Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Characterization of Fungal Isolates
2.2. Tailored Pathogenicity Test
2.2.1. Identification of Pathogenicity Genes
2.2.2. Plant Inoculation, Fungal Re-Isolation, and Identification
2.2.3. Expression Profiling While Bipartite Interaction between Host and Pathogen
2.2.4. Random Mutagenesis and Plant Inoculation with Mutated Pathogen
2.3. Pathogen Characterization for Unraveling Taxonomy
2.3.1. PCR Amplification
2.3.2. Phylogenetic Analysis
3. Results and Discussion
3.1. Integrative Pathogenicity (IP) Postulates
- (1)
- The microbe must be present in all organisms affected by the disease in question.
- (2)
- The isolated microbe must be characterized for the pathogenicity-related gene(s) (effector genes).
- (3)
- The microbe inoculated in the host plant must be re-isolated upon disease appearance.
- (4)
- The re-isolated microbe must be characterized for the presence of effector gene(s) associated with host pathogenicity.
- (5)
- The plant transcriptome while pathogenesis due to bipartite interaction between host and pathogen must express the product(s) of effector gene(s).
- (6)
- A host plant must be devoid of disease upon inoculation with a mutant version of the characterized pathogen.
3.2. Taxonomic Classification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2021, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabouvette, C.; Olivain, C.; Migheli, Q.; Steinberg, C. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 2009, 184, 529–544. [Google Scholar] [CrossRef]
- Leslie, J.F. Genetics and Fusarium oxysporum. In Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops, 1st ed.; Gullino, M.L., Katan, J., Garibaldi, A., Eds.; APS Press: Saint Paul, MN, USA, 2012; pp. 39–47. [Google Scholar]
- Ortu, G.; Bertetti, D.; Gullino, M.L.; Garibaldi, A. A new forma specialis of Fusarium oxysporum on Crassula ovata. J. Plant Pathol. 2013, 95, 33–39. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Recorbet, G.; Steinberg, C.; Olivain, C.; Edel, V.; Trouvelot, S.; Dumas-Gaudot, E.; Gianinazzi, S.; Alabouvette, C. Wanted: Pathogenesis-related marker molecules for Fusarium oxysporum. New Phytol. 2003, 159, 73–92. [Google Scholar] [CrossRef]
- Lutzoni, F.; Kauff, F.; Cox, C.J.; McLaughlin, D.; Celio, G.; Dentinger, B.; Padamsee, M.; Hibbett, D.; James, T.Y.; Baloch, E.; et al. Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. Am. J. Bot. 2004, 91, 1446–1480. [Google Scholar] [CrossRef] [PubMed]
- Friesen, T.L.; Stukenbrock, E.H.; Liu, Z.; Meinhardt, S.; Ling, H.; Faris, J.D.; Rasmussen, J.B.; Solomon, P.S.; Mc-Donald, B.A.; Oliver, R.P. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 2006, 38, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Lourd, M.; Ouinten, M.; Tantaoui, A.; et Geiger, J.P. Le Bayoud du palmier dattier, une maladie qui menace la phoeniciculture. Phytoma 1995, 469, 36–39. [Google Scholar]
- Mandeel, Q.A. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum. Mycopathologia 2007, 163, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Nicholson, P.; Doohan, F.M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010, 185, 54–66. [Google Scholar] [CrossRef]
- Schnathorst, W. Life cycle and epidemiology of Verticillium. In Fungal Wilt Diseases of Plants, 2nd ed.; Mace, M., Bell, A., Beckman, C., Eds.; Academic Press: New York, NY, USA, 1981; pp. 81–111. [Google Scholar]
- Okungbowa, F.; Shittu, H. Fusarium wilts: An overview. Environ. Res. J. 2012, 6, 83–102. [Google Scholar]
- Tantaoui, A. Contribution to the In Vitro and In Situ Study of Antagonists of Fusarium oxysporum f. sp. albedinis, Causal Agent of Bayoud; DES, University Cadi Ayyad: Marrakech, Morocco, 1989. [Google Scholar]
- Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.; Rep, M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genom. 2013, 14, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.H.; Sharma, M.; Thatcher, L.F.; Azam, S.; Hane, J.K.; Sperschneider, J.; Kidd, B.N.; Anderson, J.P.; Ghosh, R.; Garg, G.; et al. Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genom. 2016, 17, 191. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Houterman, P.M.; Gawehns, F.; Cao, L.; Sillo, F.; Richter, H.; Clavijo-Ortiz, M.J.; Schmidt, S.M.; Boeren, S.; Vervoort, J.; et al. The AVR2–SIX5 gene pair is required to activate I−2−mediated immunity in tomato. New Phytol. 2015, 208, 507–518. [Google Scholar] [CrossRef]
- Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Ortu, G.; Bertetti, D.; Martini, P.; Gullino, M.L.; Garibaldi, A. Fusarium oxysporum f. sp. papaveris: A new forma specialis isolated from iceland poppy (Papaver nudicaule). Phytopathol. Mediterr. 2015, 54, 76. [Google Scholar]
- Bertetti, D.; Ortu, G.; Gullino, M.L.; Garibaldi, A. Identification of Fusarium oxysporum f. sp. opuntiarumon new hosts of the Cactaceae and Euphorbiaceae families. J. Plant Pathol. 2017, 99, 347–354. [Google Scholar]
- Augstburger, F.; Berger, J.; Censkowsky, U.; Heid, P.; Milz, J.; Streit, C. Date Palm, 1st ed.; Naturland: Graefelfing, Germany, 2002. [Google Scholar]
- Batson, A.M.; Fokkens, L.; Rep, M.; du Toit, L.J. Putative effector genes distinguish two pathogenicity groups of Fusarium oxysporum f. sp. spinaciae. Mol. Plant-Microbe Interact. 2021, 34, 141–156. [Google Scholar] [CrossRef]
- Duan, Y.; Qu, W.; Chang, S.; Li, C.; Xu, F.; Ju, M.; Miao, H. Identification of Pathogenicity Groups and Pathogenic Molecular Characterization of Fusarium oxysporum f. sp. sesami in China. Phytopathology 2020, 110, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Anabestani, A.; Izadpanah, K.; Abbà, S.; Galetto, L.; Ghorbani, A.; Palmano, S.; Siampour, M.; Veratti, F.; Marzachì, C. Identification of putative effector genes and their transcripts in three strains related to ‘Candidatus Phytoplasma aurantifolia’. Microbiol. Res. 2017, 199, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Touchman, J.W.; Mastrian, S.D. DNA Sequencing: An Outsourcing Guide. Curr. Protoc. Essent. Lab. Tech. 2008, 1, 10–14. [Google Scholar] [CrossRef]
- Touchman, J.W. DNA sequencing: An outsourcing guide. Curr. Protoc. Essent. Lab. Tech. 2009, 2, 12. [Google Scholar] [CrossRef]
- Kircher, M.; Kelso, J. High-throughput DNA sequencing–concepts and limitations. Bioessays 2010, 32, 524–536. [Google Scholar] [CrossRef]
- Barlow, A.; Hartmann, S.; Gonzalez, J.; Hofreiter, M.; Paijmans, J.L. Consensify: A method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates. Genes 2020, 11, 50. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, I.U.; Ijaz, S.; Khan, N.A.; Khan, I.A.; Ali, H.M.; Moya-Elizondo, E.A. Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt. Plants 2022, 11, 2643. https://doi.org/10.3390/plants11192643
Haq IU, Ijaz S, Khan NA, Khan IA, Ali HM, Moya-Elizondo EA. Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt. Plants. 2022; 11(19):2643. https://doi.org/10.3390/plants11192643
Chicago/Turabian StyleHaq, Imran Ul, Siddra Ijaz, Nabeeha Aslam Khan, Iqrar Ahmad Khan, Hayssam M. Ali, and Ernesto A. Moya-Elizondo. 2022. "Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt" Plants 11, no. 19: 2643. https://doi.org/10.3390/plants11192643
APA StyleHaq, I. U., Ijaz, S., Khan, N. A., Khan, I. A., Ali, H. M., & Moya-Elizondo, E. A. (2022). Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt. Plants, 11(19), 2643. https://doi.org/10.3390/plants11192643