant Microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosni, T.; Moretti, C.; Devescovi, G.; Suarez-Moreno, Z.R.; Fatmi, M.B.; Guarnaccia, C.; Pongor, S.; Onofri, A.; Buonaurio, R.; Venturi, V. Sharing of Quorum-Sensing Signals and Role of Interspecies Communities in a Bacterial Plant Disease. ISME J. 2011, 5, 1857–1870. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, E.J.N.; Vogel, C.M.; Ueoka, R.; Schäfer, M.; Ryffel, F.; Müller, D.B.; Probst, S.; Kreuzer, M.; Piel, J.; Vorholt, J. Bipartite Interactions, Antibiotic Production and Biosynthetic Potential of the Arabidopsis Leaf Microbiome. Nat. Microbiol. 2018, 3, 909–919. [Google Scholar] [CrossRef]
- Chinnadurai, C.; Balachandar, D.; Sundaram, S.P. Characterization of 1-Aminocyclopropane-1-Carboxylate Deaminase Producing Methylobacteria from Phyllosphere of Rice and their Role in Ethylene Regulation. World J. Microbiol. Biotechnol. 2009, 25, 1403–1411. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef] [PubMed]
- Smits, T.H.M.; Duffy, B.; Blom, J.; Ishimaru, C.A.; Stockwell, V.O. Pantocin A, a Peptide-Derived Antibiotic Involved in Biological Control by Plant-Associated Pantoea Species. Arch. Microbiol. 2019, 201, 713–722. [Google Scholar] [CrossRef]
- Kamber, T.; Lansdell, T.A.; Stockwell, V.O.; Ishimaru, C.A.; Smits, T.H.M.; Duffy, B. Characterization of the Biosynthetic Operon for the Antibacterial Peptide Herbicolin in Pantoea vagans Biocontrol Strain C9-1 and Incidence in Pantoea Species. Appl. Environ. Microbiol. 2012, 78, 4412–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddens, S.R.; Houliston, G.J.; Mahanty, H.K. The Influence of Antibiotic Production and Pre-Emptive Colonization on the Population Dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in Planta. Environ. Microbiol. 2003, 5, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, V.O.; Johnson, K.B.; Sugar, D.; Loper, J.E. Antibiosis Contributes to Biological Control of Fire Blight by Pantoea gglomerans Strain Eh252 in Orchards. Phytopathology 2002, 92, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a Highly Versatile and Diverse Genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.A.; Zumoff, C.H.; Schneider, L.; Beer, S.V. Pantoea agglomerans Strain EH318 Produces Two Antibiotics that Inhibit Erwinia amylovora in Vitro. Appl. Environ. Microbiol. 2001, 67, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusey, P.L.; Stockwell, V.O.; Reardon, C.L.; Smits, T.H.M.; Duffy, B. Antibiosis Activity of Pantoea agglomerans Biocontrol Strain E325 Against Erwinia amylovora on Apple Flower Stigmas. Phytopathology 2011, 101, 1234–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loiret, F.G.; Ortega, E.; Kleiner, D.; Ortega-Rodes, P.; Rodés, R.; Dong, Z. A Putative New Endophytic Nitrogen-Fixing Bacterium Pantoea sp. from Sugarcane. J. Appl. Microbiol. 2004, 97, 504–511. [Google Scholar] [CrossRef]
- Enya, J.; Shinohara, H.; Yoshida, S.; Tsukiboshi, T.; Negishi, H.; Suyama, K.; Tsushima, S. Culturable Leaf Associated Bacteria on Tomato Plants and their Potential as Biological Control Agents. Microb. Ecol. 2007, 53, 436–524. [Google Scholar] [CrossRef]
- Fukui, R.; Fukui, H.; Alvarez, A.M. Suppression of Bacterial Blight by a Bacterial Community Isolated from the Guttation Fluids of Anthuriums. Appl. Environ. Microbiol. 1999, 65, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin-A-Woeng, T.F.C.; Bloemberg, G.V.; Lugtenberg, B.J.J. Phenazines and their Role in Biocontrol by Pseudomonas Bacteria. New Phytol. 2003, 157, 503–523. [Google Scholar] [CrossRef] [Green Version]
- Kron, A.S.; Zengerer, V.; Bieri, M.; Dreyfuss, V.; Sostizzo, T.; Schmid, M.; Lutz, M.; Remus-Emsermann, M.; Pelludat, C. Pseudomonas orientalis F9 Pyoverdine, Safracin, and Phenazine Mutants Remain Effective Antagonists Against Erwinia amylovora in Apple Flowers. App. Environ. Microbiol. 2020, 86, e02619–e02620. [Google Scholar]
- Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.M.I.; Zubair, M.; Iqbal, M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp. Front. Microbiol. 2017, 8, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, A.; Weisskopf, L. Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions. Front. Microbiol. 2017, 8, 1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Ma, Y.-N.; Wang, J.; Xia, Z.; Wei, H.-L. Genomic Insights into a Plant Growth-Promoting Pseudomonas koreensis Strain with Cyclic Lipopeptide-Mediated Antifungal Activity. MicrobiologyOpen 2020, 9, e1092. [Google Scholar] [CrossRef]
- Nielsen, C.J.; Ferrin, D.M.; Stanghellini, M.E. Efficacy of Biosurfactants in the Management of Phytophthora capsici on Pepper in Recirculating Hydroponic Systems. Can. J. Plant Pathol. 2006, 28, 450–460. [Google Scholar] [CrossRef]
- Strano, C.P.; Bella, P.; Licciardello, G.; Caruso, A.; Catara, V. Role of Secondary Metabolites in the Biocontrol Activity of Pseudomonas corrugate and Pseudomonas mediterranea. Eur. J. Plant Pathol. 2017, 149, 103–115. [Google Scholar] [CrossRef]
- Bernal, P.; Allsopp, L.P.; Filloux, A.; Llamas, M.A. The Pseudomonas putida T6ss is a Plant Warden Against Phytopathogens. ISME J. 2017, 11, 972–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maignien, L.; de Force, E.A.; Chafee, M.E.; Eren, A.M.; Simmons, S.L. Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities. mBio 2014, 5, e00682–e006813. [Google Scholar] [CrossRef]
- Williams, T.R.; Marco, M.L. Phyllosphere Microbiota Composition and Microbial Community Transplantation on Lettuce Plants Grown Indoors. mBio 2014, 5, e01564–e015614. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Velasco, G.; Tydings, H.A.; Boyer, R.R.; Falkinham, J.O.; Ponder, M.A. Characterization of Interactions between Escherichia coli O157:H7 with Epiphytic Bacteria In Vitro and on Spinach Leaf Surfaces. Int. J. Food Microbiol. 2012, 153, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.J.; Roget, D.K.; Ryder, M.H. Suppression of Rhizoctonia Solani Ag-8 Induced Disease on Wheat by the Interaction Between Pantoea, Exiguobacterium, and Microbacteria. Aust. J. Soil Res. 2006, 44, 331–342. [Google Scholar] [CrossRef]
- Morohoshi, T.; Someya, N.; Ikeda, T. Novel n-Acylhomoserine Lactone- Degrading Bacteria Isolated from the Leaf Surface of Solarium tuberosum and their Quorum-Quenching Properties. Biosci. Biotechnol. Biochem. 2009, 73, 2124–2127. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, U.; Ulrich, A.; Schumann, P.; Naumann, D.; Suzuki, K.I. Diversity 0f Grass-Associated Microbacteriaceae Isolated from the Phyllosphere and Litter Layer after Mulching the Sward; Polyphasic Characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 52 Pt 5, 1441–1454. [Google Scholar]
- Chase, A.B.; Arevalo, P.; Polz, M.F.; Berlemont, R.; Martiny, J.B. Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium. Front. Microbiol. 2016, 7, 1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacava, P.T.; Li, W.; Araújo, W.L.; Azevedo, J.L.; Hartung, J.S. The Endophyte Curtobacterium flaccumfaciens Reduces Symptoms Caused by Xylella fastidiosa in Catharanthus roseus. J. Microbiol. 2007, 45, 388–393. [Google Scholar] [PubMed]
- Sturz, A.; Christie, B.; Matheson, B.; Nowak, J. Biodiversity of Endophytic Bacteria which Colonize Red Clover Nodules, Roots, Stems and Foliage and their Influence on Host Growth. Biol. Fertil. Soils 1997, 25, 13–19. [Google Scholar] [CrossRef]
- Soares, R.M.; Fantinato, G.G.P.; Darben, L.M.; Marcelino-Guimarães, F.C.; Seixas, C.D.S.; Carneiro, G.E.D.S. First Report of Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean in Brazil. Trop. Plant Pathol. 2013, 38, 452–454. [Google Scholar] [CrossRef]
- Heuer, H.; Kornelia, S. Bacterial Phyllosphere Communities of Solanum tuberosum L. and T4-Lysozyme-Producing Transgenic Variants. FEMS Microbiol. Ecol. 1999, 28, 357–371. [Google Scholar] [CrossRef]
- Sun, J.; Cardoza, V.; Mitchell, D.M.; Bright, L.; Oldroyd, G.; Harris, J.M. Crosstalk Between Jasmonic Acid, Ethylene and Nod Factor Signaling Allows Integration of Diverse Inputs for Regulation of Nodulation. Plant J. 2006, 46, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Duan, L.; Zhou, B.; Yu, H.; Zhu, H.; Cao, Y.; Zhang, Z. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula. Front. Microbiol. 2017, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Prasad, V.; Lata, C. Bacillus: Plant growth promoting bacteria for sustainable agriculture and environment. In New and Future Developments in Microbial Biotechnology and Bioengineering, Microbial Biotechnology in Agro-Environmental Sustainability, 1st ed.; Singh, J.S., Singh, D.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–55. [Google Scholar]
- Hendrickson, E.L.; Guevera, P.; Peñaloza-Vàzquez, A.; Shao, J.; Bender, C.; Ausubel, F.M. Virulence of the Phytopathogen Pseudomonas syringae pv. maculicola is rpoN Dependent. J. Bacteriol. 2000, 182, 3498–3507. [Google Scholar] [CrossRef] [Green Version]
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular Cell Biology, 4th ed.; W. H. Freeman: New York, NY, USA, 2000. [Google Scholar]
- Bilgin, D.D.; Zavala, J.A.; Zhu, J.; Clough, S.J.; Ort, D.R.; de Lucia, E.H. Biotic Stress Globally Down Regulates Photosynthesis Genes. Plant Cell Environ. 2010, 33, 1597–1613. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, K.; Fofana, B. An overview of plant photosynthesis modulation by pathogen attacks. In Advances in Photosynthesis-Fundamental Aspects; Najafpour, M., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 465–487. [Google Scholar]
- Rho, H.; Kim, S.H. Endophyte effects on photosynthesis and water use of plant hosts: A meta-analysis. In Functional Importance of the Plant Microbiome; Doty, S.L., Ed.; Springer: Cham, Switzerland, 2017; pp. 43–69. [Google Scholar]
- Cheng, D.D.; Zhang, Z.S.; Sun, X.B.; Zhao, M.; Sun, G.Y.; Chow, W.S. Photoinhibition and Photoinhibition-Like Damage to the Photosynthetic Apparatus in Tobacco Leaves Induced by Pseudomonas syringae pv. tabaci under Light and Dark Conditions. BMC Plant Biol. 2016, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Hetherington, A.M.; Woodward, F.I. The Role of Stomata in Sensing and Driving Environmental Change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant Stomata Function in Innate Immunity Against Bacterial Invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Tardieu, F.; Davies, W.J. Stomatal Response to Abscisic Acid is a Function of Current Plant Water Status. Plant Physiol. 1992, 98, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in Forest Water-Use Efficiency as Atmospheric Carbon Dioxide Concentrations Rise. Nature 2013, 499, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Boutraa, T. Improvement of Water Use Efficiency in Irrigated Agriculture: A Review. J. Agron. 2010, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H.; Christian-Smith, J.; Cooley, H. Water-Use Efficiency and Productivity: Rethinking the Basin Approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering and Medicine. Science breakthroughs to advance food and agricultural research by 2030. In Water-Use Efficiency and Productivity Consensus Study Report; National Academies Press: Washington, DC, USA, 2019; pp. 129–141. [Google Scholar]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the Soil Microbiome to Increase Soil Health and Plant Fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Dodd, I.C.; Ruiz-Lozano, J.M. Microbial Enhancement of Crop Resource Use Efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. [Google Scholar] [CrossRef]
- Borkar, S.G. Laboratory Techniques in Plant Bacteriology; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Mirza, B.S.; Rodrigues, J.L.M. Development of a Direct Isolation Procedure for Free-Living Diazotrophs under Controlled Hypoxic Conditions. Appl. Environ. Microbiol. 2012, 78, 5542–5549. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis Across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Mayhood, P.; Mirza, B.S. Soybean Root Nodule and Rhizosphere Microbiome: Distribution of Rhizobial and Non-Rhizobial Endophytes. Appl. Environ. Microbiol. 2021, 87, e02820–e02884. [Google Scholar] [CrossRef]
- Farhatullah, A.; Stayton, M.M.; Groose, R.W.; Khan, M.J. Genetic Analysis of Race-Specificity of Pseudomonas syringae pv. glycinea. Pak. J. Bot. 2011, 43, 7–13. [Google Scholar]
- Caetano-Anollés, G.; Favelukes, G.; Bauer, W.D. Optimization of Surface Sterilization for Legume Seed. Crop Sci. 1990, 30, 708–712. [Google Scholar] [CrossRef]
- Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different Responses of Various Chlorophyll Meters to Increasing Nitrogen Supply in Sweet Pepper. Front. Plant Sci. 2018, 9, 1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duursma, R.A. Plantecophys-An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLoS ONE 2015, 10, e0143346. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbavor, C.; Mirza, B.S.; Wait, A. The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae. Plants 2022, 11, 2634. https://doi.org/10.3390/plants11192634
Agbavor C, Mirza BS, Wait A. The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae. Plants. 2022; 11(19):2634. https://doi.org/10.3390/plants11192634
Chicago/Turabian StyleAgbavor, Charles, Babur S. Mirza, and Alexander Wait. 2022. "The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae" Plants 11, no. 19: 2634. https://doi.org/10.3390/plants11192634
APA StyleAgbavor, C., Mirza, B. S., & Wait, A. (2022). The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae. Plants, 11(19), 2634. https://doi.org/10.3390/plants11192634