Genetic Diversity and Population Structure of an Arctic Tertiary Relict Tree Endemic to China (Sassafras tzumu) Revealed by Novel Nuclear Microsatellite (nSSR) Markers
Abstract
:1. Introduction
2. Results
2.1. Prediction, Verification, and Transferability of Newly Developed nSSR Loci of S. tzumu
2.2. Genetic Diversity of nSSRs of S. tzumu
2.3. Population Structure and Differentiation in S. tzumu
3. Discussion
3.1. Characterization, Polymorphism, and Transferability of Newly Developed nSSRs of S. tzumu
3.2. Population Genetic Diversity of S. tzumu
3.3. Population Structure and Differentiation of S. tzumu
3.4. Conservation Implications for S. tzumu
4. Materials and Methods
4.1. Plant Materials and DNA Extraction
4.2. NSSR Development, Polymorphism, and Transferability Assessment
4.3. Assessment of Genetic Diversity of S. tzumu
4.4. Population Structure and Differentiation of S. tzumu
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.H.; Li, X.W.; Li, J.; Huang, P.H.; Wei, F.N.; Cui, H.B.; van der Werff, H. Lauraceae. In Flora of China; Science Press: Beijing, China, 1984; Volume 7. [Google Scholar]
- Little, E.L. National Audubon Society Field Guide to North American Trees; Chanticleer: New York, NY, USA, 1998. [Google Scholar]
- Nie, Z.L.; Wen, J.; Sun, H. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. Plant Syst. Evol. 2007, 267, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Chanderbali, A.S.; van der Werff, H.; Renner, S.S. Phylogeny and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Ann. Mo. Bot. Gard. 2001, 88, 104–134. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.; Rudolph, B.; Ruthe, K.; Lorea-Hernandez, F.G.; de Moraes, P.L.R.; Li, J.; Rohwer, J.G. Neither Phoebe nor Cinnamomum—The tetrasporangiate species of Aiouea (Lauraceae). Taxon 2017, 66, 1085–1111. [Google Scholar] [CrossRef]
- Rehder, A. The American and Asiatic species of Sassafras. J. Arnold Arbor. 1920, 1, 242–245. [Google Scholar] [CrossRef]
- Chung, K.F.; Lin, T.T.; Tsai, Y.S.; Lin, S.T.; Peng, C.I. Isolation and Characterization of Microsatellite Loci in Sassafras Randaiense (Lauraceae). Am. J. Bot. 2011, 98, E326–E329. [Google Scholar] [CrossRef]
- Zhang, K.L.; Zhang, Y.; Jia, D.W.; Tao, J. Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management. Sustainability 2020, 12, 4132. [Google Scholar] [CrossRef]
- Liu, N.N.; Liu, J.; Zhang, M.Y.; Wang, L.; Yang, S.L.; Liao, W.B. Characteristics of Pinus taiwanensis + Sassafras tzumu community in Taoyuandong National Nature Reserve of Hu’nan Province. J. Plant Resour. Environ. 2017, 26, 84–92. [Google Scholar]
- Wang, X.; Yang, S.G.; Yu, F.; Ji, C.F.; Long, C.L.; Jiang, C.M. Research progress of Sassafras tzumu. S. China For. Sci. 2015, 43, 29–33. [Google Scholar] [CrossRef]
- Zhou, X.P. Comparative analysis of the effect of wood mixed with wood-load afforestation. For. By-Prod. Spec. China 2022, 4, 22–24. [Google Scholar] [CrossRef]
- Chen, H.Z.; Liu, J.; Jiang, J.M.; Sun, Y.; Dong, X.; Fu, A.P. A study on flowering and fruit development of Sassafras tzumu. For. Res. 2020, 33, 148–154. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Q.; Zhou, X.; Zheng, S.; Wang, Y.; Li, P.; Wang, Y. Genetic diversity and population structure of 93 rice cultivars (lines) (Oryza sativa Xian group) in Qinba in China by 3 types of genetic markers. BMC Genom. 2022, 23, 550. [Google Scholar] [CrossRef]
- Li, C.; Li, J.P.; Chai, B.F. Development of microsatellites DNA marker and Its application. J. Zhengzhou Inst. Aeronaut. Ind. Manag. Soc. Sci. Ed. 2004, 23, 199–200. [Google Scholar] [CrossRef]
- Powell, W.; Machray, G.C.; Provan, J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996, 1, 215–222. [Google Scholar] [CrossRef]
- Tautz, D. Hypervariability of Simple Sequences as a General Source for Polymorphic DNA Markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef]
- Wen, J.H. Study on genetic diversity and construction of core collections about Vitis amurensis Rupr. germplasm resources by SSR markers. Ph.D. Thesis, Jilin Agricultural University, Changchun, China, 2011. [Google Scholar]
- Xia, E.H.; Yao, Q.Y.; Zhang, H.B.; Jiang, J.J.; Zhang, L.P.; Gao, L.Z. CandiSSR: An Efficient Pipeline used for Identifying Candidate Polymorphic SSRs Based on Multiple Assembled Sequences. Front. Plant Sci. 2016, 6, 1171. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, F.; Ji, C.F.; Long, C.L.; Yang, G.Y. Anatomical study on pollen development of Sassafras tzumu (Hemsl.) Hemsl. J. Gansu Agric. Univ. 2014, 49, 116–119. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, C.; Wei, Y.-M.; Rohwer, J.G.; Liu, B.; Yang, Y. Floral morphology and phenology of Sassafras tzumu (Lauraceae). BMC Plant Biol. 2022, 22, 1–12. [Google Scholar] [CrossRef]
- Sun, J.J.; Jiang, B.; Zhu, J.R.; Wu, D.T.; Ye, N.N.; Qiu, H.J.; Yuan, W.G.; Wu, C.P.; Huang, Y.J.; Jiao, J.J.; et al. Prediction of potential suitable habitat and dominate environmental factors of Sassafras tzumu in Zhejiang with MaxEnt Model. J. Northeast. For. Univ. 2020, 48, 1–6. [Google Scholar] [CrossRef]
- Sun, J.J.; Jiang, B.; Wu, C.P.; Yuan, W.G.; Zhu, J.R.; Huang, Y.J.; Jiao, J.J.; Shen, A.H. Study on the habitat and niche of Sassafras tzumu (Hemsl.) Hemsl. in Zhejiang Province. Acta Ecol. Sin. 2019, 39, 884–894. [Google Scholar]
- Long, X.F. Effects of Different Mixing Methods on the Growth of Pinus massoniana and Sassafras tsumu. J. Anhui Agric. Sci. 2019, 47, 140–141. [Google Scholar]
- Bi, G.Y.; Jiang, X.H.; Jiang, S.F. Growth and silvicultural technology of Sassafras tzumu. Pract. For. Technol. 2003, 12, 17. [Google Scholar] [CrossRef]
- Ding, X.F.; Chen, H.L.; Cao, J.; Koono, K.; Ubukata, M.; Okamura, M. Preliminary study on genetic st ructure of three natural populations in Sassafrass Tzumu. Hubei For. Sci. Technol. 2006, 005, 1–2. [Google Scholar]
- Jiang, A.P.; Jiang, J.M.; Liu, J. Genetic diversity and genetic structure in Sassafras tsumu populations along altitudinal gradients in Tianmushan Mountain, China. Chin. J. Appl. Ecol. 2016, 27, 1829–1836. [Google Scholar] [CrossRef]
- Liu, X. Landscape genetics of Sassafras tzumu based on the Genotyping-by-Sequencing (GBS). Master’s Thesis, Nanchang University, Nanchang, China, 2019. [Google Scholar]
- Sylva, E.B.O.C. China Sylva: The First Volume Lauraceae; China Forestry Press: Beijing, China, 1982. [Google Scholar]
- Kameyama, Y. Development of Microsatellite Markers for Cinnamomum Camphora (Lauraceae). Am. J. Bot. 2012, 99, E1–E3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y. The conservation genetics research of Parrotia subaequalis (Hamamelidaceae), an endangered palaeoendemic plant in China. Master’s Thesis, Nanjing University, Nanjing, China, 2018. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.F.; Uchiyama, K.; Han, W.J.; Ueno, S.; Xie, W.D.; Xu, G.B.; Tsumura, Y. Null alleles in microsatellite markers. Biodivers. Sci. 2013, 21, 117–126. [Google Scholar]
- Wang, Z.F. Molecular Ecology and Fundamentals of Data Analysis; Science Press: Beijing, China, 2016. [Google Scholar]
- Tian, Z.Q. The development of SSR markers and genetic structure analysis of an endangered plant Tetracentron sinense Oliv. Master’s Thesis, China West Normal University, Nanchong, China, 2020. [Google Scholar]
- Li, C.H.; Zheng, Y.Q.; Liu, Y.; Lin, F.R.; Huang, P. Development of Genomic SSR for the Subtropical Hardwood Tree Dalbergia hupeana and Assessment of Their Transferability to Other Related Species. Forests 2021, 12, 804. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Shi, E.; Yang, Z.P.; Geng, Q.F.; Qiu, Y.X.; Wang, Z.S. Development and Application of Genomic Resources in an Endangered Palaeoendemic Tree, Parrotia subaequalis (Hamamelidaceae) From Eastern China. Front. Plant Sci. 2018, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, N.; Guo, Y.; Bai, Y.; Wu, T.; Yu, T.; Feng, S.; Zhang, Y.; Wang, Z.; Liu, Z. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. For. Res. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhang, Y.Y.; Wang, G.H.; Zhou, J.B.; Tian, Y.J.; Geng, Q.F.; Wang, Z.S. Development and characterization of 20 novel EST-SSR markers for Pteroceltis tatarinowii, a relict tree in China. Appl. Plant Sci. 2020, 8, e11320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.F.; Han, W.J.; Wu, S. Plant genetic diversity and its influencing factors. J. Cent. South Univ. For. Technol. 2010, 30, 80–87. [Google Scholar] [CrossRef]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Slatkin, M. Gene Flow and the Geographic Structure of Natural-Populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Lande, R. Genetics and Demography in Biological Conservation. Science 1988, 241, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Hu, Z.A. Plant breeding system genetic structure and conservation of genetic diversity. Chin. Biodivers. 1996, 4, 92–96. [Google Scholar]
- Nevo, E. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA 2001, 98, 6233–6240. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge University, Cambridge, UK, 2002. [Google Scholar]
- Morjan, C.L.; Rieseberg, L.H. How species evolve collectively: Implications of gene flow and selection for the spread of advantageous alleles. Mol. Ecol. 2004, 13, 1341–1356. [Google Scholar] [CrossRef]
- Petit, R.J.; Duminil, J.; Fineschi, S.; Hampe, A.; Salvini, D.; Vendramin, G.G. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 2005, 14, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Freeland, J.R. Molecular Ecology; John Wiley & Sons Ltd.: West Sussex, UK, 2005. [Google Scholar]
- Xu, G.B. Plant Population Genetics; Science Press: Beijing, China, 2009. [Google Scholar]
- Vasilyeva, Y.; Chertov, N.; Nechaeva, Y.; Sboeva, Y.; Pystogova, N.; Boronnikova, S.; Kalendar, R. Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain. Forests 2021, 12, 999. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, P.; Zhou, P.; Zhang, J.J.; Que, Q.M.; Hui, W.K.; Chen, X.Y. Optimization of SSR-PCR reaction system and study on genetic diversity of natural populations of Machilus pauhoi. For. Res. 2019, 32, 70–78. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, L.M.; Ha, D.L.; Ju, Y.X.; Zhang, Z.X. Construction of core germplasm of wild Lindera glauca based on SSR molecular marker. Mol. Plant Breed. 2018, 16, 6380–6389. [Google Scholar] [CrossRef]
- Liu, S. Population genetic structure of Cinnamomum camphora in China. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2019. [Google Scholar]
- Dong, M.C.; Yue, J.Q.; Li, J.X.; Yang, F.; Zhou, D.G.; Wang, S.H.; Long, C.R.; Guo, L.N.; Gao, J.Y.; Yang, E.C. Genetic diversity analysis of germplasm resources of Persea americana Mill. based on SSR fluorescent marker. Mol. Plant Breed. 2020, 18, 5403–5410. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ci, X.Q.; Li, Q.M.; Li, J. Genetic diversity of Litsea szemaois, an endangered species endemic to China, detected by inter-simple sequence repeat (ISSR). Biodivers. Sci. 2006, 14, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Species germplasm conservation of the wild plants with extremely small populations—Cinnamomum chago. Ph.D. Thesis, Yunnan University, Kunming, China, 2019. [Google Scholar]
- Zhang, X. Reproductive Biology and Conservation Genetics of Rhododendron sinofalconeri. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2020. [Google Scholar]
- Pu, T.L.; Han, X.Q.; Luo, H.Y.; Deng, H.S.; Zou, M.L.; Jin, J.; Xia, Z.Q.; Wang, W.Q. Analysis of genetic of Moringa oleifera population based on SNP markers. Chin. J. Trop. Crops 2022, 49, 1–12. [Google Scholar]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef]
- Liu, X.; Gong, X.; Chen, S.S.; Guan, B.C. Simulation of the distribution pattern of Sassafras tzumu and changes in habitat based on ArcGIS and MaxEnt. Plant Sci. J. 2018, 36, 320–326. [Google Scholar]
- Liu, H.Y. Genetic Diversity and Population Ecology of Salix taishanensis. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2020. [Google Scholar]
- Yao, Z.X. The conservation genetics research of Magnolia sinostellata. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2019. [Google Scholar]
- Jiang, J.M.; Teng, H.J.; Yuan, J.L.; Luan, Q.F.; Tan, Z.F. Genetic diversity of Michelia chapensis dandy populations. For. Res. 2005, 18, 109–113. [Google Scholar]
- Xiong, M.; Tian, S.; Zhang, Z.R.; Fan, D.M.; Zhang, Z.Y. Population genetic structure and conservation units of Sinomanglietia glauca (Magnoliaceae). Biodivers. Sci. 2014, 22, 476–484. [Google Scholar]
- Zhou, P.Y.; Hui, L.X.; Huang, S.J.; Ni, Z.X.; Yu, F.X.; Xu, L.A. Study on the Genetic Structure Based on Geographic Populations of the Endangered Tree Species: Liriodendron chinense. Forests 2021, 12, 917. [Google Scholar] [CrossRef]
- Chen, X.Y.; Lu, H.P.; Shen, L.; Li, Y.Y. Identifying populations for priority conservation of important species. Biodivers. Sci. 2002, 10, 332–338. [Google Scholar]
- Peng, B.Z.; Chen, F. Progress in the study of mountain vertical zonation in China. Sci. Geogr. Sin. 1999, 19, 303–308. [Google Scholar]
- Wang, X.P.; Wang, Z.H.; Fang, J.Y. Mountain ranges and peaks in China. Biodivers. Sci. 2004, 12, 206–212. [Google Scholar]
- Zhu, H. Phylogenetic position and population biogeography of Cerasus dielsiana (Rosaceae). Ph.D. Thesis, Nanjing Forest University, Nanjing, China, 2020. [Google Scholar]
- Gao, J.H.; Zhang, W.; Li, J.Y.; Long, H.L.; He, W.; Li, X.Q. Amplified fragment length polymorphism analysis of the population structure and genetic diversity of Phoebe zhennan (Lauraceae), a native species to China. Biochem. Syst. Ecol. 2016, 64, 149–155. [Google Scholar] [CrossRef]
- Gao, S.H.; Wang, Z.F.; Zhang, J.L.; Tian, S.N. Genetic diversity of Cryptocarya chinensis life stages in heishiding Guangdong Province. J. Plant Genet. Resour. 2005, 6, 300–303. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, L.M.; Dong, S.B.; Zhang, Z.X. Population genetic structure and variability in Lindera glauca (Lauraceae) indicates low levels of genetic diversity and skewed sex ratios in natural populations in mainland China. PeerJ 2020, 8, e8304. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Lin, W.; Zhu, Q.; Zhou, X.B.; Wu, L.Y.; Chen, X.Y. Genetic diversity of Machilus pauhoi assessed by SRAP markers. J. Beijing For. Univ. 2016, 38, 16–24. [Google Scholar] [CrossRef]
- Huang, Y.Q. Genetic diversity analysis and core germplasm construction of Phoebe bournei based on SSR molecular markers. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2019. [Google Scholar]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (Version 2.9.3): A Program to Estimate and Test Gene Diversities and Fixation Indices. Available online: https://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 21 July 2022).
- Chybicki, I.J. INEST 2.2. The User Manual. Available online: https://www.ukw.edu.pl/pracownicy/strona/igo_chybicki/software_ukw (accessed on 1 August 2022).
- Yeh, F.; Yang, R.; Boyle, T.; Ye, Z.; Mao, J.; Francis, C.Y.; Timothy, B.B.; Judy, X.M. POPGENE, Version 1.31. The User-Friendly Shareware for Population Genetic Analysis. Available online: http://www.ualberta.ca/~fyeh/index.htm (accessed on 3 September 2022).
- Earl, D.A.; Vonholdt, B.M.; Earl, D.A.; VonHoldt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Garza, J.C.; Williamson, E.G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 2001, 10, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F. GENETIX4. 05, logiciel sous Windows TM pour la génétiquedes populations. Lab. Génome Popul. Interact. CNRS UMR 2004, 5000, 1996–2004. [Google Scholar]
- Wright, S. Evolution and the Genetics of Populations; University of Chicago Press: Chicago, IL, USA, 1984; Volume 1. [Google Scholar]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREE2: Software for Constructing Population Trees from Allele Frequency Data and Computing Other Population Statistics with Windows Interface. Mol. Biol. Evol. 2010, 27, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Chesser, R.K. Estimation of Fixation Indexes and Gene Diversities. Ann. Hum. Genet. 1983, 47, 253–259. [Google Scholar] [CrossRef]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Saitou, N.; Nei, M. The Neighbor-Joining Method—A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
Locus | Repeat Motif | Optimal Primer Temperature (°C) | Size Range (bp) | GenBank Accession Number | BLASTX Top Hit Description |
---|---|---|---|---|---|
N43 | (AAAG)8 | 59 | 157–169 | OP094707 | zinc finger protein [Cinnamomum micranthum f. kanehirae] |
N168 | (AAC)7 | 56 | 134–146 | OP094689 | - |
N362 | (AAG)7 | 55 | 185–206 | OP094695 | - |
N711 | (AATAAA)5 | 59 | 187–223 | OP094710 | putative nuclease HARBI1 [Cinnamomum micranthum f. kanehirae] |
N1037 | (ACAA)5 | 55 | 139–155 | OP094684 | hypothetical protein SLEP1_g25016 [Shorea leprosula] |
N1047 | (ACAT)5 | 56 | 162–166 | OP094703 | - |
N2689 | (AGA)8 | 52 | 188–197 | OP094687 | Alcohol dehydrogenase superfamily, zinc-type [Cinnamomum micranthum f. kanehirae] |
N2716 | (AGAT)5 | 59 | 159–175 | OP094697 | - |
N2799 | (AGGTGA)5 | 52 | 159–183 | OP094690 | - |
N6336 | (ATC)6 | 59 | 178–187 | OP094701 | - |
N6339 | (ATC)6 | 56 | 169–172 | OP094694 | - |
N6493 | (ATGT)6 | 59 | 128–148 | OP094692 | - |
N6882 | (CAC)8 | 55 | 167–188 | OP094708 | - |
N6889 | (CACCTC)5 | 56 | 159–189 | OP094705 | - |
N7047 | (CCCTCA)5 | 59 | 182–206 | OP094702 | - |
N8706 | (CTC)6 | 55 | 114–129 | OP094688 | - |
N8723 | (CTC)9 | 51 | 156–177 | OP094685 | zinc finger protein 1-like protein [Cinnamomum micranthum f. kanehirae] |
N8865 | (CTT)8 | 55 | 191–203 | OP094699 | methyltransferase-like protein 13 isoform X1 [Cinnamomum micranthum f. kanehirae] |
N10640 | (GAT)6 | 53 | 181–187 | OP094691 | N-carbamoylputrescine amidase [Glycine max] |
N13148 | (TATAC)5 | 56 | 162–177 | OP094704 | - |
N13155 | (TATG)5 | 58 | 179–191 | OP094686 | - |
N13174 | (TATTTT)6 | 56 | 178–196 | OP094706 | - |
N14929 | (TCT)7 | 57 | 187–202 | OP094698 | - |
N15402 | (TGA)6 | 57 | 178–199 | OP094709 | - |
N15940 | (TTC)5 | 55 | 82–100 | OP094700 | - |
N16055 | (TTCT)5 | 55 | 161–169 | OP094693 | - |
N16204 | (TTTTC)5 | 56 | 133–148 | OP094696 | - |
Locus | NA 1 | NE 2 | HO 3 | HE 4 | HS 5 | HT 6 | PIC7 | I8 | FIS 9 |
---|---|---|---|---|---|---|---|---|---|
N43 | 4 | 1.858 | 0.537 | 0.464 | 0.446 | 0.464 | 0.384 | 0.759 | −0.159 |
N168 | 4 | 1.950 | 0.412 | 0.489 | 0.406 | 0.487 | 0.402 | 0.792 | 0.158 |
N362 | 7 | 1.758 | 0.228 | 0.433 | 0.222 | 0.453 | 0.400 | 0.878 | 0.474 |
N711 | 7 | 1.447 | 0.250 | 0.310 | 0.288 | 0.318 | 0.291 | 0.676 | 0.194 |
N1037 | 5 | 1.077 | 0.051 | 0.072 | 0.064 | 0.067 | 0.071 | 0.201 | 0.285 |
N1047 | 2 | 1.826 | 0.676 | 0.454 | 0.420 | 0.452 | 0.350 | 0.645 | −0.493 |
N2689 | 4 | 1.755 | 0.397 | 0.432 | 0.375 | 0.440 | 0.393 | 0.795 | 0.081 |
N2716 | 5 | 1.593 | 0.088 | 0.374 | 0.142 | 0.403 | 0.328 | 0.689 | 0.765 |
N2799 | 5 | 1.996 | 0.426 | 0.501 | 0.308 | 0.503 | 0.418 | 0.853 | 0.149 |
N6336 | 4 | 1.322 | 0.066 | 0.244 | 0.228 | 0.252 | 0.228 | 0.500 | 0.730 |
N6339 | 2 | 1.534 | 0.257 | 0.349 | 0.287 | 0.358 | 0.287 | 0.532 | 0.264 |
N6493 | 6 | 2.199 | 0.728 | 0.547 | 0.526 | 0.550 | 0.448 | 0.929 | −0.332 |
N6882 | 6 | 1.797 | 0.265 | 0.445 | 0.381 | 0.440 | 0.426 | 0.985 | 0.406 |
N6889 | 5 | 2.189 | 0.551 | 0.545 | 0.438 | 0.538 | 0.440 | 0.891 | −0.012 |
N7047 | 4 | 1.494 | 0.287 | 0.332 | 0.297 | 0.329 | 0.303 | 0.635 | 0.136 |
N8706 | 5 | 2.273 | 0.507 | 0.562 | 0.519 | 0.561 | 0.511 | 1.067 | 0.098 |
N8723 | 7 | 1.655 | 0.279 | 0.397 | 0.275 | 0.417 | 0.379 | 0.893 | 0.297 |
N8865 | 4 | 1.676 | 0.419 | 0.405 | 0.327 | 0.393 | 0.359 | 0.731 | −0.035 |
N10640 | 3 | 2.301 | 0.199 | 0.567 | 0.223 | 0.568 | 0.469 | 0.905 | 0.651 |
N13148 | 5 | 1.547 | 0.331 | 0.355 | 0.340 | 0.372 | 0.327 | 0.692 | 0.068 |
N13155 | 3 | 1.956 | 0.449 | 0.491 | 0.349 | 0.493 | 0.373 | 0.700 | 0.086 |
N13174 | 4 | 1.533 | 0.265 | 0.349 | 0.316 | 0.367 | 0.320 | 0.682 | 0.242 |
N14929 | 4 | 1.859 | 0.434 | 0.464 | 0.358 | 0.436 | 0.365 | 0.703 | 0.065 |
N15402 | 7 | 2.532 | 0.353 | 0.607 | 0.470 | 0.613 | 0.567 | 1.246 | 0.420 |
N15940 | 6 | 1.391 | 0.294 | 0.282 | 0.255 | 0.310 | 0.266 | 0.611 | −0.043 |
N16055 | 3 | 1.355 | 0.007 | 0.263 | 0.241 | 0.283 | 0.237 | 0.487 | 0.972 |
N16204 | 4 | 1.391 | 0.235 | 0.282 | 0.274 | 0.296 | 0.258 | 0.554 | 0.166 |
T-Mean 10 | 4.630 | 1.750 | 0.333 | 0.408 | 0.325 | 0.413 | 0.356 | 0.742 | 0.209 |
E-Mean 11 | 4.563 | 1.805 | 0.359 | 0.430 | 0.324 | 0.436 | 0.370 | 0.764 | 0.166 |
Population Code | N 1 | A2 | AE 3 | AR 4 | AP 5 | HO 6 | HE 7 | μHE 8 | I 9 |
---|---|---|---|---|---|---|---|---|---|
BYS | 21 | 3.125 | 1.800 | 2.891 | 7 | 0.366 | 0.387 | 0.396 | 0.674 |
LL | 20 | 2.125 | 1.382 | 2.016 | 1 | 0.244 | 0.195 | 0.200 | 0.341 |
HNS | 22 | 2.750 | 1.643 | 2.575 | 5 | 0.318 | 0.355 | 0.363 | 0.599 |
YX | 26 | 2.438 | 1.648 | 2.258 | 1 | 0.392 | 0.322 | 0.329 | 0.526 |
JZF | 33 | 2.563 | 1.555 | 2.213 | 3 | 0.381 | 0.309 | 0.313 | 0.502 |
JGS | 14 | 2.125 | 1.595 | 2.125 | 2 | 0.464 | 0.334 | 0.346 | 0.518 |
Mean/Total | 136 | 2.521 | 1.604 | 2.346 | 19 | 0.361 | 0.317 | 0.325 | 0.527 |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among populations | 5 | 242.774 | 1.027 Va | 28.40 |
Within populations | 266 | 689.178 | 2.591 Vb | 71.60 |
Total | 271 | 931.952 | 3.618 |
BYS | LL | HNS | YX | JZF | JGS | |
---|---|---|---|---|---|---|
BYS | - | 0.356 | 0.147 | 0.234 | 0.184 | 0.205 |
LL | 0.452 | - | 0.443 | 0.530 | 0.514 | 0.536 |
HNS | 1.448 | 0.314 | - | 0.224 | 0.185 | 0.182 |
YX | 0.820 | 0.221 | 0.868 | - | 0.127 | 0.162 |
JZF | 1.109 | 0.236 | 1.102 | 1.712 | - | 0.063 |
JGS | 0.970 | 0.216 | 1.120 | 1.292 | 3.740 | - |
Total FST | 0.286 | |||||
Total Nm | 0.625 |
Population Code | Collection Locality | Geographic Coordinates | Number of Individuals | Voucher Specimens |
---|---|---|---|---|
BYS | Baiyun Mountain Natural Reserve, Hunan Province, China | 28.7301° N, 109.3955° E | 21 | ZJB201903 |
LL | Leli Village Forestry Farm, Yunnan Province, China | 27.4202° N, 104.8601° E | 20 | ZJB201904 |
HNS | Huangniushi Natural Reserve, Guangdong Province, China | 24.4294° N, 114.4556° E | 22 | ZJB201905 |
YX | Yixing National Forest Park, Jiangsu Province, China | 31.6986° N, 119.7449° E | 26 | ZJB201906 |
JZF | Junzifeng Peak Natural Reserve, Fujian Province, China | 26.4863° N, 116.6559° E | 33 | ZJB201907 |
JGS | Jigong Mountain Natural Reserve, Henan Province, China | 31.8185° N, 114.0583° E | 14 | ZJB201908 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Y.; Zhou, J.; Li, P.; Lin, H.; Peng, Y.; Yu, L.; Zhang, Y.; Wang, Z. Genetic Diversity and Population Structure of an Arctic Tertiary Relict Tree Endemic to China (Sassafras tzumu) Revealed by Novel Nuclear Microsatellite (nSSR) Markers. Plants 2022, 11, 2706. https://doi.org/10.3390/plants11202706
Wang S, Wang Y, Zhou J, Li P, Lin H, Peng Y, Yu L, Zhang Y, Wang Z. Genetic Diversity and Population Structure of an Arctic Tertiary Relict Tree Endemic to China (Sassafras tzumu) Revealed by Novel Nuclear Microsatellite (nSSR) Markers. Plants. 2022; 11(20):2706. https://doi.org/10.3390/plants11202706
Chicago/Turabian StyleWang, Shuang, Ying Wang, Jingbo Zhou, Pan Li, Hungwei Lin, Ye Peng, Lipeng Yu, Yunyan Zhang, and Zhongsheng Wang. 2022. "Genetic Diversity and Population Structure of an Arctic Tertiary Relict Tree Endemic to China (Sassafras tzumu) Revealed by Novel Nuclear Microsatellite (nSSR) Markers" Plants 11, no. 20: 2706. https://doi.org/10.3390/plants11202706
APA StyleWang, S., Wang, Y., Zhou, J., Li, P., Lin, H., Peng, Y., Yu, L., Zhang, Y., & Wang, Z. (2022). Genetic Diversity and Population Structure of an Arctic Tertiary Relict Tree Endemic to China (Sassafras tzumu) Revealed by Novel Nuclear Microsatellite (nSSR) Markers. Plants, 11(20), 2706. https://doi.org/10.3390/plants11202706