Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Particulars
2.2. Treatment Plan, Drought Imposition, Extract Preparation and Application
- Control conditions (CC, plants irrigated continuously at 100% field capacity);
- Drought stress (DS, plants irrigated continuously at 75% field capacity).
- Control (no priming);
- Hydro priming (priming with water);
- Priming with a water extract from white seeded moringa leaves (local landrace, Faisalabad origin), FM;
- Priming with a water extract from black seeded moringa leaves (local landrace, DG Khan origin), DM;
- Priming with a water extract from PKM1 moringa leaves (exotic landrace, established at Faisalabad), EM.
2.3. Emergence and Vigor Evaluation of Seedlings
2.4. Measurement of Growth Attributes
2.5. Estimation of Physiological Attributes
- V = volume of extract in mL;
- W = weight of sample (fresh leaf) in grams (g).
2.6. Measurement of Gas Exchange Attributes
2.7. Determination of Enzymatic Activities
2.8. Statistical Analysis
3. Results
3.1. Emergence Attributes
3.2. Growth Attributes
3.3. Photosynthetic Pigments
3.4. Gas Exchange Attributes
3.5. Antioxidant Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mole. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [Green Version]
- Statista. 2019. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 25 October 2021).
- Alexandratos, N.; Jelle, B. World Agriculture towards 2030/2050: The 2012 Revision. FAO Agricultural Development Economics Division. Food and Agriculture Organization of the United Nations. 2012. Available online: www.fao.org/economic/esa (accessed on 12 September 2021).
- Milani, P.; Carnahan, E.; Kapoor, S.; Ellison, C.; Manus, C.; Spohrer, R.; van den Berg, G.; Wolfson, J.; Kreis, K. Social marketing of a fortified staple food at scale: Generating demand for fortified rice in Brazil. J. Food Prod. Mark. 2017, 23, 955–978. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Sikder, S.; Husna, A.; Sultana, S.; Akhter, S.; Alim, A.; Joardar, J.C. Influence of water stress on morphology, physiology and yield contributing characteristics of rice. SAARC J. Agric. 2020, 18, 61–71. [Google Scholar] [CrossRef]
- Basal, O.; Szabó, A. Physiology, yield and quality of soybean as affected by drought stress. Asian J. Agric. Biol. 2020, 8, 247–252. [Google Scholar] [CrossRef]
- Huke, R.E.; Huke, E.H. Rice Area by Type of Culture: South, Southeast, and East Asia; IRRI: Los Ban, CA, USA, 1997. [Google Scholar]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.H. Root Response to Drought Stress in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Malik, M.A.; Farooq, M.; Ashraf, M.Y.; Cheema, M.A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008, 194, 193–199. [Google Scholar] [CrossRef]
- Darwish, E.; Rehman, S.U.; Mao, X.; Jing, R. A wheat stress induced WRKY transcription factor TaWRKY32 confers drought stress tolerance in Oryza sativa. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Alam, S.; Wahid, A. Stay green character at grain filling ensures resistance against terminal drought in wheat. Int. J. Agric. Biol. 2013, 15, 1272–1276. [Google Scholar]
- Denaxa, N.K.; Damvakaris, T.; Roussos, P.A. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. 2020, 259, 108812. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Dordrecht, The Netherland, 2009; pp. 153–188. [Google Scholar]
- Kazemi, S.; Zakerin, A.; Abdossi, V.; Moradi, P. Fruit yield and quality of the grafted tomatoes under different drought stress conditions. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Rehman, A.; Hassan, F.; Qamar, R.; Rehman, A.U. Application of plant growth promoters on sugarcane (Saccharum officinarum L.) budchip under subtropical conditions. Asian J. Agric. Biol. 2021, 2, 202003202. [Google Scholar] [CrossRef]
- Al-Zboon, K.K.; Al-Tabbal, J.A.; Al-Kharabsheh, N.M.; Al-Mefleh, N.K. Natural volcanic tuff as a soil mulching: Effect on plant growth and soil chemistry under water stress. Appl. Water Sci. 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Makawita, G.I.P.S.; Wickramasinghe, I.; Wijesekara, I. Using brown seaweed as a biofertilizer in the crop management industry and assessing the nutrient upliftment of crops. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Qamar, R.; Anjum, I.; Rehman, A.U.; Safdar, M.E.; Javeed, H.M.R.; Rehman, A.; Ramzan, Y. Mitigating water stress on wheat through foliar application of silicon. Asian J. Agric. Biol. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Tabaxi, I.; Ζisi, C.; Karydogianni, S.; Folina, A.E.; Kakabouki, I.; Kalivas, A.; Bilalis, D. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Batool, S.; Khan, S.; Basra, S.M.A. Foliar application of moringa leaf extract improves the growth of moringa seedlings in wInt. S. Afri. J. Bot. 2020, 129, 347–353. [Google Scholar] [CrossRef]
- Gondal, M.R.; Saleem, M.Y.; Rizvi, S.A.; Riaz, A.; Naseem, W.; Muhammad, G.; Hayat, S.; Iqbal, M. Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian J. Agric. Biol. 2021, 2, 202008437. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rana, M.M.; Al-Rabbi, S.M.H.; Mitsui, T. Management of puddled soil through organic amendments for post-rice mungbean. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Khasanah, R.A.N.; Rachmawati, D. Potency of silicon in reducing cadmium toxicity in Cempo Merah rice. Asian J. Agric. Biol. 2020, 4, 405–412. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Nawaz, M.; Hussain, I.; Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances. the plant growth and productivity of wheat crop (Triticum aestivum L.). S. Afr. J. Bot. 2020, 129, 74–81. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef] [PubMed]
- Foidl, N.; Makkar, H.P.; Becker, K. The potential of Moringa oleifera for agricultural and industrial uses. The miracle tree: The multiple attributes of Moringa. In What Development Potential For Moringa Product? CIRAD: Managua, Nicaragua, 2001; pp. 45–76. [Google Scholar]
- Khan, S.; Basit, A.; Hafeez, M.B.; Irshad, S.; Bashir, S.; Bashir, S.; Maqbool, M.M.; Saddiq, M.S.; Hasnain, Z.; Aljuaid, B.S.; et al. Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. PLoS ONE 2021, 16, e0254452. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Nawaz, M.; Rehman, H.U. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environ. Sci. Poll. Res. 2017, 24, 27601–27612. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.F.; Basra, S.M.A.; Hafeez, M.B.; Khan, S.; Irshad, S.; Iqbal, S.; Saddiq, M.S.; Akram, M.Z. Inorganic fertilization improves quality and biomass of Moringa oleifera L. Agrofor. Syst. 2020, 94, 975–983. [Google Scholar] [CrossRef]
- Carrillo-Reche, J.; Vallejo-Marín, M.; Quilliam, R.S. Quantifying the potential of ‘on-farm’ seed priming to increase crop performance in developing countries. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 64. [Google Scholar] [CrossRef] [Green Version]
- Basra, S.M.A.; Iftikhar, M.; Afzal, I. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. Int. J. Agric. Biol. 2011, 13, 1006–1010. [Google Scholar]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Wahid, A. Screening of moringa landraces for leaf extract as biostimulant in wheat. Int. J. Agric. Biol. 2017, 19, 999–1006. [Google Scholar] [CrossRef]
- Salsinha, Y.C.F.; Maryani, I.D.; Purwestri, Y.A.; Rachmawati, D. Morphological and anatomical characteristics of Indonesian rice roots from East Nusa Tenggara contribute to drought tolerance. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Sarwar, N.; Mubeen, K.; Wasaya, A.; Rehman, A.U.; Farooq, O.; Shehzad, M. Response of hybrid maize to multiple soil organic amendments under sufficient or deficient soil zinc situation. Asian J. Agric. Biol. 2020, 8, 38–43. [Google Scholar] [CrossRef]
- Nachabe, M.H. Refining the definition of field capacity in the literature. J. Irrig. Drain. Eng. 1998, 124, 230–232. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing; ISTA: Secretariat, Switzerland, 2010. [Google Scholar]
- Ellis, R.A.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Association of Official Seed Analysis (AOSA). Rules for testing seeds. J. Seed Technol. 1990, 12, 1–112. [Google Scholar]
- Arnon, D.T. Copper enzyme in isolated chloroplasts polyphenols oxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.P.; Farage, P.K.; Garcia, R.L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 1996, 47, 1629–1642. [Google Scholar] [CrossRef] [Green Version]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assay of catalase and peroxidase. Meth. Enzym. 1955, 2, 764–775. [Google Scholar]
- Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts: Its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid raintreated bean plants. Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles And Procedures Of Statistics, A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Jena, A.; Sing, R.K.; Sing, M.K. Mitigation measures for wheat production under heat stress condition. Int. J. Agric. Sci. Res. 2017, 7, 359–376. [Google Scholar]
- Farooq, B.; Koul, B. Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. S. Afri. J. Bot. 2020, 129, 47–55. [Google Scholar] [CrossRef]
- Ashraf, M.; Athar, H.R.; Harris, P.J.C.; Kwon, T.R. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 2008, 97, 45–110. [Google Scholar]
- Abdalla, M.M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar]
- Rehman, H.; Basra, S.M.A. Growing Moringa oleifera as a Multipurpose Tree; Some Agro-Physiological and Industrial Perspectives. American Chronicle. 28 May 2010. Available online: http://www.americanchronicle.com/articles/view/159447 (accessed on 21 May 2020).
- Rashid, N.; Khan, S.; Wahid, A.; Basra, S.M.A.; Alwahibi, M.S.; Jacobsen, S.E. Impact of Natural and Synthetic Growth Enhancers on the Productivity and Yield of Quinoa (Chenopodium quinoa Willd.) Cultivated under Normal and Late Sown Circumstances. J. Agron. Crop Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- Rashid, N.; Khan, S.; Wahid, A.; Ibrar, D.; Irshad, S.; Bakhsh, A.; Hasnain, Z.; Alkahtani, J.; Alwahibi, M.S.; Gawwad, M.R.A.; et al. Exogenous application of moringa leaf extract improves growth, biochemical attributes, and productivity of late-sown quinoa. PLoS ONE 2021, 16, e0259214. [Google Scholar] [CrossRef] [PubMed]
- Owusu, D. Phytochemical Composition of Ipomea Batatus and Moringa Oleifera Leaves and Crackers from Underutilized Flours. Master’s Thesis, Department of Biochem and Biotech, Faculty of Bio Science, College of Science, Kwame Nkrumah University of Science Technology, Kumasi, Ghana, 2008. [Google Scholar]
- Yasmeen, A.; Basra, S.M.A.; Farooq, M.; Rehman, H.; Hussain, N.; Athar, H.R. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013, 69, 225–233. [Google Scholar] [CrossRef]
- Farooq, O.; Ali, M.; Sarwar, N.; Rehman, A.; Iqbal, M.M.; Naz, T.; Asghar, M.; Ehsan, F.; Nasir, M.; Hussain, Q.M. Foliar applied brassica water extract improves the seedling development of wheat and chickpea. Asian J. Agric. Biol. 2021. [Google Scholar] [CrossRef]
- Fuglie, L.J. The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics; Church World Service: Dakar, Senegal, 1999; p. 172. [Google Scholar]
- Swapna, S.; Shylaraj, K.S. Screening for osmotic stress responses in rice varieties under drought condition. Rice Sci. 2017, 24, 253–263. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Lv, T.; Bai, M.; Wand, Z.; Niu, J. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water 2020, 12, 289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; Zhu, D.F.; Lin, X.Q.; Chen, H.Z. Effects of water stress on rice growth and yield at different growth stages. Agric. Res. Arid Areas. 2005, 2, 48–53. [Google Scholar]
- Sun, L.F. Rice Roots of Drought Stress on the Photosynthetic Fluorescence Characteristic Influence. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2013. [Google Scholar]
- Safdar, M.E.; Aslam, A.; Qamar, R.; Ali, A.; Javaid, M.M.; Hayyat, M.S.; Raza, A. Allelopathic effect of prickly chaff flower (Achyranthes aspera L.) used as a tool for managing noxious weeds. Asian J. Agric. Biol 2021, 10. [Google Scholar] [CrossRef]
- Zahid, N.; Ahmed, M.J.; Tahir, M.M.; Maqbool, M.; Shah, S.Z.A.; Hussain, S.J.; Khaliq, A.; Rehmani, M.I.A. Integrated effect of urea and poultry manure on growth, yield and postharvest quality of cucumber (Cucumis sativus L.). Asian J. Agric. Biol. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Planta. 2003, 119, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- McKersie, B.D.; Bowley, S.R.; Jones, K.S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1999, 119, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanafy, R. Using Moringa olifera Leaf Extract as a bio-fertilizer for drought stress mitigation of Glycine max L. plants. Egypt. J. Bot. 2017, 57, 281–292. [Google Scholar] [CrossRef]
- Mirzaee, M.; Moieni, A.; Ghanati, F. Effects of drought stress on the lipid peroxidation and antioxidant enzymes activities in two canola (Brassica napus L.) cultivars. J. Agric. Sci. Technol. 2013, 15, 593–602. [Google Scholar]
- Zaki, S.S.; Rady, M.M. Moringa oleifera leaf extract improves growth, physiochemical attributes, antioxidant defense system and yields of salt-stressed Phaseolus vulgaris L. plants. Int. J. Chem. Technol. Res. 2015, 8, 120–134. [Google Scholar]
SOV | DF | TSE | MET | EI | FEP | Fresh Biomass | Dry Biomass | Shoot Length | Root Length | Chlo a | Chlo b |
---|---|---|---|---|---|---|---|---|---|---|---|
WT | 1 | 2.500 ** | 0.306 * | 3.283 ** | 122.50NS | 1343 ** | 142.8 ** | 1648 ** | 262 ** | 63.17 ** | 0.739 ** |
PT | 4 | 1.712 ** | 0.155 * | 10.437 ** | 1433.75 ** | 145.4 ** | 43.09 ** | 255 ** | 179 ** | 31.46 ** | 1.260 ** |
WT × PT | 4 | 0.062 NS | 0.036 NS | 0.145 NS | 16.25 NS | 1.22 NS | 1.698 ** | 3.87 NS | 2.15 NS | 4.38 ** | 0.053 ** |
SOV | DF | Total Chlo | Carotenoids | A | gs | E | SOD | CAT | APX | H2O2 | |
WT | 1 | 77.59 ** | 1.004 ** | 46.91 ** | 0.0297 ** | 12.321 ** | 5.453 ** | 5.952 ** | 4.389 ** | 87.26 ** | |
PT | 4 | 45.18 ** | 0.051 ** | 13.78 ** | 0.0098 ** | 7.136 ** | 9.594 ** | 8.386 ** | 10.521 ** | 21.65 ** | |
WT × PT | 4 | 5.34 ** | 0.001 NS | 0.129 NS | 0.0005 NS | 0.325 NS | 0.660 * | 0.075 NS | 0.142 NS | 4.459 ** |
Treatments | Time to Start Emergence (Days) | Mean Emergence Time (Days) | Emergence Index | Final Emergence Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | DS | Mean (PT) | CC | DS | Mean (PT) | CC | DS | Mean (PT) | CC | DS | Mean (PT) | |
Control | 5.75 | 6.25 | 6 A | 10.91 | 11.05 | 10.98 A | 4.26 | 3.69 | 3.97 C | 70 | 65 | 67.5 B |
Hydro priming | 5.5 | 6 | 5.75 AB | 10.87 | 10.87 | 10.87 AB | 4.92 | 4.48 | 4.70 C | 77.5 | 70 | 73.75 B |
FM priming | 4.5 | 5.25 | 4.875 C | 10.55 | 10.65 | 10.60 B | 7.07 | 6.87 | 6.97 A | 100 | 97.5 | 98.75 A |
DM priming | 5 | 5.25 | 5.125 BC | 10.65 | 10.99 | 10.82 AB | 6.27 | 5.45 | 5.86 B | 92.5 | 92.5 | 92.5 A |
EM priming | 5 | 5.5 | 5.25 A-C | 10.73 | 11.01 | 10.87 AB | 5.97 | 5.14 | 5.56 B | 92.5 | 90 | 91.25 A |
Mean (WT) | 5.15 B | 5.65 A | 10.74 B | 10.91 A | 5.70 A | 5.13 B | 86.5 A | 83 A | ||||
HSD | PT = 0.764, WT = 0.339, PT × WT = NS | PT = 0.322, WT = 0.1430, PT × WT = NS | PT = 0.784, WT = 0.347, PT × WT = NS | PT = 10.76, WT = NS, PT × WT = NS |
Treatments | Fresh Biomass (g) | Dry Biomass (g) | Shoot Length (cm) | Root Length (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | DS | Mean (PT) | CC | DS | Mean (PT) | CC | DS | Mean (PT) | CC | DS | Mean (PT) | |
Control | 31.26 | 19.61 | 25.43 C | 10.56 d | 6.99 f | 8.85 C | 35.66 | 20.45 | 28.05 C | 12.41 | 18.90 | 15.66 D |
Hydro priming | 32.33 | 19.53 | 25.93 C | 11.05 cd | 7.08 ef | 9.02 BC | 36.84 | 24.00 | 30.42 C | 16.87 | 22.12 | 19.49 C |
FM priming | 41.75 | 30.38 | 36.06 A | 16.34 a | 12.52 b | 14.43 A | 48.31 | 35.87 | 42.09 A | 25.84 | 31.26 | 28.55 A |
DM priming | 35.19 | 23.70 | 29.44 B | 12.14 bc | 7.18 ef | 9.61 BC | 43.20 | 31.42 | 37.31 B | 20.12 | 24.94 | 22.53 B |
EM priming | 35.43 | 24.79 | 30.11 B | 11.05 cd | 8.51 e | 9.78 B | 42.71 | 30.78 | 36.74 B | 20.75 | 24.38 | 22.57 B |
Mean (WT) | 35.19 A | 23.60 B | 12.23 A | 8.45 B | 41.34 A | 28.50 B | 19.20 B | 24.32 A | ||||
HSD | PT = 1.259, WT = 0.558, PT × WT = NS | PT = 0.874, WT = 0.387, PT × WT = 1.455 | PT = 1.871, WT = 0.829, PT × WT = NS | PT = 1.484, WT = 0.658, PT × WT = NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Ibrar, D.; Bashir, S.; Rashid, N.; Hasnain, Z.; Nawaz, M.; Al-Ghamdi, A.A.; Elshikh, M.S.; Dvořáčková, H.; Dvořáček, J. Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime. Plants 2022, 11, 261. https://doi.org/10.3390/plants11030261
Khan S, Ibrar D, Bashir S, Rashid N, Hasnain Z, Nawaz M, Al-Ghamdi AA, Elshikh MS, Dvořáčková H, Dvořáček J. Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime. Plants. 2022; 11(3):261. https://doi.org/10.3390/plants11030261
Chicago/Turabian StyleKhan, Shahbaz, Danish Ibrar, Saqib Bashir, Nabila Rashid, Zuhair Hasnain, Muhammad Nawaz, Abdullah Ahmed Al-Ghamdi, Mohamed S. Elshikh, Helena Dvořáčková, and Jan Dvořáček. 2022. "Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime" Plants 11, no. 3: 261. https://doi.org/10.3390/plants11030261
APA StyleKhan, S., Ibrar, D., Bashir, S., Rashid, N., Hasnain, Z., Nawaz, M., Al-Ghamdi, A. A., Elshikh, M. S., Dvořáčková, H., & Dvořáček, J. (2022). Application of Moringa Leaf Extract as a Seed Priming Agent Enhances Growth and Physiological Attributes of Rice Seedlings Cultivated under Water Deficit Regime. Plants, 11(3), 261. https://doi.org/10.3390/plants11030261