Research of Water Molecules Cluster Structuring during Haberlea rhodopensis Friv. Hydration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mathematical Models of Clusters in a 1% Solution of Haberlea rhodopensis Friv. Blossom Extract
2.2. Results from Spectral Analysis of EVOdrop Water with NES and DNES Methods
3. Materials and Methods
3.1. Plant H. rhodopensis Friv.
3.2. The EVOdrop Turbine Water Purifier
3.3. The EVOdrop Booster for Hydrogen-Rich Water
3.4. Differential Non-Equilibrium Energy Spectrum (NES) and Differential Non-Equilibrium Energy Spectrum Spectral Analyses (DNES)
- Monochromatic filter with wavelength λ = 580 ± 7 nm;
- Angle of evaporation of water drops from 72.3° to 0°;
- Energy range of hydrogen bonds among water molecules is λ = 8.9–13.8 µm or E = −0.08–−0.1387 eV.
3.5. Filtration with EVOdrop Filter for Tap Water, Sofia, Bulgaria
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markovska, Y.K.; Tsonev, T.D.; Kimenov, G.P.; Tutekova, A.T. Physiological Changes in Higher Poikilohydric Plants—Haberlea rhodopensis Friv. and Ramonda Serbica Panc. during Drought and Rewatering at Different Light Regimes. J. Plant Physiol. 1994, 144, 100–108. [Google Scholar] [CrossRef]
- Law on Biological Diversity, Annex No. 3 to Article 38. Promulgated, State Gazette No. 77/9.08.2002. 2002, Volume 77. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjOp-yo39T6AhXs-DgGHSsoAxAQFnoECAsQAQ&url=https%3A%2F%2Fwipolex-res.wipo.int%2Fedocs%2Flexdocs%2Flaws%2Fen%2Fbg%2Fbg038en.pdf&usg=AOvVaw3JZTquANLVI0QgNTUndY89 (accessed on 31 August 2022).
- Velchev, V. (Ed.) The Red Book of Bulgaria; Bulgarian Academy of Sciences, KOPS: Sofia, Bulgary, 1984; Volume 1. [Google Scholar]
- Kuroki, S.; Tsenkova, R.; Moyankova, D.; Munkan, J.; Morita, H.; Atanassova, S.; Djilianov, D. Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis. Sci. Rep. 2019, 9, 3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huether, F. Filter System. Fabio and Markus Membrane ENG GMBH. CH Patent WO2020169852A1, 3 January 2019. [Google Scholar]
- Huether, F. Water Purifier, Fabio and Markus Turbine ENG GMBH. CH Patent WO2020178200A1, 3 January 2019. [Google Scholar]
- Timilsina, A.B.; Mulligan, S.; Bajracharya, T.R. Water vortex hydropower technology: A state-of-the-art review of developmental trends. Clean Technol. Environ. Pol. 2018, 20, 1737–1760. [Google Scholar] [CrossRef]
- Mosin, O.V.; Ignatov, I. Basic concept of magnetic water treatment. Eur. J. Mol. Biotechnol. 2014, 4, 72–85. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Choi, H.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Puzowski, P.; Scocsko, I. Investigation on magnetic field usage for urban water treatment. Proceedings 2020, 51, 31. [Google Scholar]
- Anaeva, E.A.; Mesiats, E.A.; Sergievskii, V. Crystallization of Calcium carbonate with the filtration of aqueous solutions through a microporous membrane. Russ. J. Phys. Chem. A 2017, 91, 2121–2123. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Lerman, S.; Weinfeld-Cohen, K.; Dosoretz, C.G. Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration. Purif. Technol. 2018, 202, 1–8. [Google Scholar] [CrossRef]
- Smith, J.P.; Cappa, C.D.; Wilson, K.R.; Cohen, R.C.; Geissler, P.L.; Saykally, R.J. Unified description of temperature-dependent hydrogen bond rearrangements in liquid water. Proc. Natl. Acad. Sci. USA 2005, 102, 14171–14174. [Google Scholar] [CrossRef] [Green Version]
- Keutsch, F.N.; Saykally, R.J. Water clusters: Untangling the mysteries of the liquid, one molecule at a time. Proc. Natl. Acad. Sci. USA 2001, 98, 10533–10540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, P.W.; Quinn, C.M.; Redmond, D.B. Decorated fullerenes and model structures for water clusters. J. Chem. Phys. 1991, 95, 7678. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, H.; Ni, K. A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow. Sci. Rep. 2021, 11, 9542. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, M. The water molecule, liquid water, hydrogen bonds and water networks. In Water the Forgotten Biological Molecule; Bihan, D.L., Fukuyama, H., Eds.; Pan Stanford Publishing Pte. Ltd.: Singapore, 2021. [Google Scholar]
- Sykes, M. Simulations of RNA base pairs in a nanodroplet reveal solvation-dependent stability. Proc. Natl. Acad. Sci. USA 2007, 104, 12336–12340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Cruzan, J.D.; Saykally, R.J. Water clasters. Sci. Mag. 1996, 271, 929–933. [Google Scholar]
- Choi, T.N.; Jordan, K.D. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. J. Phys. Chem. B 2010, 114, 6932–6936. [Google Scholar] [CrossRef]
- Loboda, O.; Goncharuk, V. Theoretical study on icosahedral water clusters. Chem. Phys. Lett. 2010, 484, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Timothy, S.; Zwier, S. Chemistry: The structure of protonated water clusters. Science 2004, 304, 1119–1120. [Google Scholar]
- D’Angelo, P.; Zitolo, G.; Aquilanti, G.; Migliorati, V. Using a combined theoretical and experimental approach to understand the structure and dynamics of imidazolium-based ionic liquids/water mixtures. 2. EXAFS Spectroscopy. J. Phys. Chem. B 2013, 117, 12516–12524. [Google Scholar] [CrossRef]
- Turov, V.; Krupskaya, T.; Barvinchenko, V.; Lipkovska, M.; Kartel, M.; Suvorova, L. Peculiarities of water cluster formation on the surface of dispersed KCl: The influence of hydrophobic silica and organic media. Colloids Surf. A Physicochem. Eng. Asp. 2016, 499, 97–102. [Google Scholar] [CrossRef]
- Liu, K.; Fellers, R.; Viant, M.; Mclaughlin, R.; Brown, M.; Saylally, R.J. A long path length pulsed slit valve appropriate for high temperature operation: Infrared spectroscopy of jet-cooled large water clusters and nucleotide bases. Rev. Sci. Instrum. 1998, 67. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Ishuda, S. Hydrogen bonding and clusters in supercritical methanol–water mixture by neutron diffraction with H/D substitution combined with empirical potential structure refinement modeling. Mol. Phys. 2019, 117, 3227–3310. [Google Scholar] [CrossRef]
- Goyal, P.; Elstner, M.; Coi, Q. Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water. J. Phys. Chem. 2011, 115, 6790–6805. [Google Scholar] [CrossRef] [Green Version]
- Ignatov, I.; Mosin, O.V. Structural mathematical models describing water clusters. J. Math. Theory Model. 2013, 3, 72–87. [Google Scholar]
- Ignatov, I.; Gluhchev, G.; Neshev, N.; Mehandjiev, D. Structuring of water clusters depending on the energy of hydrogen bonds in electrochemically activated waters Anolyte and Catholyte. Bulg. Chem. Commun. 2021, 53, 234–239. [Google Scholar]
- Mehandjiev, D.; Ignatov, I.; Gluhchev, G.; Neshev, N.; Drossinakis, C. Hydrogen bond energies in formation of water molecule clusters. Phys. Sci. Int. J. 2021, 25, 15–20. [Google Scholar] [CrossRef]
- Antonov, A. Research of the Non-Equilibrium Processes in the Area in Allocated Systems. DSc Thesis, Southwest University Neofit Rilski, Blagoevgrad, Bulgaria, 1995; pp. 1–254. [Google Scholar]
- Todorov, S.; Damiana, A.; Sivriev, I.; Antonov, A.; Galabova, T. Water energy spectrum method and investigation of the variations of the H-bond structure of natural waters. Compt. Rend. Acad. Bulg. Sci. 2008, 61, 857–862. [Google Scholar]
- Gramatikov, P.; Antonov, A.; Gramatikova, M. A study of the properties and structure variations of water systems under the stimulus of outside influences. Fresenius’ J. Anal. Chem. 1992, 343, 134–135. [Google Scholar] [CrossRef]
- Gechev, T.; Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 2005, 168, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Bürstenbinger, K.; Möller, B.; Plötner, R.; Stamm, G.; Hause, G.; Mitra, D.; Abel, S. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. Plant Physiol. 2017, 173, 1692–1708. [Google Scholar] [CrossRef] [Green Version]
- Dinakar, C.; Djilianov, D.; Bartels, D. Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense. Plant Sci. 2012, 182, 29–41. [Google Scholar] [CrossRef]
- Ignatov, I.; Gluhchev, G.; Huether, F. Dynamic nano clusters of water on EVODROP water. Phys. Sci. Int. J. 2020, 24, 47–53. [Google Scholar] [CrossRef]
- Ignatov, I.; Neshev, N.; Gluhchev, G.; Huether, F.; Mehandjiev, D. Research of physical alterations of water treated with turbine technology. Contemp. Eng. Sci. 2021, 14, 51–60. [Google Scholar] [CrossRef]
- Ignatov, I.; Neshev, N.; Popova, T.P.; Kiselova-Kaneva, Y.; Drossinakis, C.; Bankova, R.; Toshkova, R.; Gluhchev, G.; Valcheva, N.; Angelcheva, M.; et al. Theoretical Analysis of Hydrogen Bonds, Energy Distribution and Information in a 1% Rosa damascena Mill. Oil Solution. Plant Sci. Today 2022, 9, 760–765. [Google Scholar] [CrossRef]
- Gangadhar, R.; Jalleeli, K.A.; Ahmad, A.A. A Fourier transform infrared (FTIR) spectroscopic study on ovine. Int. J. Sci. Environ. Technol. 2015, 4, 1158–1162. [Google Scholar]
- Faulques, E.; Perry, D.L.; Kalashnyk, N. Vibrational spectroscopy of a crystallographically unsettled uranyl carbonate: Structural impact and model. Vib. Spectrosc. 2018, 99, 184–189. [Google Scholar] [CrossRef]
- Ignatov, I.; Popova, T. Applications of Moringa oleifera Lam., Urtica dioica L., Malva sylvestris L. and Plantago major L. containing Potassium for recovery. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 93–103. [Google Scholar]
- Kostadinova, A.; Doumanov, J.; Moyankova, D.; Ivanov, S.; Mladenova, K.; Djilianov, D.; Topouzova-Hristova, T. Haberlea rhodopensis extracts affect cell periphery of keratinocytes. Compt. Rend. Acad. Bulg. Sci. 2016, 69, 439–448. [Google Scholar]
- Ignatov, I.; Balabanski, V.; Angelcheva, M. Application of infrared spectral analyses for medicinal plants containing Calcium (Ca2+). Plant Sci. Today 2022, 9. [Google Scholar]
- Bankova, R. Haberlea rodopensis—Effects and potential applications. Tradit. Mod. Vet. Med. 2022, 7, 128–138. [Google Scholar]
- Georgieva, K.; Dagnon, S.; Gesheva, E.; Bojilov, D.; Mihailova, G.; Doncheva, S. Antioxidant defense during desiccation of the resurrection plant Haberlea rhodopensis. Plant Physiol. Biochem. 2017, 114, 51–59. [Google Scholar] [CrossRef]
- Daskalova, E.; Dontcheva, S.; Yahubyan, G.; Minkov, I.; Toneva, V. Ecological characteristics and conservation of the protected resurrection species Haberlea rhodopensis Friv. as in vitro plants through a modified micropropagation system. Biotechnol. Biotechnol. Equip. 2011, 24, 213–217. [Google Scholar] [CrossRef]
- Georgiev, Y.N.; Ognyanov, M.H.; Denev, P.N. The ancient Thracian endemic plant Haberlea rhodopensis Friv. and related species: A review. J. Ethnopharmacol. 2020, 249, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Todorova, R.; Radev, R.; Atanasov, A.T. Effect of Haberlea rhodopensis oral intake on healthy volunteers. Bulg. J. Vet. Med. 2017, 20, 95–99. [Google Scholar]
- Mihaylova, D.; Bahchevanska, S.; Toneva, V. Examination of the antioxidant activity of Haberlea rhodopensis leaf extracts and their phenolic constituents. J. Food Biochem. 2013, 37, 255–261. [Google Scholar] [CrossRef]
- Mihaylova, D.; Ivanova, M.; Bahchevanska, S.; Krastanov, A. Chemical composition and antioxidant activity of ultrasound-assisted extract of the endemic plant Haberlea rhodopensis Friv. J. Food Sci Technol. 2015, 52, 2469–2473. [Google Scholar] [CrossRef]
- Antonov, A.; Yuskesselieva, L. Method for determination of structural changes in liquids. Author’s Certif. Invent. 1983, 43821. [Google Scholar]
- Antonov, A. An optical method version for determination of the welling angle of liquids. Compt. Rend. Acad. Bulg. Sci. 1984, 37, 1199. [Google Scholar]
- Antonov, A.; Yuskesselieva, L.; Teodssieva, I. Influence of ions on the structure of water under conditions far away from equilibrium. Physiologie 1989, 26, 255–260. [Google Scholar]
- Mehandjiev, D.; Ignatov, I.; Neshev, N.; Huether, F.; Gluhchev, G.; Drossinakis, C. Formation of clusters in water and their distribution according to the number of water molecules. Bulg. Chem. Commun. 2022, 54, 211–216. [Google Scholar]
- Documents 10216/21.07.2022; No. 10217/14.07.2022 from 21.07.2022. Research of Physichochemical Indicators of EVOdrop Water According to Ordinance No. 9/2001. Official State Gazette, Issue 30, and Decree No. 178/23.07.2004 Regarding the Quality of Water Intended for Drinking and Household Purposes. Available online: https://eea.government.bg/bg/legislation/water/NAREDBA___9_ot_16.03.2001.pdf (accessed on 31 August 2022).
−E(eV) x-Axis | Number of Water Molecules | −E(eV) x-Axis | Number of Water Molecules | ||
---|---|---|---|---|---|
1% Solution H. rhodopensis (Sample) | 1% Solution H. rhodopensis (Control Sample) | 1% Solution H. rhodopensis (Sample) | 1% Solution H. rhodopensis (Control Sample) | ||
0.0912 | 2 | 2 | 0.1162 | 0 | 6 |
0.0937 | 4 | 5 | 0.1187 | 4 | 8 |
0.0962 | 2 | 7 | 0.1212 | 9 2 | 4 2 |
0.0987 | 4 | 5 | 0.1237 | 5 | 4 |
0.1012 | 6 | 3 | 0.1262 | 4 | 6 |
0.1037 | 3 | 8 | 0.1287 | 4 | 6 |
0.1062 | 5 | 4 | 0.1312 | 6 | 4 |
0.1087 | 6 | 6 | 0.1337 | 6 | 7 |
0.1112 | 15 1 | 3 1 | 0.1362 | 6 | 5 |
0.1137 | 1 | 5 | 0.1387 | 8 3 | 2 3 |
Compounds | μg·g−1 DW |
---|---|
flavonoids | |
Luteolin | 2730.18 |
Hesperidin | 928.56 |
Kaempferol | 578.52 |
Phenolic Acids | |
Ferulic acid | 630.48 |
Sinapic acid | 580.80 |
Controlled Parameter | Measuring Unit | Maximum Limit Value | Before EVOdrop | After EVOdrop |
---|---|---|---|---|
1. pH | pH values | ≥6.5 and ≤9.5 | 6.73 ± 0.11 | 8.88 ± 0.11 |
2. Total hardness | mgekv·L−1 | 12 | 1.76 ± 0.5 | 0.98 ± 0.24 |
3. Calcium (Ca2+) | mg·L−1 | 150 | 12.7 ± 1.3 | 12.7 ± 1.3 |
4. Magnesium (Mg2+) | mg·L−1 | 80 | 21.2 ± 2.1 | 4.2 ± 0.4 |
5. Hydrocarbonates (HCO3−) | mg·L−1 | - | 27.5 ± 2.8 | <24.4 |
6. Carbonates (CO32−) | mg·L−1 | - | <12 | <12 |
7. Sodium (Na+) | mg·L−1 | 200 | 5.7 ± 0.9 | 5.7 ± 0.9 |
8. Potasium (K+) | mg·L−1 | - | 1.7 ± 0.2 | 1.6 ± 0.2 |
9. Manganese | µg·L−1 | 50 | 3.8 ± 0.4 | 3.6 ± 0.4 |
10. Zinc | mg·L−1 | 4 | 0.074 ± 0.07 | 0.02 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatov, I.; Huether, F.; Neshev, N.; Kiselova-Kaneva, Y.; Popova, T.P.; Bankova, R.; Valcheva, N.; Ignatov, A.I.; Angelcheva, M.; Angushev, I.; et al. Research of Water Molecules Cluster Structuring during Haberlea rhodopensis Friv. Hydration. Plants 2022, 11, 2655. https://doi.org/10.3390/plants11192655
Ignatov I, Huether F, Neshev N, Kiselova-Kaneva Y, Popova TP, Bankova R, Valcheva N, Ignatov AI, Angelcheva M, Angushev I, et al. Research of Water Molecules Cluster Structuring during Haberlea rhodopensis Friv. Hydration. Plants. 2022; 11(19):2655. https://doi.org/10.3390/plants11192655
Chicago/Turabian StyleIgnatov, Ignat, Fabio Huether, Nikolai Neshev, Yoana Kiselova-Kaneva, Teodora P. Popova, Ralitsa Bankova, Nedyalka Valcheva, Alexander I. Ignatov, Mariana Angelcheva, Ivan Angushev, and et al. 2022. "Research of Water Molecules Cluster Structuring during Haberlea rhodopensis Friv. Hydration" Plants 11, no. 19: 2655. https://doi.org/10.3390/plants11192655
APA StyleIgnatov, I., Huether, F., Neshev, N., Kiselova-Kaneva, Y., Popova, T. P., Bankova, R., Valcheva, N., Ignatov, A. I., Angelcheva, M., Angushev, I., & Baiti, S. (2022). Research of Water Molecules Cluster Structuring during Haberlea rhodopensis Friv. Hydration. Plants, 11(19), 2655. https://doi.org/10.3390/plants11192655