Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops
Abstract
:1. Introduction
2. Applications of Beneficial Microorganisms
2.1. Wheat
Crop | Active Microorganisms | Mode of Seed Inoculation; Growth Conditions | Abiotic Stress and References | Main Parameters Improved |
---|---|---|---|---|
Wheat Triticum durum Desf | Fungi: Rhizoglomus intraradices + Funneliformis mosseae + Trichoderma atroviride | Seed coating; growth chamber | No stress [23] | Increased leaf number (+28.6%), and shoot (+23.1%) and root (+64.25%) dry biomass |
Fungi: Trichoderma harzianum (different strains) | Seed coating; growth chamber | No stress [24] | Increased germination (+35%), root (+63%) and shoot (+38%) length, plant dry matter (+550%), vigor index (+120%), and leaf phenols (+128%), according to the strain considered | |
Yeast: Meyerozyma guilliermondii | Seed coating; growth chamber | No stress [26] | Increased germination (+97%), shoot (+41%) and root (+69%) length, and plant biomass (+16%) | |
Wheat T. aestivum L. | Fungus + bacterium: Rhizophagus irregularis + Azotobacter vinelandii | Seed coating; rhizoboxes | No stress [27] | Increased root tip density (+28%) and branching (+29%) |
Fungus: Trichoderma atroviride | Seed coating; greenhouse | No stress [30] | Different modulation of metabolites (lipids, phenols and terpenoids, siderophores and chelating acids, derivatives of amino acids, and phytohormones) in the root exudates | |
Bacterium: Bacillus subtilis | Seed priming; growth chamber | Drought [31] | Increased plant elongation (+15%) and plant dry weight (+10%) |
2.2. Maize
Active Microorganisms | Mode of Seed Inoculation; Growth Conditions | Abiotic Stress and References | Main Parameters Improved |
---|---|---|---|
Cyanobacteria and fungus: Anabaena torulosa + Nostoc carneum + Nostoc piscinale + Anabaena doliolum or Anabaena torulosa + Trichoderma viride | Seed coating; greenhouse | Arsenic [37] | Germination (+16%) and seed-germination-related enzymes (+10% for α-amylase and + 13% for invertase), root length (+43%), shoot length (+90%), fresh weight (+21%), and dry weight (+31%) |
Bacteria: Pseudomonas putida, Pseudomonas fluorescens, Azospirillum lipoferum, alone or in combination | Seed coating; growth chamber | No stress [42] | Germination (+22%), root length (+51%), shoot length (+54%), vigor index (+75%), and leaf area (+86%) |
Cyanobacterium: Azospirillum lipoferum | Seed coating; growth chamber | Nitrogen [44] | Radicle (+36%) and shoot biomass (+30%) |
Bacterium: Bacillus spp. | Seed soaking; Growth chamber | No stress [45] | Shoot fresh (+90%) and dry (+91%) biomass, shoot length (+37%), root fresh (+88%) and dry (+69%) biomass, and number of adventitious roots (+61%) |
Bacterium: Bacillus subtilis | Seed coating (bioplastic formulation); growth chamber | No stress [46] | Shoot (+7%) and root (+10%) length |
Fungus: Trichoderma harzianum | Seed coating (and biofilm application); growth chamber | No stress [47] | Shoot (+14%) and root (+9%) length |
Bacterium: Mixta theicola | Seed soaking; growth chamber | No stress [49] | Germination (+38%), root elongation (109%), seedling-vigor index (+117%), and fresh (+108%) and dry (+207%) biomass |
Cyanobacterium: Spirulina platensis | Seed priming; growth chamber | Cadmium [48] | Germination (+63%), root dry weight (+57%), and leaf area (+20%) |
2.3. Rice
2.4. Soybean
2.5. Canola
2.6. Sunflower
Crop | Active Microorganisms | Mode of Seed Inoculation; Growth Conditions | Abiotic Stress and Reference | Main Parameters Improved |
---|---|---|---|---|
Soybean Glycine max (L.) Merr | Fungus: Trichoderma virens | Seed coating | No stress [54] | Shoot (+16%) and root (+37%) length, root weight (+77%), and shoot weight (+25%) |
Bacterium: Bacillus velezensis | Seed coating; growth chamber | No stress [55] | Germination rate (+15%), total root length (+33%), and total root surface (+27%) | |
Canola Brassica napus L. | Bacterium: Bacillus subtilis | Seed coating (bioplastic formulation); growth chamber | No stress [46] | Shoot (+15%) and root (+12%) length |
Bacterium and fungus: Bacillus subtilis, Macrophomina phaseolina, alone or in combination | Seed priming; growth chamber | Salt [59] | Germination | |
Bacterium and fungus: Bacillus subtilis + Trichoderma harzianum | Seed priming; growth chamber | Salt [60] | Germination | |
Sunflower Helianthus annuus L. L. | Bacteria: Enterobacter, Bacillus sp., Paraburkholderia phytofirmans | Seed priming; growth chamber | No stress [61] | Germination and vigor index |
Bacterium: Pseudomonas fluorescens | Seed priming; growth chamber | No stress [62] | Germination and vigor index |
2.7. Tomato
2.8. Other Horticultural Species
Crop | Active Microorganisms | Mode of Seed Inoculation; Growth Conditions | Abiotic Stress and References | Main Parameters Improved |
---|---|---|---|---|
Tomato Lycopersicon esculentum Mill. | Bacterium and fungus: Trichoderma harzianum, Pseudomonas fluorescens. alone or in combination | Seed coating; growth chamber | No stress [65] | Germination rate (+48%) |
Fungus: Trichoderma pseudokoningii | Seed priming; growth chamber | Heat [64] | Shoot (+169%) and root (+135%) length, root number (+77%), shoot (+26%) and root (+54%) fresh weight, and shoot (+131%) and root (+276%) dry weight | |
Cucumber Cucumis sativus L. | Fungus: Trichoderma harzianum | Seed coating; growth chamber | No stress [70] | Seedling emergence and shoot fresh weight |
Carrot Daucus carota L. and onion Allium cepa L. | Bacteria and fungi: Clonostachys rosea, Pseudomonas chlororaphis, Pseudomonas fluorescens, Trichoderma harzianum, Trichoderma viride | Seed priming; greenhouse | No stress [69] | Emergence |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Environmental Outlook to 2050: The Consequences of Inaction—Key Facts and Figures. Available online: www.oecd.org/env/indicators-modelling-outlooks/oecdenvironmentaloutlookto2050theconsequencesofinaction-keyfactsandfigures.htm (accessed on 2 November 2021).
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar] [CrossRef]
- Rouphael, Y.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Bonini, P.; Cardarelli, M. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbial and non-microbial biostimulants. Front. Microbiol. 2020, 11, 664. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Osburn, R.M.; Schroth, M. Effect of osmopriming sugar beet seed on germination rate and incidence of Pythium ultimum damping-off. Plant Dis. 1989, 73, 21–24. [Google Scholar] [CrossRef]
- Markets and Markets. Biological Seed Treatment Market by Type (Microbials and Botanicals), Crop (Corn, Wheat, Soybean, Cotton, Sunflower, and Vegetable Crops), Function (Seed Protection and Seed Enhancement), and Region—Global Forecast to 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/biological-seed-treatment-market-162422288.html (accessed on 2 November 2021).
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Amirkhani, M.; Mayton, H.S.; Netravali, A.N.; Taylor, A.G. A seed coating delivery system for bio-based biostimulants to enhance plant growth. Sustainability 2019, 11, 5304. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.Q.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Halmer, P. Commercial seed treatment technology. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 257–286. [Google Scholar]
- Halmer, P. Seed technology and seed enhancement. Acta Hort. 2008, 771, 17–26. [Google Scholar] [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Cardarelli, M.; Rouphael, Y.; Coppa, E.; Hoagland, L.; Colla, G. Using microgranular-based biostimulant in vegetable transplant production to enhance growth and nitrogen uptake. Agronomy 2020, 10, 842. [Google Scholar] [CrossRef]
- Paparella, S.; Araujo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed priming: New comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; Araujo, S., Balestrazzi, A., Eds.; InTechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hückelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 1, 491206. [Google Scholar] [CrossRef]
- Comite, E.; El-Nakhel, C.; Rouphael, Y.; Ventorino, V.; Pepe, O.; Borzacchiello, A.; Vinale, F.; Rigano, D.; Staropoli, A.; Lorito, M.; et al. Bioformulations with beneficial microbial consortia, a bioactive compound and plant biopolymers modulate sweet basil productivity, photosynthetic activity and metabolites. Pathogens 2021, 10, 870. [Google Scholar] [CrossRef]
- Silletti, S.; Di Stasio, E.; Van Oosten, M.J.; Ventorino, V.; Pepe, O.; Napolitano, M.; Marra, R.; Woo, S.L.; Cirillo, V.; Maggio, A. Biostimulant activity of Azotobacter chroococcum and Trichoderma harzianum in durum wheat under water and nitrogen deficiency. Agronomy 2021, 11, 380. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.S.; Rocha, I.; Ma, Y.; Vosátka, M.; Freitas, H. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). J. Toxicol. Environ. Health Part A 2016, 79, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Rouphael, Y.; Bonini, P.; Cardarelli, M. Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int. J. Plant Prod. 2015, 9, 171–190. [Google Scholar]
- Kthiri, Z.; Ben Jabeur, M.; Machraoui, M.; Gargouri, S.; Hiba, K.; Hamada, W. Coating seeds with Trichoderma strains promotes plant growth and enhance the systemic resistance against Fusarium crown rot in durum wheat. Egypt. J. Biol. Pest Control 2020, 30, 139. [Google Scholar] [CrossRef]
- Akbari-Vafaii, A.; Ketabchi, S.; Moradshahi, A. Effect of methyl jasmonate (MeJA) on biochemical responses of wheat seedlings infected by Fusarium culmorum. Arch. Phytopathol. Pflanzenschutz 2014, 47, 1893–1904. [Google Scholar] [CrossRef]
- Kthiri, Z.; Ben Jabeur, M.; Chairi, F.; López-Cristoffanini, C.; López-Carbonell, M.; Serret, M.D.; Araus, J.L.; Karmous, C.; Hamada, W. Exploring the potential of Meyerozyma guilliermondii on physiological performances and defense response against Fusarium crown rot on durum wheat. Pathogens 2021, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Dal Cortivo, C.; Barion, G.; Ferrari, M.; Visioli, G.; Dramis, L.; Panozzo, A.; Vamerali, T. Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability 2018, 10, 3286. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson. L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Cardarelli, M.; Colla, G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effectsof acidity and aluminium toxicity in zucchini squash. Sci. Hortic. 2015, 188, 97–105. [Google Scholar] [CrossRef]
- Lucini, L.; Colla, G.; Miras Moreno, M.B.; Bernardo, L.; Cardarelli, M.; Terzi, V.; Bonini, P.; Rouphael, Y. Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry 2019, 157, 158–167. [Google Scholar] [CrossRef]
- Lastochkina, O.; Garshina, D.; Ivanov, S.; Yuldashev, R.; Khafizova, R.; Allagulova, C.; Fedorova, K.; Avalbaev, A.; Maslennikova, D.; Bosacchi, M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants 2020, 9, 1810. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Yousaf, S.; Amin, I.; Hakim, S.; Mirza, M.S.; Imran, A. Seed inoculation of desert-plant growth-promoting rhizobacteria induce biochemical alterations and develop resistance against water stress in wheat. Physiol. Plant. 2021, 172, 990–1006. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Nabti, E.; Sahnoune, S.; Ghoul, M.; Fischer, D.; Hofmann, A.; Rothballer, M.; Schmid, M.; Hartmann, A. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J. Plant Growth Regul. 2010, 29, 6–22. [Google Scholar] [CrossRef]
- Singh, R.P.; Shelke, G.M.; Kumar, A.; Jha, P.N. Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants. Front. Microbiol. 2015, 6, 937. [Google Scholar] [CrossRef]
- Ali, B.; Deng, X.; Hu, X.; Gill, R.A.; Ali, S.; Wang, S.; Zhou, W. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus. J. Agric. Sci. Technol. 2015, 17, 63–74. [Google Scholar]
- Sharma, I. Arsenic induced oxidative stress in plants. Biologia 2021, 67, 447–453. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global maize trade and food security: Implications from a Social Network Model. Risk Analysis 2013, 33, 2168–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoth, S.A.; Otadoh, J.A.; Ochanda, J.O. Improved seedling emergence and growth of maize and beans by Trichoderma harziunum. Trop. Subtrop. Agroecosystems 2011, 13, 65–67. [Google Scholar]
- Sharma, V.; Prasanna, R.; Hossain, F.; Muthusamy, V.; Nain, L.; Das, S.; Singh Shivay, Y.; Kumar, A. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. Biotech 2020, 10, 154. [Google Scholar] [CrossRef]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad. Sci. Eng. Technol. 2009, 37, 19–24. [Google Scholar]
- Noumavo, P.A.; Kochoni, E.; Didagbé, Y.O.; Adjanohoun, A.; Allagbé, M.; Sikirou, R.; Gachomo, E.W.; Kotchoni, S.O.; Baba-Moussa, L. Effect of different plant growth promoting Rhizobacteria on maize seed germination and seedling development. Am. J. Plant Sci. 2013, 4, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Chatterjee, A.; Bhatia, V.; Prakash, S. Application of laser biospeckle analysis for assessment of seed priming treatments. Comput. Electron. Agric. 2020, 169, 105212. [Google Scholar] [CrossRef]
- Rozier, C.; Hamzaoui, H.; Lemoine, D.; Czarnes, S.; Legendre, L. Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Scientific Reports 2017, 7, 7416. [Google Scholar] [CrossRef] [Green Version]
- Lwin, K.M.; Myint, M.M.; Tar, T.; Aung, W.Z.M. Isolation of plant hormone (Indole-3-Acetic Acid—IAA) producing rhizobacteria and study on their effects on maize seedling. Eng. J. 2012, 16, 137–144. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Shier, W.T. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. J. Crop Improv. 2018, 32, 318–330. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Little, N.S.; Kotowicz, J.K.; Mencarelli, M.; Shier, W.T. A liquid bioplastic formulation for film coating of agronomic seeds. Crop Protection 2016, 89, 123–128. [Google Scholar] [CrossRef]
- Seifikalhor, M.; Hassani, S.B.; Aliniaeifard, S. Seed priming by cyanobacteria (Spirulina platensis) and salep gum enhances tolerance of maize plant against cadmium toxicity. J. Plant Growth Regulation 2020, 39, 1009–1021. [Google Scholar] [CrossRef]
- Hagaggi, N.S.A.; Mohamed, A.A.A. Enhancement of Zea mays (L.) growth performance using indole acetic acid producing endophyte Mixta theicola isolated from Solenostemma argel (Hayne). S. Afr. J. Bot. 2020, 134, 64–67. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Mauro, R.P. Seed coating in direct seeded rice: An innovative and sustainable approach to enhance grain yield and weed management under submerged conditions. Sustainability 2021, 13, 2190. [Google Scholar] [CrossRef]
- Palupi, T.; Ilyas, S.; Machmud, M.; Widajati, E. Effect of seed coating with biological agents on seed quality of rice. Biodiversitas 2017, 18, 727–732. [Google Scholar] [CrossRef]
- Choi, E.S.; Sukweenadhi, J.; Kim, Y.J.; Jung, K.H.; Koh, S.C.; Hoang, V.A.; Yang, D.C. The effects of rice seed dressing with Paenibacillus yonginensis and silicon on crop development on South Korea’s reclaimed tidal land. Field Crops Res. 2016, 188, 121–132. [Google Scholar] [CrossRef]
- Pagano, C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Academic Press: Cambridge, MA, USA, 2016; pp. 1–26. [Google Scholar]
- Yusnawan, E.; Inayati, A.; Baliadi, Y. Effect of soybean seed treatment with Trichoderma virens on its growth and total phenolic content. AIP Conf. Proc. 2019, 2120, 020003. [Google Scholar] [CrossRef]
- Teixeira, G.M.; Mosela, M.; Abreu Nicoletto, M.L.; Ribeiro, R.A.; Hungria, M.; Youssef, K.; Yukio Higashi, A.; Mian, S.; Sampaio Ferreira, A.; Azeredo Gonçalves, L.S.; et al. Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490. Front. Microbiol. 2021, 11, 618415. [Google Scholar] [CrossRef]
- Jarecki, W. Soybean response to seed coating with chitosan + alginate/PEG and/or inoculation. Agronomy 2021, 11, 1737. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.C.; Bresti, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef]
- Noel, T.C.; Sheng, C.; Yost, C.K.; Pharis, R.P.; Hynes, M.F. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol. 1996, 42, 279–283. [Google Scholar] [CrossRef]
- Mousavi, M.; Omidi, H. Seed priming with bio-priming improves stand establishment, seed germination and salinity tolerance in canola cultivar (Hayola 401). Iran. J. Plant Physiol. 2019, 9, 2807–2817. [Google Scholar]
- Somagh, H.A.; Mousavi, S.M.; Omidi, H.; Mohammadian, E.; Hemmati, M. Canola seed germination and seedling growth in response to saline condition and bio-priming. Iran. J. Plant Physiol. 2017, 7, 2149–2156. [Google Scholar]
- Den, N.Z.U.; Bukhari, S.A.; Iftikhar, T.; Mustafa, G. Biochemical and phenolic acid profiling of sunflower hybrid varieties’ seeds treated with different bio-priming agents. Pak. J. Bot. 2021, 53, 981–989. [Google Scholar] [CrossRef]
- Moeinzadeh, A.; Sharif-Zadeh, F.; Ahmadzadeh, M.; Tajabadi, F.H. Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust. J. Crop Sci. 2010, 4, 564–570. [Google Scholar]
- Mastouri, F.; Björkman, T.; Harman, G.E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, R.S.; Singh, J.; Singh, P.; Vaishnav, A.; Singh, A.B. Influence of seed biopriming and vermiwash treatment on tomato plant’s immunity and nutritional quality upon Sclerotium rolfsii challenge inoculation. J. Plant Growth Regul. 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Srivastava, R.; Khalid, A.; Singh, U.S.; Sharma, A.K. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. Lycopersici for the management of tomato wilt. Biol. Control 2010, 53, 24–31. [Google Scholar] [CrossRef]
- Diniz, K.A.; Oliveira, J.A.; Guimarães, R.M.; De Carvalho, M.L.M.; Machado, J.D.C. Incorporation of microorganism, amino acids, micronutrients and growth regulators in lettuce seed through the coating technique. Revista Brasileira de Sementes 2006, 28, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.A.; Crivelente Horta, M.A.; Ferreira Filho, J.A.; Faraj Murada, N.; Pereirade Souza, A. The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation. J. Biotechnol. 2021, 334, 1–10. [Google Scholar] [CrossRef]
- Do Vale, L.H.F.; Gómez-Mendoza, D.P.; Kim, M.S.; Pandey, A.; Ricart, C.A.O.; Filho, E.X.F.; Sousa, M.V. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012, 12, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.J.; Mead, A.; Whipps, J.M. Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol. Control 2009, 51, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Pill, W.G.; Collins, C.M.; Goldberger, B.; Gregory, N. Responses of non-primed or primed seeds of ‘Marketmore 76’ cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum. Sci. Hortic. 2009, 121, 54–62. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Piri, R.; Moradi, A.; Balouchi, H.; Salehi, A. Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci. Hortic. 2019, 257, 108667. [Google Scholar] [CrossRef]
Active Microorganisms | Mode of Seed Inoculation; Growth Conditions | Abiotic Stress and References | Main Parameters Improved |
---|---|---|---|
Bacterium: Bacillus sp. | Seed coating; growth chamber | Submersion [50] | Germination |
Bacterium: Paenibacillus yonginensis | Seed soaking; growth chamber | No stress [52] | Germination (+4%), shoot length (+14%), root length (+26%), root number (+46%), and seedling fresh weight (+9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants 2022, 11, 259. https://doi.org/10.3390/plants11030259
Cardarelli M, Woo SL, Rouphael Y, Colla G. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants. 2022; 11(3):259. https://doi.org/10.3390/plants11030259
Chicago/Turabian StyleCardarelli, Mariateresa, Sheridan L. Woo, Youssef Rouphael, and Giuseppe Colla. 2022. "Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops" Plants 11, no. 3: 259. https://doi.org/10.3390/plants11030259
APA StyleCardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 11(3), 259. https://doi.org/10.3390/plants11030259