A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Assessment of Nematicidal Efficacies
4.2. Cost-Benefit Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MAPAMA. Anuario de Estadística. Avance 2021; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2022; 1189p. [Google Scholar]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.D.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar] [CrossRef]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A Threat to Sustainability of Agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Talavera, M.; Sayadi, S.; Chirosa-Ríos, M.; Salmerón, T.; Flor-Peregrín, E.; Verdejo-Lucas, S. Perception of the Impact of Root-Knot Nematode-Induced Diseases in Horticultural Protected Crops of South-Eastern Spain. Nematology 2012, 14, 517–527. [Google Scholar] [CrossRef]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M.L. Tomato (Solanum lycopersicum) and Root-Knot Nematodes (Meloidogyne spp.) a Century-Old Battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef] [Green Version]
- Seinhorst, J.W. The Relation between Nematode Density and Damage to Plants. Nematologica 1965, 11, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Ferris, H. Nematode Economic Thresholds: Derivation, Requirements, and Theoretical Considerations. J. Nematol. 1978, 10, 341–350. [Google Scholar]
- Jacobsen, C.S.; Hjelmsø, M.H. Agricultural Soils, Pesticides and Microbial Diversity. Curr. Opin. Biotechnol. 2014, 27, 15–20. [Google Scholar] [CrossRef]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- Greco, N.; López-Aranda, J.M.; Saporiti, M.; Maccarini, C.; de Tommaso, N.; Myrta, A. Sustainability of European Vegetable and Strawberry Production in Relation to Fumigation Practices in the EU. Acta Hortic. 2020, 1270, 203–210. [Google Scholar] [CrossRef]
- Oka, Y. From Old-Generation to Next-Generation Nematicides. Agronomy 2020, 10, 1387. [Google Scholar] [CrossRef]
- Forghani, F.; Hajihassani, A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Consejería de Agricultura y Pesca. Junta de Andalucía Observatorio de Precios y Mercados. Available online: http://www.juntadeandalucia.es/agriculturaypesca/observatorio/ (accessed on 30 August 2022).
- McSorley, R.; Duncan, L.W. Economic Thresholds and Nematode Management. Adv. Plant Pathol. 1995, 11, 147–171. [Google Scholar] [CrossRef]
- Ortiz, B.V.; Perry, C.; Sullivan, D.; Lu, P.; Kemerait, R.; Davis, R.F.; Smith, A.; Vellidis, G.; Nichols, R. Variable Rate Application of Nematicides on Cotton Fields: A Promising Site-Specific Management Strategy. J. Nematol. 2012, 44, 31–39. [Google Scholar]
- Liu, Z.; Griffin, T.; Kirkpatrick, T.L. Statistical and Economic Techniques for Site-Specific Nematode Management. J. Nematol. 2014, 46, 12–17. [Google Scholar]
- Wilson, B.R.; Allen, T.W.; Catchot, A.L.; Krutz, L.J.; Dodds, D.M. Determining the Profitability of Reniform Nematode Control Practices in the Mississippi Cotton Production System. Plant Health Prog. 2020, 21, 105–112. [Google Scholar] [CrossRef]
- Dyrdahl-Young, R.; Cole, E.; Tornel, M.Q.; Weldon, R.; Digennaro, P. Economic Assessment of Nematode Biological Control Agents in a Potato Production Model. Nematology 2020, 22, 771–779. [Google Scholar] [CrossRef]
- Vito, M.D.; Greco, N.; Carella, A. Effect of Meloidogyne incognita and Importance of the Inoculum on the Yield of Eggplant. J. Nematol. 1986, 18, 487–490. [Google Scholar]
- Giné, A.; López-Gómez, M.; Vela, M.D.; Ornat, C.; Talavera, M.; Verdejo-Lucas, S.; Sorribas, F.J. Thermal Requirements and Population Dynamics of Root-Knot Nematodes on Cucumber and Yield Losses under Protected Cultivation. Plant Pathol. 2014, 63, 1446–1453. [Google Scholar] [CrossRef]
- Vito, M.D.; Greco, N.; Carella, A. The Effect of Population Densities of Meloidogyne incognita on the Yield of Cantaloupe and Tobacco. Nematol. Mediterr. 1983, 1, 169–174. [Google Scholar]
- Ferris, H.; Ball, D.A.; Beem, L.W.; Gudmundson, L.A. Using Nematode Count Data in Crop Management Decisions. Calif. Agric. 1986, 40, 12–14. [Google Scholar]
- Ploeg, A.T.; Phillips, M.S. Damage to Melon (Cucumis melo L.) Cv. Durango by Meloidogyne incognita in Southern California. Nematology 2001, 3, 151–157. [Google Scholar]
- Vito, M.D. Population Densities of Meloidogyne incognita and Growth of Susceptible and Resistant Pepper Plants. Nematol. Mediterr. 1986, 14, 217–221. [Google Scholar]
- Vito, M.D.; Cianciotta, V.; Zaccheo, G. Yield of Susceptible and Resistant Pepper in Microplots Infested with Meloidogyne incognita. Nematropica 1992, 22, 1–6. [Google Scholar]
- Barker, K.R.; Shoemaker, P.B.; Nelson, L.A. Relationships of Initial Population Densities of Meloidogyne incognita and M. hapla to Yield of Tomato. J. Nematol. 1976, 8, 232–238. [Google Scholar]
- Vito, M.D.; Greco, N.; Carella, A. Relationship between Population Densities of Meloidogyne incognita and Yield of Sugarbeet and Tomato. Nematol. Mediterr. 1981, 9, 99–103. [Google Scholar]
- Ekanayake, H.M.R.K.; Vito, M.D. Effect of Population Densities of Meloidogyne incognita on Growth of Susceptible and Resistant Tomato Plants. Nematol. Mediterr. 1986, 12, 1–6. [Google Scholar]
- Vito, M.D.; Cianciotta, V.; Zaccheo, G. The Effect of Population Densities of Meloidogyne incognita on Yield of Susceptible and Resistant Tomato. Nematol. Mediterr. 1991, 19, 265–268. [Google Scholar]
- Charegani, H.; Majzoob, S.; Hamzehzarghani, H. Effect of Various Initial Population Densities of Two Species of Meloidogyne on Growth of Tomato and Cucumber in Greenhouse. Nematol. Mediterr. 2012, 40, 129–134. [Google Scholar]
- Xing, L.; Westphal, A. Predicting Damage of Meloidogyne incognita on Watermelon. J. Nematol. 2012, 44, 127–133. [Google Scholar]
- Vela, M.D.; Giné, A.; López-Gómez, M.; Sorribas, F.J.; Ornat, C.; Verdejo-Lucas, S.; Talavera, M. Thermal Time Requirements of Root-Knot Nematodes on Zucchini-Squash and Population Dynamics with Associated Yield Losses on Spring and Autumn Cropping Cycles. Eur. J. Plant Pathol. 2014, 140, 481–490. [Google Scholar] [CrossRef]
- Whitehead, A.G.; Hemming, J.R. A Comparison of Some Quantitative Methods of Extracting Small Vermiform Nematodes from Soil. Ann. Appl. Biol. 1965, 55, 25–38. [Google Scholar] [CrossRef]
- Schneider-Orelli, O. Entomologisches Praktikum; Verlag Sauerländer: Aarau, Switzerland, 1947. [Google Scholar]
- Seinhorst, J.W. The Common Relation between Population Density and Plant Weight in Pot and Microplot Experiments with Various Nematode Plant Combinations. Fundam. Appl. Nematol. 1998, 21, 459–468. [Google Scholar]
Treatment | Efficacy (%) | Cost (€/ha) |
---|---|---|
1,3-Dichloropropene 81% + chloropicrin 44% | 81.66 ± 1.58 | 1550 |
Dimethyl disulphide 95% | 74.86 ± 1.64 | N/A |
Metam sodium 40% | 51.23 ± 3.15 | 850 |
Abamectin 2% | 42.60 ± 8.83 | 190 |
Azadirachtin 1% | 54.60 ± 8.30 | 210 |
Azadirachtin 2.6% | 54.72 ± 6.47 | 220 |
Dazomet 98% | 51.16 ± 6.04 | 1980 |
Fenamiphos 24% | 55.41 ± 3.29 | 970 |
Fluazaindolizine 50% | 58.42 ± 4.99 | N/A |
Fluopyram 40% | 63.70 ± 5.39 | 220 |
Fosthiazate 10% | 51.14 ± 11.23 | 830 |
Fosthiazate 15% | 57.25 ± 8.64 | 770 |
Oxamyl 10% | 61.30 ± 4.25 | 160 |
Garlic extract 45% | 40.08 ± 15.20 | 610 |
Garlic extract 100% | 45.92 ± 10.51 | 190 |
Geraniol 12.1% + thymol 4.1% | 48.27 ± 13.50 | 460 |
Biosolarization with chicken manure | 72.13 ± 1.48 | 2700 |
Cost (€/ha) | Yield (kg/ha) | Revenue (€/ha) | Net Return (€/ha) | |
---|---|---|---|---|
Aubergine | 42,610 | 131,500 | 69,040 | 26,430 |
Cucumber | 34,090 | 106,500 | 59,110 | 25,020 |
Melon | 14,990 | 48,000 | 24,960 | 9970 |
Watermelon | 17,000 | 70,000 | 27,650 | 10,650 |
Pepper | 36,250 | 77,500 | 60,060 | 23,810 |
Tomato | 51,600 | 113,500 | 78,320 | 26,720 |
Zucchini | 22,910 | 70,000 | 37,100 | 14,200 |
Crop | Tolerance Limit | Minimum Yield (%) | Net Return at Highest RKN Pi (€/ha) | References |
---|---|---|---|---|
Aubergine | 5.4 | 5.0 | −39,150 | [19] |
Cucumber | 0.1 | 20.0 | −22,270 | [20] |
Melon | 5.6 | 28.5 | −7860 | [21,22,23] |
Pepper | 41.2 | 48.4 | −7180 | [24,25] |
Tomato | 91.9 | 31.3 | −27,070 | [26,27,28,29,30] |
Watermelon | 1.3 | 27.0 | −9530 | [31] |
Zucchini | 1.3 | 43.3 | −6830 | [22,32] |
Treatment | Aubergine | Pepper | Tomato | |||
---|---|---|---|---|---|---|
ET | NRL | ET | NRL | ET | NRL | |
1,3-Dichloropropene 81% + chloropicrin 44% | 51 | 5.9 | 137 | 6.5 | 155 | 5.8 |
Metam sodium 40% | 30 | 3.2 | 92 | 3.6 | 126 | 3.2 |
Abamectin 2% | 11 | 0.7 | 52 | 0.8 | 99 | 0.7 |
Azadirachtin 1% | 11 | 0.8 | 54 | 0.9 | 100 | 0.8 |
Azadirachtin 2.6% | 12 | 0.8 | 54 | 0.9 | 101 | 0.8 |
Dazomet 98% | 64 | 7.5 | 167 | 8.3 | 173 | 7.4 |
Fenamiphos 24% | 34 | 3.7 | 100 | 4.1 | 131 | 3.6 |
Fluopyram 40% | 12 | 0.8 | 54 | 0.9 | 101 | 0.8 |
Fosthiazate 10% | 29 | 3.1 | 91 | 3.5 | 125 | 3.1 |
Fosthiazate 15% | 28 | 2.9 | 87 | 3.2 | 123 | 2.9 |
Oxamyl 10% | 10 | 0.6 | 51 | 0.7 | 98 | 0.6 |
Garlic extract 45% | 23 | 2.3 | 78 | 2.6 | 116 | 2.3 |
Garlic extract 100% | 11 | 0.7 | 52 | 0.8 | 99 | 0.7 |
Geraniol 12.1% + thymol 4.1% | 19 | 1.7 | 68 | 1.9 | 110 | 1.7 |
Biosolarization with chicken manure | 87 | 10.2 | 218 | 11.3 | 205 | 10.1 |
Treatment | Cucumber | Melon | Watermelon | Zucchini | ||||
---|---|---|---|---|---|---|---|---|
ET | NRL | ET | NRL | ET | NRL | ET | NRL | |
1,3-Dichlpr. 81% + chloropicrin 44% | 58 | 6.2 | 181 | 15.6 | 160 | 14.6 | 154 | 10.9 |
Metam sodium 40% | 31 | 3.4 | 96 | 8.5 | 84 | 8.0 | 81 | 6.0 |
Abamectin 2% | 7 | 0.8 | 25 | 1.9 | 19 | 1.8 | 18 | 1.3 |
Azadirachtin 1% | 8 | 0.9 | 27 | 2.1 | 21 | 2.0 | 20 | 1.5 |
Azadirachtin 2.6% | 8 | 0.9 | 28 | 2.2 | 22 | 2.1 | 21 | 1.6 |
Dazomet 98% | 74 | 7.9 | 238 | 19.9 | 211 | 18.6 | 203 | 14.0 |
Fenamiphos 24% | 36 | 3.9 | 110 | 9.7 | 96 | 9.1 | 93 | 6.8 |
Fluopyram 40% | 8 | 0.9 | 28 | 2.2 | 22 | 2.1 | 21 | 1.6 |
Fosthiazate 10% | 30 | 3.3 | 94 | 8.3 | 82 | 7.8 | 79 | 5.9 |
Fosthiazate 15% | 28 | 3.1 | 87 | 7.7 | 76 | 7.2 | 73 | 5.4 |
Oxamyl 10% | 6 | 0.6 | 22 | 1.6 | 16 | 1.5 | 16 | 1.1 |
Garlic extract 45% | 22 | 2.4 | 69 | 6.1 | 60 | 5.7 | 58 | 4.3 |
Garlic extract 100% | 7 | 0.8 | 25 | 1.9 | 19 | 1.8 | 18 | 1.3 |
Geraniol 12.1% + thymol 4.1% | 17 | 1.8 | 53 | 4.6 | 45 | 4.3 | 43 | 3.2 |
Biosolarization with chicken manure | 103 | 10.8 | 346 | 27.1 | 306 | 25.4 | 293 | 19.0 |
Treatment | Aubergine | Pepper | Tomato |
---|---|---|---|
1,3-Dichlpr. 81% + chloropicrin 44% | 398 | 1070 | 1211 |
Metam sodium 40% | 61 | 188 | 257 |
Abamectin 2% | 19 | 91 | 172 |
Azadirachtin 1% | 24 | 119 | 220 |
Azadirachtin 2.6% | 27 | 119 | 223 |
Dazomet 98% | 154 | 401 | 415 |
Fluopyram 40% | 33 | 149 | 278 |
Fenamiphos 24% | 76 | 224 | 294 |
Fosthiazate 10% | 59 | 186 | 256 |
Fosthiazate 15% | 65 | 204 | 288 |
Oxamyl 10% | 26 | 132 | 253 |
Garlic extract 45% | 38 | 130 | 194 |
Garlic extract 100% | 20 | 96 | 183 |
Geraniol 12.1% + thymol 4.1% | 37 | 131 | 213 |
Biosolarization with chicken manure | 322 | 807 | 759 |
Treatment | Cucumber | Melon | Watermelon | Zucchini |
---|---|---|---|---|
1,3-Dichlpr. 81% + chloropicrin 44% | 453 | 1414 | 1250 | 1203 |
Metam sodium 40% | 63 | 196 | 171 | 165 |
Abamectin 2% | 12 | 44 | 33 | 31 |
Azadirachtin 1% | 18 | 59 | 46 | 44 |
Azadirachtin 2.6% | 18 | 62 | 49 | 46 |
Dazomet 98% | 178 | 572 | 507 | 488 |
Fenamiphos 24% | 81 | 247 | 215 | 209 |
Fluopyram 40% | 22 | 77 | 61 | 58 |
Fosthiazate 10% | 61 | 192 | 168 | 162 |
Fosthiazate 15% | 65 | 204 | 178 | 171 |
Oxamyl 10% | 16 | 57 | 41 | 41 |
Garlic extract 45% | 37 | 115 | 100 | 97 |
Garlic extract 100% | 13 | 46 | 35 | 33 |
Geraniol 12.1% + thymol 4.1% | 33 | 102 | 87 | 83 |
Biosolarization with chicken manure | 381 | 1281 | 1133 | 1085 |
Treatment | Formulation | Dosage |
---|---|---|
Untreated control | - | - |
1,3-Dichloropropene 81% + Chloropicrin 44% | Emulsifiable concentrate | 300 kg/ha |
Dimethyl Disulphide 95% | Emulsifiable concentrate | 600 kg/ha |
Metam Sodium 40% | Suspension concentrate | 380 L/ha |
Abamectin 2% | Suspension concentrate | 5 L/ha |
Azadirachtin 1% | Emulsifiable concentrate | 3.9 L/ha |
Azadirachtin 2.6% | Emulsifiable concentrate | 1.5 L/ha |
Dazomet 98% | Granules | 350 kg/ha |
Fenamiphos 24% | Capsule suspension | 20 L/ha |
Fluazaindolizine 50% | Suspension concentrate | 1 kg/ha |
Fluopyram 40% | Suspension concentrate | 0.375 L/ha |
Fosthiazate 10% | Granules | 30 kg/ha |
Fosthiazate 15% | Suspension concentrate | 10 L/ha |
Oxamyl 10% | Soluble concentrate | 10 L/ha |
Garlic extract 45% | Granules | 25 kg/ha |
Garlic extract 100% | Suspension concentrate | 4 L/ha |
Geraniol 12.1% + thymol 4.1% | Suspension concentrate | 9 L/ha |
Biosolarization with chicken manure | Organic amendment | 20,000 kg/ha |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talavera-Rubia, M.; Vela-Delgado, M.D.; Verdejo-Lucas, S. A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture. Plants 2022, 11, 2774. https://doi.org/10.3390/plants11202774
Talavera-Rubia M, Vela-Delgado MD, Verdejo-Lucas S. A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture. Plants. 2022; 11(20):2774. https://doi.org/10.3390/plants11202774
Chicago/Turabian StyleTalavera-Rubia, Miguel, María Dolores Vela-Delgado, and Soledad Verdejo-Lucas. 2022. "A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture" Plants 11, no. 20: 2774. https://doi.org/10.3390/plants11202774
APA StyleTalavera-Rubia, M., Vela-Delgado, M. D., & Verdejo-Lucas, S. (2022). A Cost-Benefit Analysis of Soil Disinfestation Methods against Root-Knot Nematodes in Mediterranean Intensive Horticulture. Plants, 11(20), 2774. https://doi.org/10.3390/plants11202774