Influence of Mineral Fertilizer and Manure Application on the Yield and Quality of Maize in Relation to Intercropping in the Southeast Republic of Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Experimental Design and Description
2.3. Basic Characteristics of the Soil Used
2.4. Maize Yield
2.5. Statistical Analysis
3. Results
3.1. Pre-Sowing Soil Characteristics
3.2. The Effect of Mineral and Organic Fertilizers on the Biomass of Maize
3.3. Influence of Mineral and Organic Fertilizers on Nutrients Uptake and Consumption
3.4. Influence of Mineral and Organic Fertilizers on Grain Yield of Maize
4. Discussion
4.1. The Effect of Nutrient Sources on the Biomass and Yield of Maize
4.2. Influence of Nutrient Sources on the Nutrient Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that Feed the World 6. Past Successes and Future Challenges to the Role Played by Maize in Global Food Security. Food Secur. 2011, 3, 307. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Munsif, F.; Waqas, M.; Khalil, I.A.; Ali, K. Effect of Tillage on Weeds and Economics of Fodder Maize Production. Pak. J. Weed Sci. Res. 2007, 13, 3. [Google Scholar]
- Chaudhary, D.; Jat, S.; Kumar, R.; Kumar, A.; Kumar, B. Fodder Quality of Maize: Its Preservation. In Maize: Nutrition Dynamics and Novel Uses; Springer: Berlin/Heidelberg, Germany, 2014; pp. 153–160. ISBN1 978-81-322-1623-0. ISBN2 978-81-322-1622-3. [Google Scholar]
- Cox, W.J.; Kalonge, S.; Cherney, D.J.R.; Reid, W.S. Growth, Yield, and Quality of Forage Maize Under Different Nitrogen Management Practices. Agron. J. 1993, 85, 341–347. [Google Scholar] [CrossRef]
- Das, A.; Patel, D.; Munda, G.C.; Ghosh, P.K. Effect of Organic and Inorganic Sources of Nutrients on Yield, Nutrient Uptake and Soil Fertility of Maize (Zea mays)- Mustard (Brassica Campestris) Cropping System. Indian J. Agric. Sci. 2010, 80, 85–88. [Google Scholar]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The Challenge of Improving Nitrogen Use Efficiency in Crop Plants: Towards a More Central Role for Genetic Variability and Quantitative Genetics within Integrated Approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, Phosphorus Use Efficiency and Balance Response to Substituting Long-Term Chemical Fertilizer Use with Organic Manure in a Wheat-Maize System. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Swain, E.Y.; Rempelos, L.; Orr, C.H.; Hall, G.; Chapman, R.; Almadni, M.; Stockdale, E.A.; Kidd, J.; Leifert, C.; Cooper, J.M. Optimizing Nitrogen Use Efficiency in Wheat and Potatoes: Interactions between Genotypes and Agronomic Practices. Euphytica 2014, 199, 119–136. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Mays, D.A. Mineral Nutrition. In Tall Fescue; Springer: Berlin/Heidelberg, Germany, 2015; pp. 41–73. ISBN 9780891182146. [Google Scholar]
- Zebarth, B.J.; Tai, G.; Tarn, R.; De Jong, H.; Milburn, P.H. Nitrogen Use Efficiency Characteristics of Commercial Potato Cultivars. Can. J. Plant Sci. 2004, 84, 589–598. [Google Scholar] [CrossRef]
- Mohamed, E.; Rosen, C.J.; Lauer, F.I.; Martin, M.W.; Bamberg, J.B.; Birong, D.E. Screening of Exotic Potato Germplasm for Nitrogen Uptake and Biomass Production. Am. J. Potato Res. 1998, 75, 93–100. [Google Scholar] [CrossRef]
- Raza, M.A.; Cui, L.; Khan, I.; Din, A.M.U.; Chen, G.; Ansar, M.; Ahmed, M.; Ahmad, S.; Manaf, A.; Titriku, J.K. Compact Maize Canopy Improves Radiation Use Efficiency and Grain Yield of Maize/Soybean Relay Intercropping System. Environ. Sci. Pollut. Res. 2021, 28, 41135–41148. [Google Scholar] [CrossRef]
- Raza, M.; Gul, H.; Wang, J.; Yasin, H.; Qin, R.; Khalid, M.H.; Naeem, M.; Feng, L.; Iqbal, N.; Gitari, H.; et al. Land Productivity and Water Use Efficiency of Maize-Soybean Strip Intercropping Systems in Semi-Arid Areas: A Case Study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield Performance and Land-Use Efficiency of Barley and Faba Bean Mixed Cropping in Ethiopian Highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity Enhances Agricultural Productivity via Rhizosphere Phosphorus Facilitation on Phosphorus-Deficient Soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.A.; Gul, H.; Hasnain, A.; Khalid, M.H.B.; Hussain, S.; Abbas, G.; Ahmed, W.; Babar, M.J.; Ahmed, Z.; Saeed, A.; et al. Leaf Area Regulates the Growth Rates and Seed Yield of Soybean (Glycine max L. Merr.) in Intercropping System. Int. J. Plant Prod. 2022. [Google Scholar] [CrossRef]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.; Liu, W.; Yong, T.; Du, J.; Shu, K.; Yang, W. Comparative Analysis of Maize–Soybean Strip Intercropping Systems: A Review. Plant Prod. Sci. 2019, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- DU, J.; HAN, T.; GAI, J.; YONG, T.; Xin, S.U.N.; WANG, X.; Feng, Y.; Jiang, L.; Kai, S.; LIU, W. Maize-Soybean Strip Intercropping: Achieved a Balance between High Productivity and Sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Palai, J.B.; Manasa, P.; Kumar, D.P. Potential of Intercropping System in Sustaining Crop Productivity. Int. J. Agric. Environ. Biotechnol. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Rural, C.; Maria, S. Understanding Plant Density Effects On Maize Growth And Development: An Important Issue To Maximize Grain Yield A Compreensão Dos Efeitos Da Densidade De Plantas Sobre O Crescimento E Desenvolvimento Do Milho É Importante Para Maximizar O Rendimento De Grãos. Ciência Rural 2000, 31, 159–168. [Google Scholar]
- Piao, L.; Qi, H.; Li, C.; Zhao, M. Optimized Tillage Practices and Row Spacing to Improve Grain Yield and Matter Transport Efficiency in Intensive Spring Maize. Field Crops Res. 2016, 198, 258–268. [Google Scholar] [CrossRef]
- Shi, R.; Hong, Z.; Li, J.; Jiang, J.; Baquy, M.A.-A.; Xu, R.; Qian, W. Mechanisms for Increasing the PH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. J. Agric. Food Chem. 2017, 65, 8111–8119. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.M.; Li, Z.X.; Cai, C.F.; Wang, J.G. The Dynamic Response of Splash Erosion to Aggregate Mechanical Breakdown through Rainfall Simulation Events in Ultisols (Subtropical China). Catena 2014, 121, 279–287. [Google Scholar] [CrossRef]
- Singh, D.; Chopra, A.; Patel, M.B.; Sarpal, A.S. A Comparative Evaluation of Nitrogen Compounds in Petroleum Distillates. Chromatographia 2011, 74, 121–126. [Google Scholar] [CrossRef]
- Nimah, M. The Influence of Irrigation Intervals on Water Use Efficiency Measured by the Neutron Scattering Method; American University of Beirut: Beirut, Lebanon, 1968; ISBN 1085682811. [Google Scholar]
- Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of Arbuscular Mycorrhizal Inoculation and Biochar Amendment on Maize Growth, Cadmium Uptake and Soil Cadmium Speciation in Cd-Contaminated Soil. Chemosphere 2018, 194, 495–503. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Dickman, S.R.; Bray, R.H. Colorimetric Determination of Phosphate. Ind. Eng. Chem. Anal. Ed. 1940, 12, 665–668. [Google Scholar] [CrossRef]
- Pauline, B.Y.; HALD, M. The Flame Photometer for the Measurement of Sodium and Potassium in Biological Materials. J. Biol. Chem. 1946, 499–510. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Bonfim-Silva, E.M.; da Silva, T.J.A.; Cabral, C.E.A.; Kroth, B.E.; Rezende, D. Desenvolvimento Inicial de Gramíneas Submetidas Ao Estresse Hídrico. Rev. Caatinga 2011, 24, 180–186. [Google Scholar]
- Dospekhov, B.A. Field Experiment Technique. M. Agropromizdat 1985, 107–109. [Google Scholar]
- Ahsan Altaf, M.; Shahid, R.; Asad Altaf, M.; Ren, M.-X.; Tan, K.; Xiang, W.-Q.; Qadir, A.; Shakoor, A.; Mohsin Altaf, M. Effect of NPK, Organic Manure and Their Combination on Growth, Yield and Nutrient Uptake of Chilli (Capsicum annum L.). Hortic. Int. J. 2019, 3, 217–222. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different Organic Manure Sources and NPK Fertilizer on Soil Chemical Properties, Growth, Yield and Quality of Okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
- Vishal, N.; Pal, V.; Srivastav, A.; Singh, K.; Singh, R.; Baksh, H.; Singh, B.; Pandey, R. Response of NPK and Organic Manures on Growth and Yield of Carrot (Daucus Carota L.) Cv. 2019. Available online: https://www.researchgate.net/profile/VishalPal/publication/333641305_Response_of_NPK_and_organic_manures_on_growth_and_yield_of_carrot_Daucus_carota_L_cv/links/5cf8c4ed299bf1fb185bc376/Response-of-NPK-and-organic-manures-on-growth-and-yield-of-carrot-Daucus-carota-L-cv.pdf (accessed on 5 August 2022).
- Ayoola, O.; Olutayo, A. Influence of Poultry Manure and NPK Fertilizer on Yield and Yield Components of Crops under Different Cropping Systems in South West Nigeria. Afr. J. Biotechnol. 2006, 5, 1386–1392. [Google Scholar]
- Boateng, S.; Zickermann, J.; Kornahrens, M. Poultry Manure Effect on Growth and Yield of Maize. West Afr. J. Appl. Ecol. 2009, 9. [Google Scholar] [CrossRef]
- Akongwubel, A.O.; Ewa, U.B.; Prince, A.; Jude, O.; Martins, A.; Simon, O.; Nicholas, O. Evaluation of Agronomic Performance of Maize (Zea mays L.) under Different Rates of Poultry Manure Application in an Ultisol of Obubra, Cross River State, Nigeria. Int. J. Agric. For. 2012, 2, 138–144. [Google Scholar]
- Choudhary, M.; Bailey, L.D.; Grant, C.A. Review of the Use of Swine Manure in Crop Production: Effects on Yield and Composition and on Soil and Water Quality. Waste Manag. Res. 1996, 14, 581–595. [Google Scholar] [CrossRef]
- Fallah, S.; Ghalavand, A.; KHAJEHPOUR, M.R. Effects of Animal Manure Incorporation Methods and Its Integration with Chemical Fertilizer on Yield and Yield Components of Maize (Zea mays L.) in Khorramabad, Lorestan. J. Water Soil Sci. 2007, 11, 233–242. [Google Scholar]
- Amusan, A.O.; Adetunji, M.T.; Azeez, J.O.; Bodunde, J.G. Effect of the Integrated Use of Legume Residue, Poultry Manure and Inorganic Fertilizers on Maize Yield, Nutrient Uptake and Soil Properties. Nutr. Cycl. Agroecosystems 2011, 90, 321–330. [Google Scholar] [CrossRef]
- Filho, F.G.; da Silva Dias, N.; Suddarth, S.R.P.; Ferreira, J.F.S.; Anderson, R.G.; dos Santos Fernandes, C.; de Lira, R.B.; Neto, M.F.; Cosme, C.R. Reclaiming Tropical Saline-Sodic Soils with Gypsum and Cow Manure. Water 2020, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure Acts as a Better Fertilizer for Increasing Crop Yields than Synthetic Fertilizer Does by Improving Soil Fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Ullah, A.; Ashraf Bhatti, M.; Gurmani, A.; Imran, M. Planting Patterns of Maize Facilitating Legumes Intercropping Studies on Planting Patterns of Maize (Zea mays L.) Facilitating Legumes Intercropping. J. Agric. Res 2007, 4, 113–118. [Google Scholar]
- Maitra, S.; Shankar, T.; Banerjee, P. Potential and Advantages of Maize-Legume Intercropping System. Maize-Production Use; IntechOpen: London, UK, 2020; pp. 1–14. [Google Scholar]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Karanja, N.N.; Gachene, C.K.K.; Raza, M.A.; Maitra, S.; Schulte-Geldermann, E. Revisiting Intercropping Indices with Respect to Potato-Legume Intercropping Systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Kimou, S.H.; Coulibaly, L.F.; Koffi, B.Y.; Toure, Y.; Dedi, K.J.; Kone, M. Effect of Row Spatial Arrangements on Agromorphological Responses of Maize (Zea mays L.) and Cowpea [Vigna unguiculata (L.) Walp] in an Intercropping System in Southern Cote d’Ivoire. Afr. J. Agric. Res. 2017, 12, 2633–2641. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, J.D.M.; Baltensperger, D.D.; Cassman, K.G.; Mason, S.C.; Pavlista, A.D. Importance and Effect of Nitrogen on Crop Quality and Health. In Nitrogen in the Environment; Hatfield, J.L., Follett, R.F., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 51–70. ISBN 9780123743473. [Google Scholar]
- Nenova, L.; Benkova, M.; Simeonova, T.; Atanassova, I. Nitrogen, Phosphorus and Potassium Content in Maize Dry Biomass under the Effect of Different Levels of Mineral Fertilization. Agric. Sci. Technol. 2019, 11, 311–316. [Google Scholar] [CrossRef]
- Ayeni, L.S.; Adeleye, E.O.; Adejumo, J.O. Comparative Effect of Organic, Organomineral and Mineral Fertilizers on Soil Properties, Nutrient Uptake, Growth and Yield of Maize (Zea mays). Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 493–497. [Google Scholar]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A.; Halder, D. Enhancing Grain Yield, Biomass and Nitrogen Use Efficiency of Maize by Varying Sowing Dates and Nitrogen Rate under Rainfed and Irrigated Conditions. Field Crops Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- Wei, T.; Hu, F.; Zhao, C.; Feng, F.; Yu, A.; Liu, C.; Chai, Q. Response of Dry Matter Accumulation and Yield Components of Maize under N-Fertilizer Postponing Application in Oasis Irrigation Areas. Sci. Agric. Sin. 2017, 50, 2916–2927. [Google Scholar]
- Ferreira, A.; Araújo, G.; Pereira, P.; Cardoso, A. Corn Crop Characteristics under Nitrogen, Molybdenum and Zinc Fertilization. Sci. Agric. 2001, 58, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Bai, Y.; Lv, M.; Tian, G.; Zhang, X.; Li, L.; Jiang, Y.; Ge, S. Soil Fertility, Microbial Biomass, and Microbial Functional Diversity Responses to Four Years Fertilization in an Apple Orchard in North China. Hortic. Plant J. 2020, 6, 223–230. [Google Scholar] [CrossRef]
- Grunes, D.L. Effect of Nitrogen on the Availability of Soil and Fertilizer Phosphorus to Plants. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1959; Volume 11, pp. 369–396. ISBN 0065-2113. [Google Scholar]
- Abdelaziz, M.E.; Pokluda, R.; Abdelwahab, M.M. Influence of Compost, Microorganisms and NPK Fertilizer upon Growth, Chemical Composition and Essential Oil Production of Rosmarinus Officinalis L. Not. Bot. Horti Agrobot. Cluj-Napoca 2007, 35, 86. [Google Scholar]
- Tadila, G.; Nigusie, D. Effect of Manure and Nitrogen Rates on Growth and Yield of Garlic (Allium sativum L.) at Haramaya, Eastern Ethiopia. J. Hortic. For. 2018, 10, 135–142. [Google Scholar] [CrossRef]
Parameter (Unit) | Content |
---|---|
Sand (%) | 43.4 ± 2.3 |
Silt (g kg−1) | 44.4 ± 1.4 |
Clay (%) | 10.2± 4.5 |
Microaggregate (%) | 85.2 ± 5.32 |
pH | 7.7 ± 0.2 |
Total organic carbon (g kg−1) | 13 ± 0.5 |
Total carbon (g kg−1) | 23.4 ± 1.5 |
Total nitrogen (g kg−1) | 1.5 ± 0.4 |
Total phosphorus (g kg−1) | 14.3 ± 1.3 |
Alakayln-hydrolaize N (mg g−1) | 140 ± 3.3 |
Organic matter (%) | 2.1 + 0.02 |
Mobile phosphorus (mg kg−1) | 20 ± 1.2 |
Treatmnents | MBC (mg/kg) | MBN (mg/kg) |
---|---|---|
Control | 2.1 ± 0.1 d | 40.2 ± 1.1 d |
PK | 3.6 ± 0.2 cd | 49.2 ± 2.11 d |
NPK | 4.2 ± 1.1 c | 107.2 ± 3.07 c |
NPK + 40 t manure | 6.2 ± 1.3 b | 148.4 ± 1.2 b |
NPK + 60 t manure | 9.4 ± 1.2 a | 180.2 ± 5.3 a |
Treatmnents | Biomass (50 Plants/g) |
---|---|
Control | 41.8 ± 4.4 d |
PK | 82.0 ± 2.7 c |
NPK | 96.0 ± 4.6 b |
NPK + 40 m | 101.1 ± 2.3 b |
NPK + 60 m | 112.5 ± 4.8 a |
Stage | Whole Plant | Grain Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5–7 Leaves Phase | Grain | Leaf Stems | Kernel | |||||||||
Treatmnents | N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O |
Control | 3.34 | 0.50 | 4.10 | 1.44 | 0.36 | 0.22 | 0.53 | 0.08 | 1.14 | 0.57 | 0.09 | 0.60 |
PK | 3.53 | 0.67 | 4.41 | 1.57 | 0.49 | 0.25 | 0.62 | 0.15 | 1.42 | 0.52 | 0.10 | 0.62 |
NPK | 4.03 | 0.64 | 4.41 | 1.70 | 0.54 | 0.23 | 0.75 | 0.14 | 1.20 | 0.63 | 0.11 | 0.71 |
NPK + 40 tm | 4.03 | 0.68 | 4.41 | 1.70 | 0.51 | 0.29 | 0.82 | 0.13 | 1.46 | 0.67 | 0.12 | 0.79 |
NPK + 60 tm | 4.00 | 0.76 | 4.56 | 1.80 | 0.51 | 0.24 | 0.82 | 0.13 | 1.34 | 0.68 | 0.12 | 0.82 |
Treatments | Yield In | Protein Content | Output of Protein |
---|---|---|---|
t/ha | % | t/ha | |
Control | 5.51± 0.19 d | 9.0 ± 0.26 d | 0.5 |
PK | 6.92 ± 0.21 c | 9.8 ± 0.11 c | 0.68 |
NPK | 7.87 ± 0.11 b | 10.6 ± 1.31 b | 0.83 |
NPK + 40 m | 8.47 ± 0.01 a | 10.6 ± 0.38 b | 0.89 |
NPK + 60 m | 8.49 ± 0.29 a | 11.3 ± 0.17 a | 0.96 |
Phases | Initial (5–7 Leaves) | Full Ripening Phase | Grains | ||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | g/50 Plants | kg/ha | kg/ha | ||||||
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Control | 1.4 | 0.21 | 1.71 | 137 | 27 | 144 | 79 | 20 | 12 |
PK | 2.9 | 0.54 | 3.61 | 151 | 48 | 175 | 109 | 34 | 17 |
NPK | 3.87 | 0.61 | 4.23 | 236 | 63 | 203 | 133 | 41 | 18 |
NPK + 40 m | 4.07 | 0.69 | 4.45 | 278 | 64 | 229 | 144 | 43 | 25 |
NPK + 60 m | 4.5 | 0.86 | 5.15 | 294 | 64 | 222 | 153 | 43 | 21 |
Treatments | Plant Height | Dry Weight of Shoot | Chlorophyll |
---|---|---|---|
(cm) | (g/Plant) | mg/g | |
Control | 181 ± 2.3 d | 170 ± 5.9 b | 4.2 ± 0.1 e |
PK | 224 ± 10.2 c | 189 ± 5.2 a | 5.9 ± 0.3 d |
NPK | 237 ± 5.6 c | 199 ± 10.2 a | 6.5 ± 0.1 c |
NPK + 40 m | 262 ± 4.9 b | 198 ± 9.1 a | 10.2 ± 0.5 b |
NPK + 60 m | 299 ± 8.5 a | 202 ± 7.3 a | 12.7 ± 0.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batyrbek, M.; Abbas, F.; Fan, R.; Han, Q. Influence of Mineral Fertilizer and Manure Application on the Yield and Quality of Maize in Relation to Intercropping in the Southeast Republic of Kazakhstan. Plants 2022, 11, 2644. https://doi.org/10.3390/plants11192644
Batyrbek M, Abbas F, Fan R, Han Q. Influence of Mineral Fertilizer and Manure Application on the Yield and Quality of Maize in Relation to Intercropping in the Southeast Republic of Kazakhstan. Plants. 2022; 11(19):2644. https://doi.org/10.3390/plants11192644
Chicago/Turabian StyleBatyrbek, Maksat, Fakher Abbas, Ruqin Fan, and Qingfang Han. 2022. "Influence of Mineral Fertilizer and Manure Application on the Yield and Quality of Maize in Relation to Intercropping in the Southeast Republic of Kazakhstan" Plants 11, no. 19: 2644. https://doi.org/10.3390/plants11192644
APA StyleBatyrbek, M., Abbas, F., Fan, R., & Han, Q. (2022). Influence of Mineral Fertilizer and Manure Application on the Yield and Quality of Maize in Relation to Intercropping in the Southeast Republic of Kazakhstan. Plants, 11(19), 2644. https://doi.org/10.3390/plants11192644