A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Application of a Solid Phase Extraction Procedure
2.2. Phytochemical Analysis of Different Concentrated Bud Macerates (CBMs)
2.2.1. Composition of CBM Obtained from Alnus glutinosa (Ag)
2.2.2. Composition of CBM Obtained from Ribes nigrum (Rn)
2.2.3. Composition of CBM Obtained from Rosa canina (Rc)
2.2.4. Composition of CBM Obtained from Rosmarinus officinalis (Ro)
2.2.5. Composition of CBM Obtained from Tilia tomentosa (Tt)
2.3. Highlight on Flavonoid Content of CBMs
2.4. Antioxidant Activity
3. Materials and Methods
3.1. Chemical Reagents and Materials
3.2. Samples
3.2.1. Concentrated Bud Macerates (CBMs)
3.2.2. Solid Phase Extraction
3.3. Phytochemical Analysis
3.3.1. HPLC-DAD-ELSD
3.3.2. HPLC-UV-ESI-MS2
3.4. Flavonoid Content
3.5. Antioxidant Activity
3.5.1. HPTLC flavonoids and DPPH revelations
3.5.2. Scavenging Activity of diphenyl-picrylhydrazyl (DPPH) Radicals
3.5.3. Measurement of Oxygen Radical Absorbance Capacity (ORAC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pharmacopée Européenne 10.0, 01-2017:2371 Corrigé 9.2. Méthodes de Préparation des Souches Homéopathiques et Déconcentration, 2. Macérats Glycérinés, Méthode 2.1, Méthode 2.1.3. (PHARMACOPEE FRANCAISE): Macération. pp. 1820–1821. Available online: https://www.edqm.eu/fr/Pharmacopee_Europeenne_10e_Edition (accessed on 30 March 2021).
- Henry, P. Phytembryothérapie-Gemmothérapie. Thérapeutique par les Extraits Embryonnaires Végétaux; Imprimerie St Norbert: Westerlo, Belgium, 1982. [Google Scholar]
- Tétau, M. Nouvelles Cliniques de Gemmothérapie; Similia Edition: Paris, France, 1987. [Google Scholar]
- Di Clima, F.P.; Nicoletti, M. Précis de Gemmothérapie—Fondements Scientifiques de la Méristémothérapie; Editions Amyris: Uccle, Belgium, 2018. [Google Scholar]
- Di vito, M.; Gentile, M.; Mattarelli, P.; Barbanti, L.; Micheli, L.; Mazzuca, C.; Garzoli, S.; Titubante, M.; Vitali, A.; Cacaci, M.; et al. Phytocomplex influences antimicrobial and health properties of concentrated glycerine macerates. Antibiotics 2020, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Loris Beccaro, G.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-derivatives, a novel source of polyphenols and how different extraction processes affect their composition. Foods 2020, 9, 1343. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Canterino, S.; Bounous, G. Effect of agronomic and environmental conditions on chemical composition of tree-species buds used for herbal preparations. Vegetos 2012, 25, 21–29. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Bonvegna, L.; Bounous, G. Castanea spp. Buds as a phytochemical source for herbal preparations: Botanical fingerprint for nutraceutical identification and functional food standardization. J. Sci. Food Agric. 2014, 94, 2863–2873. [Google Scholar] [CrossRef]
- Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2016, 53, 1071–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turrini, F.; Donno, D.; Boggia, R.; Beccaro, G.L.; Zunin, P.; Leardi, R.; Pittaluga, A.M. An innovative green extraction and re-use strategy to valorize food supplement by-products: Castanea sativa bud preparations as case study. Food Res. Int. 2019, 115, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.C.; Casacchia, T.; D’ippolito, C.; Statt, G. Ficus carica SSP Dottato Buds by Intercropping Different Species: Metabolites, Antioxidant Activity and Endogenous Plant Hormones (IAA, ABA). Rev. Chim. 2017, 68, 1628–1631. [Google Scholar] [CrossRef]
- Militaru, A.V.; Simedrea, I.; Alexoi, I.; Peev, C.; Bernad, E.; Toma, C.C. Plant extracts from meristematic tissues (foliar buds and shoots): Antioxidant and therapeutic action. Studia Univ. Vasile Goldis Ser. Stiintele Vietii 2010, 20, 45–47. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Marconi, V.; Bounous, G. Botanicals in Ribes Nigrum Bud-Preparations: An Analytical Fingerprinting to Evaluate the Bioactive Contribution to Total Phytocomplex. Pharm. Biol. 2013, 51, 1282–1292. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Bounous, G. Medicinal plants, chemical composition and quality: May blackcurrant buds and blackberry sprouts be a new polyphenol source for herbal preparations? J. Appl. Bot. Food Qual. 2013, 86, 79–89. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Cerutti, A.K.; Beccaro, G.L. Biomolecules and natural medicine preparations: Analysis of new sources of bioactive compounds from Ribes and Rubus spp. Buds. Pharmaceuticals 2016, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic Composition of “Bud Extracts” of Ribes Nigrum L., Rosa Canina L. and Tilia Tomentosa M. J. Pharm. Biomed. Anal. 2015, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boggia, R.; Turrini, F.; Anselmo, M.; Zunin, P.; Donno, D.; Beccaro, G.L. Feasibility of UV-Vis-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements. J. Food Sci. Technol. 2017, 54, 2422–2432. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Loris Beccaro, G.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed ultrasound-assisted extraction as an alternative method to conventional maceration for the extraction of the polyphenolic fraction of Ribes nigrum buds: A new category of food supplements proposed by the Finnover project. Foods 2019, 8, 466. [Google Scholar] [CrossRef] [Green Version]
- Peev, C.; Dehelean, C.; Antal, D.; Feflea, Ş.; Olariu, L.; Toma, C. Tilia Tomentosa Foliar Bud Extract: Phytochemical Analysis and Dermatological Testing. Studia Univ. Vasile Goldis Ser. Stiintele Vietii 2009, 19, 163–165. [Google Scholar]
- Vagiri, M.; Ekholm, A.; Andersson, S.C.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Głód, D.; Kula, M.; Majdan, M.; Hałasa, R.; Matkowski, A.; Kozłowska, W.; Kawiak, A. Chemical Composition and Biological Activity of Rubus Idaeus Shoots—A Traditional Herbal Remedy of Eastern Europe. BMC Complementary Altern. Med. 2014, 14, 480. [Google Scholar] [CrossRef]
- Solar, A.; Colarič, M.; Usenik, V.; Stampar, F. Seasonal Variations of Selected Flavonoids, Phenolic Acids and Quinones in Annual Shoots of Common Walnut (Juglans Regia L.). Plant Sci. 2006, 170, 453–461. [Google Scholar] [CrossRef]
- Martz, F.; Peltola, R.; Fontanay, S.; Duval, R.E.; Julkunen-Tiitto, R.; Stark, S. Effect of Latitude and Altitude on the Terpenoid and Soluble Phenolic Composition of Juniper (Juniperus communis) Needles and Evaluation of Their Antibacterial Activity in the Boreal Zone. J. Agric. Food Chem. 2009, 57, 9575–9584. [Google Scholar] [CrossRef]
- Liu, P.; Kallio, H.; Yang, B. Flavonol Glycosides and Other Phenolic Compounds in Buds and Leaves of Different Varieties of Black currant (Ribes Nigrum L.) and Changes during Growing Season. Food Chem. 2014, 160, 180–189. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Wang, X.; Li, H.M.; Yang, B.; Yang, H.J.; Huang, L. Characterization of nucleosides and nucleobases in natural Cordyceps by HILIC-ESI/TOF/MS and HILIC-ESI/MS. Molecules 2013, 18, 9755–9769. [Google Scholar] [CrossRef] [Green Version]
- Riffault, L.; Destandau, E.; Pasquier, L.; André, P.; Elfakir, C. Phytochemical analysis of Rosa hybrida cv. ‘Jardin de Granville’ by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: Polyphenolic fingerprints of six plant organs. Phytochemistry 2014, 99, 127–134. [Google Scholar] [CrossRef]
- Peev, C.I.; Vlase, L.; Antal, D.S.; Dehelean, C.A.; Szabadai, Z. Determination of some polyphenolic compounds in buds of Alnus and Corylus species by HPLC. Chem. Nat. Compd. 2007, 43, 259–262. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.; Dall’asta, C.; Del Rio, D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- Ersoy, N.; Kupe, M.; Gundofdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.). Not. Bot. Horti. Agrobot. 2018, 46, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grugicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Riethmüller, E.; Toth, G.; Alberti, A.; Végh, K.; Burlini, I.; Könczöl, A.; Tibor Balogh, G.; Kery, A. First characterization of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS. J. Pharm. Biomed. Anal. 2015, 107, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Glasl, S.; Mucaji, P.; Werner, I.; Presser, A.; Jurenitsch, J. Sesquiterpenes and flavonoid aglycones from a Hungarian Taxon of the Achillea millefolium Group. Z. für Nat. 2002, 57, 976–982. [Google Scholar] [CrossRef]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibanez, E. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 2010, 1217, 2512–2520. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Roze, L.; Bikovens, O.; Telysheva, G. Determination and separation of diarylheptanoids from alder growing in Latvia. In Proceedings of the 8th International Scientific and Practical Conference, Rezekne, Latvia, 20–22 June 2011; Volume 1, pp. 329–332. [Google Scholar] [CrossRef] [Green Version]
- Telysheva, G.; Dizhbite, T.; Bikovens, O.; Ponomarenko, J.; Janceva, S.; Krasilnikova, J. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 2011, 65, 623–626. [Google Scholar] [CrossRef]
- Ren, X.; He, T.; Chang, Y.; Zhao, Y.; Chen, X.; Bai, S.; Wang, L.; Shen, M.; She, G. The Genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules 2017, 22, 1383. [Google Scholar] [CrossRef] [Green Version]
- Riethmüller, E.; Alberti, A.; Toth, G.; Béni, S.; Ortolano, F.; Kery, A. Characterization of diarylheptanoid- and Flavonoid-type phenolics in Corylus avellana L. leaves and bark by HPLC/DAD-ESI/MS. Phytochem. Anal. 2013, 24, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Felföldi-gava, A.; Szarka, S.; Simandi, B.; Blazics, B.; Simon, B.; Kéry, A. Supercritical fluid extraction of Alnus glutinosa (L.) Gaertn. J. Supercrit. Fluids 2012, 61, 55–61. [Google Scholar] [CrossRef]
- Ozcan, C.; Dilgin, Y.; Yaman, M. Determination of quercetin in medicinal plants such as rose hip (Rosa canina), bettle (Urtica dioica), terebinth (Terebinthina chica) and purslane (Portulace oleracea) using HPLC-MS method. Asian J. Chem. 2012, 24, 3396–3400. [Google Scholar]
- Del Bano, M.J.; Lorente, J.; Castillo, J.; Benavente-Garcia, O.; Piedad Marin, M.; Del Rio, J.A.; Ortuno, A.; Ibarra, I. Flavonoid distribution during the development of leaves, flowers, stems and roots of Rosmarinus officinalis. Postulation of a biosynthetic pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. [Google Scholar] [CrossRef]
- Dahija, S.; Cakar, J.; Vidic, D.; Maksimovic, M.; Paric, A. Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC. Extracts. Nat. Prod. Res. 2014, 28, 2317–2320. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Ribodeau, M.; Hamraoui, A.; Bareau, I.; Blanchard, P.; Gil-Munoz, M.I.; Barberan, F.T. Polyphenolic compounds of mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2004, 40, 395–408. [Google Scholar] [CrossRef]
- Barrato, M.C.; Tattini, M.; Galardi, C.; Pinelli, P.; Romaine, A.; Vivioli, F.; Basosi, R. Antioxidant activity of galloyl quinic derivatives isolated from P. lenticus leaves. Free Radic. Res. 2003, 37, 405–412. [Google Scholar] [CrossRef]
- Bouchet, N.; Barrier, L.; Fauconneau, B. Radical scavenging activity and antioxidant properties of tannins from Guiera senegalensis (Combretaceae). Phytother. Res. 1998, 12, 159–162. [Google Scholar] [CrossRef]
- Masuda, T.; Iritani, K.; Yonemori, S.; Oyama, Y.; Takeda, Y. Isolation and antioxidant activity of galloyl flavonol glycoside from the seashore plant, pemphis acidula. Biosci. Biotechnol. Biochem. 2001, 65, 1302–1306. [Google Scholar] [CrossRef]
- Ourghemmi, S.; Sebei, H.; Siracusa, L.; Ruberto, G.; Saija, A.; Cimino, F.; Cristani, M. Comparative study of phenolic composition and antioxidant activity of leaf extracts from three wild Rosa species grown in different Tunisia regions: Rosa canina L., Rosa moschata Herrm. and Rosa sempervirens L. Ind. Crops Prod. 2016, 94, 167–177. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 98, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, H.; Bladt, S.; Zgainski, E.M. Plant Drug Analysis; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1984; 320p. [Google Scholar]
- Boisard, S.; Le Ray, A.M.; Gatto, J.; Aumond, M.C.; Blanchard, P.; Derbré, S.; Flurin, C.; Richomme, P. Chemical composition, antioxidant and anti-AGEs activities of a French poplar type propolis. J. Agric. Food Chem. 2014, 62, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
Latin Name (Genus and Species) | Common Name | Plant Parts | Reference(s) |
---|---|---|---|
Alnus glutinosa (L.) Gaertn | Alder | Buds | [5] |
Carpinus betulus L. | Hornbeam | Buds | [5,6] |
Castanea sativa Mill. and Castanea crenata Siebold and Zucc. | Sweet and Korean chestnut | Buds | [7,8,9,10] |
Cornus mas L. | Cornelian cherry | Buds | [6] |
Corylus avellana L. | Hazelnut | Buds | [7,9] |
Ficus carica L. and SSP Dottato | Fig | Buds | [5,6,11] |
Fraxinus excelsior L. | European ash | Buds | [6] |
Juglans regia L. | Walnut | Buds | [7,9] |
Larix decidua Mill. | European larch | Buds | [6] |
Pinus montana Mill. | Mountain pine | Buds | [6] |
Quercus petraea (Matt.) Liebl. | Sessile oak | Buds | [6] |
Ribes nigrum L. | Blackcurrant | Buds | [5,7,9,12,13,14,15,16,17,18] |
Rubus idaeus L. | Raspberry | Buds | [9] |
Rubus ulmifolius L. or Schoot | Blackberry | Buds or sprouts | [7,9,14,15] |
Rosa canina L. | Dog rose | Buds and young sprouts | [16] |
Salix caprea L. | Willow | Buds | [9] |
Tilia tomentosa Moench. | Silver Lime | Buds, quiescent buds and sprouts | [6,16,17,19] |
Tilia vulgaris Hayne | Linden | Buds | [7,9] |
Vitis vinifera | Grape vine | Buds | [12,17] |
N° | Plants | Rt (min) | λMax (nm) | [M+H]+ /[M-H]− (m/z) | Fragments +/− (m/z) | MS2+/MS2− (m/z) | MW (g/mol) | Compounds * Identification Method | Ref |
---|---|---|---|---|---|---|---|---|---|
1 | Ag, Ro, Tt | 5.3 | 279 | 244/242 | 112/110 | 112/190,152,110 | 243 | Cytidine | [25] |
2 | Ag, Rn, Rc, Ro, Tt | 6.9 | 261 | -/243 | 113/200,111 | -/200,152,140,110 | 244 | Uridine | [25] |
3 | Ag, Rn, Rc, Ro, Tt | 9.9 | 252 | 284/282 | 152/150 | 152,135/150,133 | 283 | Guanosine | [25] |
4 | Ag, Ro, Tt | 10.6 | 261 | -/241 | 127/- | -/223,198,151,125 | 242 | Thymidine ** | [25] |
5 | Ag | 12.5 | 217,238,300,325 | -/353 | -/- | -/191,179,135 | 354 | Neo-chlorogenic acid * | [16] |
6 | Rc | 13.1 | 221,267 | 347/345 | 185/- | -/183,124 | 346 | Methyl-galloyl glucose | [16] |
7 | Ag | 13.7 | 224,310 | 339/337 | 147/163 | -/191,173,163,119 | 338 | p-Coumaroyl quinic acid | [16] |
8 | Rc | 14.4 | 221,278 | -/495 | -/635 | -/343,169 | 496 | Digalloylquinic acid 1 | [16] |
9 | Rc | 14.6 | 278 | -/635 | 467/495 | -/465,421,313 | 636 | Trigalloylglucose | [16,26] |
10 | Rc | 14.8 | 222,275 | 497/495 | -/635 | -/343,169 | 496 | Digalloylquinic acid 2 | [16] |
11 | Ag | 14.8 | 218,239,299,325 | 355/353 | 263,193,163/ 253,173 | -/191,179,173,135 | 354 | Crypto-chlorogenic acid | [16] |
12 | Ag, Rc | 15.6 | 218,239,298,325 | 355/353 | 245,173,163 /279,191 | -/191 | 354 | Chlorogenic acid * | [16,26,27] |
13 | Ro | 15.7 | 230, 312 | 389/387 | 406,227,209,191/- | -/363,207,163 | 388 | Medioresinol | [28] |
14 | Rc | 19.3 | 269 | 499/497 | 432,315/- | 485,315,279,153 /465,345,183 | 498 | Gallotannin | [16] |
15 | Rn, Tt | 21.4 | 223,309 | -/163 | -/119 | -/119 | 164 | (E)-p-coumaric acid * | [16] |
16 | Rn | 30.0 | 260,358 | 481/479 | 319/477,403 | 319/317,179 | 480 | Myricetin-3-O-hexoside | [16] |
17 | Tt | 31.0 | 271,334 | 565/563 | -/- | -/473,443,383,353 | 564 | Apigenin pentosyl hexoside | [16] |
18 | Ro | 31.3 | 224,283 | 611/609 | 449,303,173/- | 557,449,369,303/ 301,199 | 610 | Hesperidin * | [28] |
19 | Rn | 31.5 | 222,284 | -/435 | 275/360,273 | 442,366,296/273,167 | 436 | Phloridzin | [29] |
20 | Tt | 31.5 | 256,355 | 611/609 | -/449 | 449,303/463,447,301 | 610 | Quercetin rhamnosyl hexoside | [16] |
21 | Ro | 32.4 | 219,284,329 | 361/359 | 383,163/179 | -/223,197,179,161,133 | 360 | Rosmarinic acid * | [28] |
22 | Ro | 33.1 | 253,348 | 463/461 | -/359 | -/285,179,161 | 462 | Homoplantaginin/ Tectoridin | [28] |
23 | Ag, Rc | 33.4 | 256,355 | 479/477 | 303,167/- | 303,167/301,179 | 478 | Quercetin glucoronide | [16] |
24 | Ag, Rn, Rc, Tt | 33.4 | 256,356 | 465/463 | 505, 464,302/- | 426,303/301,179 | 464 | Isoquercetin | [16,27] |
25 | Tt | 33.6 | 257,353 | 465/463 | -/- | 426,303/301,179 | 464 | Hypersoside * | [16] |
26 | Ag, Rn | 33.7 | 256,356 | 611/609 | 505,465,303/463,373 | 465,303/301 | 610 | Rutin * | [16,27] |
27 | Ro | 33.8 | 270,346 | 479/477 | -/- | 317/315,300 | 478 | Isorhamnetin-3-O-hexoside | [28] |
28 | Tt | 33.9 | 265,347 | 595/593 | 433/- | -/447,431,285 | 594 | Kaempferol rhamnosyl hexoside | [16] |
29 | Ag, Rn, Rc, Ro | 34.7 | 218,242,298,326 | 209/207 | 191,173,163/- | -/179,161,135 | 208 | Caffeic acid ethylester | [16] |
30 | Tt | 34.7 | 256,350 | 595/593 | -/- | -/447,301 | 594 | Quercetin-3,7-O-dirhamnoside | [16] |
31 | Rn | 34.9 | 252,357 | 641/639 | 519,503/517,377,207 | 495,478,333,272/331 | 640 | Quercetin 3- glucosyl-(1->2)-glucoronide | [16] |
32 | Ro | 35.2 | 220,294,332 | -/431 | 227,185,173/- | -/269 | 432 | Apigetrin | [28,30] |
33 | Rc, Tt | 35.3 | 258,356 | 435/433 | 303,173 /301 | -/301 | 434 | Quercetin pentoside | [16] |
34 | Rc | 35.9 | 252,301,366 | 617/615 | 504,435,315,303,173 /433,301 | -/301 | 616 | Galloyl quercetin glycoside | [16] |
35 | Tt | 36.2 | 266,338 | 447/445 | -/343,269,175 | 271/269,175 | 446 | Apigenin-7-O-glucoronide | [16] |
36 | Rc, Tt | 36.9 | 258,348 | 449/447 | 303,173/301 | -/301 | 448 | Quercitrin | [16] |
37 | Rn | 37.0 | 264,348 | 449/447 | 448,287/377 | 303,287/301,285,255 | 448 | Kaempferol hexoside | [16] |
38 | Ag, Rc | 37.3 | 265,348 | 463/461 | 462,303,287/447,301 | 287/285,175 | 462 | Kaempferol glucoronide | [16,31] |
39 | Rn | 37.8 | 255,353 | 479/477 | 478/404 | 460,317/ 357,315,314,271 | 478 | Isorhamnetin hexoside | [16] |
40 | Rn | 38.2 | 251,266,306,357 | -/593 | -/447 | -/- | 594 | Kaempferol rhamnosyl- hexoside | [16] |
41 | Tt | 38.6 | 264,343 | 579/577 | 433/- | -/431,285 | 578 | Kaempferitrin | [16] |
42 | Rn | 39.1 | 254,296,354 | 625/623 | 479,317/507,385 | 479,317/315,300,271 | 624 | Isorhamnetin rutinoside 1 | [16] |
43 | Tt | 39.9 | 268,354 | 465/463 | -/- | -/301 | 464 | Quercetin hexoside | [16] |
44 | Rc | 40.7 | 268,353 | 601/599 | -/- | 315,287,209/313,285 | 600 | Galloyl kaempferol hexoside | [26] |
45 | Rc | 41.2 | 263,347 | 419/417 | 287,173/- | 287/285,255,227 | 418 | Kaempferol pentoside | [16] |
46 | Ro | 42.7 | 268,341 | 463/461 | -/- | 287/285 | 462 | Luteolin-7-O-glucoronide | [28] |
47 | Ag, Rc, Tt | 43.3 | 263,344 | 433/431 | 287,173/361,343,191 | 355,287/285,259,255 | 432 | Kaempferol rhamnoside | [16,31] |
48 | Rc | 44.6 | 254,370 | 303/301 | 239,173/- | 285,257,229,201,165, 137/179,151 | 302 | Quercetin * | [20] |
49 | Tt | 47.5 | 267,333 | 593/591 | -/- | 447,285/591,457,283 | 592 | Linarin/Acaciin ** | [16] |
50 | Ro | 47.5 | 254,348 | 317/315 | 287/285 | 302/300 | 316 | Isorhamnetin | [28] |
51 | Rc, Tt | 49.2 | 265,316,366 | 595/593 | 287,173/447,285 | 585,309,287,165/ 447,285 | 594 | Trans-tiliroside ** | [16] |
52 | Ro | 49.3 | - | 625/623 | -/479,433,345 | 317,302/315,300 | 624 | Isorhamnetin-rutinoside 2 | [28] |
53 | Ag | 51.1 | 256,351 | 361/359 | -/329 | 346,345,328/344,329 | 360 | Centaureidin ** | [32] |
54 | Ro | 51.7 | 274,355 | 315/313 | -/- | 300,282,254/ 311,298,283 | 314 | Dihydroxy-di methoxyflavone 1 | [28] |
55 | Ro | 52.9 | 218,241,306 | 345/343 | -/- | 299,271,231,165 /299,284,243,216 | 344 | Rosmanol quinone | [28] |
56 | Ag | 54.8 | 274,334 | 315/313 | -/283 | 300/298,283 | 314 | Dihydroxy-dimethoxyflavone 2 | [33,34] |
57 | Ro | 58.4 | 266,314,408 | -/345 | 715,369,301 | -/301,286 | 346 | Epiisorosmanol | [28] |
Samples | mg RE/L of Glycerin Macerate | mg RE/g of Dry Weight (DW) | mg RE/g of Fresh Weight (FW) | mg RE/100 g of Fresh Weight (FW) |
---|---|---|---|---|
Alnus glutinosa L. Gaertn | 470 ± 6 | 9 | 3 | 322 |
Ribes nigrum L. | 175 ± 2 | 3 | 1 | 150 |
Rosa canina L. | 809 ± 13 | 16 | 4 | 424 |
Rosmarinus officinalis L. | 332 ± 2 | 7 | 3 | 325 |
Tilia tomentosa M. | 219 ± 2 | 4 | 1 | 92 |
CBMs/Standards | DPPH (µmol TE/g) | ORAC (µmol TE/g) |
---|---|---|
Alnus glutinosa L. Gaertn | 1027 ± 92 | 3397 ± 172 |
Ribes nigrum L. | <200 | 2487 ± 226 |
Rosa canina L. | 4857 ± 48 | 6479 ± 480 |
Rosmarinus officinalis L. | 1038 ± 57 | 4640 ± 292 |
Tilia tomentosa M. | <200 | 6417 ± 166 |
Chlorogenic acid | 3451 ± 84 | 12174 ± 1008 |
Rosmary ethanolic extract | 1494 ± 119 | 1931 ± 124 |
Material | English Name | Botanic Family | Plant Parts | Month/Year |
---|---|---|---|---|
Alnus glutinosa L. Gaertn | Alder | Betulaceae | young shoots | June 2018 |
Ribes nigrum L. | Black currant | Grossulariaceae | buds | April 2017 |
Rosa canina L. | Dog rose | Rosaceae | young shoots | May 2018 |
Rosmarinus officinalis L. | Rosemary | Lamiaceae | young shoots | August 2018 |
Tilia tomentosa M. | Linden | Malvaceae | buds | July 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charpentier, T.; Boisard, S.; Le Ray, A.-M.; Bréard, D.; Chabrier, A.; Esselin, H.; Guilet, D.; Ripoll, C.; Richomme, P. A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa. Plants 2022, 11, 144. https://doi.org/10.3390/plants11020144
Charpentier T, Boisard S, Le Ray A-M, Bréard D, Chabrier A, Esselin H, Guilet D, Ripoll C, Richomme P. A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa. Plants. 2022; 11(2):144. https://doi.org/10.3390/plants11020144
Chicago/Turabian StyleCharpentier, Thomas, Séverine Boisard, Anne-Marie Le Ray, Dimitri Bréard, Amélie Chabrier, Hélène Esselin, David Guilet, Christophe Ripoll, and Pascal Richomme. 2022. "A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa" Plants 11, no. 2: 144. https://doi.org/10.3390/plants11020144
APA StyleCharpentier, T., Boisard, S., Le Ray, A.-M., Bréard, D., Chabrier, A., Esselin, H., Guilet, D., Ripoll, C., & Richomme, P. (2022). A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa. Plants, 11(2), 144. https://doi.org/10.3390/plants11020144