Fusarium Species Associated with Cherry Leaf Spot in China
Abstract
:1. Introduction
2. Results
2.1. Symptom Observation, Sample Collection and Fungal Isolation
2.2. Molecular Characterization and Phylogenetic Analysis
2.3. Morphological Observation
2.4. Pathogenicity Test
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Isolation of Fungal Strains
4.2. DNA Extraction, PCR Amplification and Phylogenetic Analysis
4.3. Morphological Identification
4.4. Pathogenicity Assays
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.G.; Liu, C.L.; Li, M.; Zhao, G.R.; Li, Y.H. The development situation of sweet cherry industry in China and abroad during recent two decades and prognostication for the future. J. Fruit Sci. 2014, 31, 1–6. (In Chinese) [Google Scholar]
- Duan, X.W.; Li, M.; Tan, Y.; Zhang, X.M.; Wang, B.G.; Yan, G.H.; Wang, J.; Pan, F.R.; Liu, Q.Z.; Zhang, K.C. Fruit scientific research in new China in the past 70 years: Cherry. J. Fruit Sci. 2019, 36, 1339–1351. (In Chinese) [Google Scholar]
- Chethana, K.W.T.; Jayawardene, R.S.; Zhang, W.; Zhou, Y.Y.; Liu, M.; Hyde, K.D.; Li, X.H.; Wang, J.; Zhang, K.C.; Yan, J.Y. Molecular characterization and pathogenicity of fungal taxa associated with cherry leaf spot disease. Mycosphere 2019, 10, 490–530. [Google Scholar] [CrossRef]
- Holb, I.J. Some biological features of cherry leaf spot (Blumeriella jaapii) with special reference to cultivar susceptibility. Int. J. Hortic. Sci. 2009, 15, 91–93. [Google Scholar] [CrossRef]
- Wharton, P.S.; Iezzoni, A.; Jones, A.L. Screening cherry germ plasm for resistance to leaf spot. Plant Dis. 2003, 87, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Tobutt, K.R. Screening of cherries for resistance to leaf spot, Blumeriella jaapii. Acta Hortic. 2004, 663, 239–244. [Google Scholar] [CrossRef]
- Sztejnberg, A. Etiology and control of cherry leaf spot disease in Israel caused by Cercospora circumscissa. Plant Dis. 1986, 70, 349. [Google Scholar] [CrossRef]
- Thomidis, T.; Tsipouridis, C. First report of Alternaria leaf spot on cherry trees in Greece. Plant Dis. 2006, 90, 680. [Google Scholar] [CrossRef]
- Choi, I.Y.; Braun, U.; Park, J.H.; Shin, H.D. First report of leaf spot caused by Pseudocercospora Pruni-Persicicola on sweet cherry in Korea. Plant Dis. 2014, 98, 693. [Google Scholar] [CrossRef]
- Zhu, J.L.; Chang, Y.Y. Identification and biological characterization of the pathogen causing cherry black target spot. China Fruits 2004, 3, 9–12. (In Chinese) [Google Scholar]
- Liu, B.Y.; Zhang, W.; Luan, B.H.; Wang, Y.Z. Identification of pathogen and epidemic dynamics of brown spot of sweet cherry. J. Fruit Sci. 2012, 29, 634–637. (In Chinese) [Google Scholar]
- Yang, L.P.; Jin, M.J.; Cui, L.X.; Li, T.H.; An, J.; Wei, L.J.; Chang, T.; Yang, C.D. Isolation and identification of the pathogen causing cherry black spot in Gansu Province. J. Fruit Sci. 2020, 37, 891–899. (In Chinese) [Google Scholar]
- Tang, Z.; Lou, J.; He, L.; Wang, Q.; Chen, L.; Zhong, X.; Wu, C.; Zhang, L.; Wang, Z.Q. First Report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China. Plant Dis. 2022, 106, 317. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Pub: Ames, IA, USA, 2006. [Google Scholar]
- Wang, M.M.; Chen, Q.; Diao, Y.Z.; Duan, W.J.; Cai, L. Fusarium incarnatum-equiseti complex from China. Persoonia 2019, 43, 70–89. [Google Scholar] [CrossRef] [Green Version]
- Lombard, L.; Sandoval-Denis, M.; Lamprecht, S.C.; Crous, P.W. Epitypification of Fusarium oxysporum—Clearing the taxonomic chaos. Persoonia 2019, 43, 1–47. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P.W. Symptomatic citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora Species. Persoonia 2018, 40, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Baka, Z.A.M.; Krzywinski, K. Fungi associated with leaf spots of Dracaena Ombet (Kotschy and Peyr). Microbiol. Res. 1996, 151, 49–56. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, Z.; Li, Q.; Tang, L.; Guo, T.; Huang, S.; Mo, J.; Hsiang, T.; Luo, S. Fusarium species associated with leaf spots of mango in China. Microb. Pathogenesis 2021, 150, 104736. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, X.; Yu, J.; Guo, Z.; Li, Y.; Wu, J.; Chi, Y. First report of Fusarium ipomoeae causing peanut leaf spot in China. Plant Dis. 2021, 105, 3754. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Yang, S.F.; Wang, S.M.; Lv, J.W.; Wan, W.Q.; Li, Y.H.; Zhou, H. Identification of Fusarium ipomoeae as the causative agent of leaf spot disease in Bletilla Striata in China. Plant Dis. 2021, 105, 1204. [Google Scholar] [CrossRef] [PubMed]
- Úrbez-Torres, J.R.; Boulé, J.; Haag, P.; Hampson, C.; O’Gorman, D.T. First report of root and crown rot caused by Fusarium oxysporum on sweet cherry (Prunus avium) in British Columbia. Plant Dis. 2016, 100, 855. [Google Scholar] [CrossRef]
- Cook, R.P.; Dubé, A.J. Host-Pathogen Index of Plant Diseases in South Australia; South Australian Department of Agriculture: Adelaide, Australia, 1989. [Google Scholar]
- Wang, C.; Wang, Y.; Wang, L.; Li, X.; Wang, M.; Wang, J. Fusarium species causing postharvest rot on Chinese cherry in China. Crop Prot. 2021, 141, 105496. [Google Scholar] [CrossRef]
- Frisullo, S.A.; Logrieco, A.; Moretti, A.; Grammatikaki, G.; Bottalico, A. Banana corm and root rot by Fusarium compactum in Crete. Phytopatho. Mediterr. 1994, 33, 78–82. [Google Scholar]
- Madar, Z.; Kimchi, M.; Solel, Z. Fusarium canker of Italian cypress. Eur. J. Forest Pathol. 1996, 26, 107–112. [Google Scholar] [CrossRef]
- Saleh, O.I. Wilt, root rot and seed diseases of groundnut in El-Minia governorate, Egypt. Egypt. J. Phytopathol. 1997, 25, 1–18. [Google Scholar]
- Zhang, X.P.; Cao, X.D.; Dang, Q.Q.; Liu, Y.G.; Zhu, X.P.; Xia, J.W. First report of fruit rot caused by Fusarium luffae in muskmelon in China. Plant Dis. 2022, 106, 1763. [Google Scholar] [CrossRef]
- Trimboli, D.S.; Burgess, L.W. Fungi associated with basal stalk rot and root rot of dryland grain sorghum in New South Wales. Plant Prot. Q. 1985, 1, 3–9. [Google Scholar]
- White, T.J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 31, 315–322. [Google Scholar]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Reeb, V.; Lutzoni, F.; Roux, C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol. Phylogenet. Evol. 2004, 32, 1036–1060. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Kistler, H.C.; Tacke, B.K.; Casper, H.H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 2000, 97, 7905–7910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
Species | Isolate Number | Origin | Date Collected | GenBank Accession | |||
---|---|---|---|---|---|---|---|
CaM | rpb2 | tef1 | tub2 | ||||
F. compactum | JZB3110202 | Beijing | 2019.7 | OP018566 | OP018571 | OP018576 | |
F. compactum | JZB3110203 | Beijing | 2019.8 | OP018567 | OP018572 | OP018577 | |
F. compactum | JZB3110204 | Beijing | 2019.8 | OP018568 | OP018573 | OP018578 | |
F. compactum | JZB3110205 | Beijing | 2019.8 | OP018569 | OP018574 | OP018579 | |
F. compactum | JZB3110206 | Liaoning | 2019.9 | OP018570 | OP018575 | OP018580 | |
F. ipomoeae | JZB3110207 | Beijing | 2019.8 | OP018581 | OP018582 | OP018583 | |
F. luffae | JZB3110208 | Beijing | 2019.7 | OP018545 | OP018552 | OP018559 | |
F. luffae | JZB3110209 | Shandong | 2019.8 | OP018546 | OP018553 | OP018560 | |
F. luffae | JZB3110210 | Shandong | 2019.8 | OP018547 | OP018554 | OP018561 | |
F. luffae | JZB3110211 | Shandong | 2019.8 | OP018548 | OP018555 | OP018562 | |
F. luffae | JZB3110212 | Shandong | 2019.8 | OP018549 | OP018556 | OP018563 | |
F. luffae | JZB3110213 | Beijing | 2019.10 | OP018550 | OP018557 | OP018564 | |
F. luffae | JZB3110214 | Beijing | 2020.9 | OP018551 | OP018558 | OP018565 | |
F. citri | JZB3110215 | Shandong | 2019.8 | OP039326 | OP039328 | ||
F. citri | JZB3110216 | Beijing | 2019.10 | OP039327 | OP039329 | ||
F. nygamai | JZB3110217 | Beijing | 2019.8 | OP039354 | OP039350 | OP039348 | OP039352 |
F. nygamai | JZB3110218 | Beijing | 2019.8 | OP039355 | OP039351 | OP039349 | OP039353 |
F. lateritium | JZB3110219 | Shandong | 2019.8 | OP039330 | OP039336 | OP039342 | |
F. lateritium | JZB3110220 | Shandong | 2019.8 | OP039331 | OP039337 | OP039343 | |
F. lateritium | JZB3110221 | Shandong | 2019.8 | OP039332 | OP039338 | OP039344 | |
F. lateritium | JZB3110222 | Shandong | 2019.8 | OP039333 | OP039339 | OP039345 | |
F. lateritium | JZB3110223 | Shandong | 2020.9 | OP039334 | OP039340 | OP039346 | |
F. lateritium | JZB3110224 | Shandong | 2020.9 | OP039335 | OP039341 | OP039347 | |
F. curvatum | JZB3110225 | Liaoning | 2019.9 | OP039359 | OP039360 | OP039361 |
Species | Average Diameter of Colony (Range) on 5 d, mm | Type and Color of Aerial Mycelium | Reverse Pigmentation |
---|---|---|---|
F. compactum | 79–85 | White mycelia with brown pigments produced in the agar | White to pale yellow |
F. ipomoeae | 59–65 | Colony margin lobate, pinkish white | Pale pink |
F. luffae | 67–73 | Aerial mycelia dense, colony white | White to pale yellow |
F. citri | 78–80 | Aerial mycelia dense, colony margin entire, white | Pinkish white |
F. nygamai | 53–56 | Mycelia violet, with violet pigments produced in the agar | Violet with white margin |
F. lateritium | 45–54 | Mycelia sparse, pale orange or pale pink | Pale orange or pale pink with white margin |
F. curvatum | 68–70 | Mycelia violet, with violet pigments produced in the agar | Dark violet |
Species | Macroconidia | Microconidia | ||
---|---|---|---|---|
Shape, Number of Septa | Average Size (Range) | Shape, Number of Septa | Average Size (Range) | |
F. compactum | Strong dorsiventral curvature, apical cell elongate and tapering that is often needle like in appearance, basal cell foot-shaped, usually 5-septate | 43.04–62.05 × 4.02–5.13 μm (avg. = 54.08 × 4.50 μm, n = 50) | Not observed | |
F. ipomoeae | Dorsiventral curvature, smooth, hyaline, apical cell hooked to tapering, basal cell foot-shaped. Usually 5-septate | 40.72–66.64 × 3.67–4.65 μm (avg. = 56.60 × 4.16 μm, n = 50) | Not observed | |
F. luffae | Falcate, slender, slightly curved, smooth to slightly rough, hyaline, apical cell blunt or hooked, basal cell barely notched, 3–5-septate | 26.18–42.88 × 3.75–4.69 μm (avg. = 33.69 × 4.17 μm, n = 50) | Not observed | |
F. citri | Falcate, hyaline, apical cell papillate to hooked, basal cell distinctly notched to foot-shaped, 3–5-septate | 24.23–48.42 × 4.05–5.39 μm (avg. = 36.54 × 4.86 μm, n = 50) | Not observed | |
F. nygamai | Slender, thin walled, hyaline, straight to slightly curved, apical cell short and tapered, basal cell notched or foot-shaped, usually 3-septate | 21.08–36.30 × 2.36–3.91 μm (avg. = 25.81 × 2.36 μm, n = 30) | Oval to elliptical, usually 0-septate | 10.06–16.18 × 2.23–3.86 μm (avg. = 12.88 × 3.02 μm, n = 30) |
F. lateritium | Falcate to relatively straight, with parallel walls, apical cell hooked or beaked, basal cell foot-shaped or notched, 3–5-septate, usually 5-septate | 38.81–59.69 × 4.31–5.60 μm (avg. = 49.10 × 4.88 μm, n = 50) | Not observed |
Species | Disease Incidence (%) | Lesion Diameter (mm) | ||
---|---|---|---|---|
Wounded | Unwounded | Wounded | Unwounded | |
F. compactum | 95 | 95 | 13.5 ± 0.3 a | 14.0 ± 0.3 a |
F. ipomoeae | 95 | 75 | 11.8 ± 0.3 ab | 12.8 ± 0.3 a |
F. luffae | 100 | 95 | 12.8 ± 0.4 ab | 14.5 ± 0.5 a |
F. citri | 100 | 75 | 8.3 ± 0.1 b | 8.8 ± 0.1 b |
F. nygamai | 100 | 95 | 8.3 ± 0.1 b | 7.5 ± 0.1 b |
F. lateritium | 80 | 90 | 9.3 ± 0.1 ab | 7.0 ± 0.2 b |
F. curvatum | 100 | 100 | 10.0 ± 0.1 ab | 7.5 ± 0.1 b |
Gene/Region | Primer | Sequence (5′-3′) | Annealing Temperature | Reference |
---|---|---|---|---|
ITS | ITS5 | GGAAGTAAAAGTCGTAACAAGG | 58 °C | [30] |
ITS4 | TCCTCCGCTTATTGATATGC | |||
rpb2 | 5F2 | GGGGWGAYCAGAAGAAGGC | 56 °C | [34] |
7Cr | CCCATRGCTTGYTTRCCCAT | [35] | ||
tef1 | EF1 | ATGGGTAAGGARGACAAGAC | 55 °C | [36] |
EF2 | GGARGTACCAGTSATCATG | |||
CaM | CL1 | GARTWCAAGGAGGCCTTCTC | 55 °C | [37] |
CL2A | TTTTTGCATCATGAGTTGGAC | |||
tub2 | T1 | AACATGCGTGAGATTGTAAGT | 52 °C | [38] |
T2 | TAGTGACCCTTGGCCCAGTTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, W.; Li, X.; Ji, S.; Chethana, K.W.T.; Hyde, K.D.; Yan, J. Fusarium Species Associated with Cherry Leaf Spot in China. Plants 2022, 11, 2760. https://doi.org/10.3390/plants11202760
Zhou Y, Zhang W, Li X, Ji S, Chethana KWT, Hyde KD, Yan J. Fusarium Species Associated with Cherry Leaf Spot in China. Plants. 2022; 11(20):2760. https://doi.org/10.3390/plants11202760
Chicago/Turabian StyleZhou, Yueyan, Wei Zhang, Xinghong Li, Shuxian Ji, Kandawatte Wedaralalage Thilini Chethana, Kevin David Hyde, and Jiye Yan. 2022. "Fusarium Species Associated with Cherry Leaf Spot in China" Plants 11, no. 20: 2760. https://doi.org/10.3390/plants11202760
APA StyleZhou, Y., Zhang, W., Li, X., Ji, S., Chethana, K. W. T., Hyde, K. D., & Yan, J. (2022). Fusarium Species Associated with Cherry Leaf Spot in China. Plants, 11(20), 2760. https://doi.org/10.3390/plants11202760