Nematicidal Potential of Sulla (Hedysarum coronarium L.) against the Root-Knot Nematode Meloidogyne incognita
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Plant Biomass and Flavonoid and Tannin Extracts
2.2. Toxicity of Flavonoids and Condensed Tannins to M. incognita Juveniles
2.3. Suppressiveness of Sulla Biomass to M. incognita Infestation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Nematodes
4.3. Chemical Analyses
4.4. Extraction and Purification of the Flavonoids
4.5. Extraction and Purification of Condensed Tannins
4.6. In Vitro Assays on M. incognita J2
4.7. Experiments in Soil
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Marrone, P.G. Pesticidal natural products—Status and future potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- D’Addabbo, T.; Laquale, S.; Lovelli, S.; Candido, V.; Avato, P. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Ital. J. Agron. 2014, 9, 137–145. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Caboni, P. Botanical nematicides: A review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef] [PubMed]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Carbonara, T.; Argentieri, M.P.; Radicci, V.; Leonetti, P.; Villanova, L.; Avato, P. Nematicidal potential of Artemisia annua and its main metabolites. Eur. J. Plant Pathol. 2013, 137, 295–304. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Candido, V.; Perniola, M.; D’Addabbo, T. Nematicidal activity of Echinacea species on the root-knot nematode Meloidogyne incognita. J. Pest Sci. 2020, 93, 1397–1410. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Argentieri, M.P.; Bellardi, M.G.; Avato, P. Nematicidal activity of essential oil from lavandin (Lavandula × intermedia Emeric ex Loisel.) as related to chemical profile. Molecules 2021, 26, 6448. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between chemical composition and nematicidal activity of different essential oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic activity of essential oils from Monarda species. J. Pest Sci. 2018, 91, 1115–1125. [Google Scholar] [CrossRef]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Pecetti, L.; Avato, P. Biologically active compounds from forage plants. Phytochem. Rev. 2022, 21, 471–501. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Żuchowski, J.; Biazzi, E.; Tava, A.; Oleszek, W.; Avato, P. Activity of saponins from Medicago species against phytoparasitic nematodes. Plants 2020, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Tava, A.; Avato, P. Chemical and biological activity of triterpene saponins from Medicago species. Nat. Prod. Commun. 2006, 1, 1159–1180. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Srour, H.A. Saponins suppress nematode cholesterol biosynthesis and inhibit root knot nematode development in tomato seedlings. Nat. Prod. Chem. Res. 2014, 2, 1–6. [Google Scholar]
- D’Addabbo, T.; Carbonara, T.; Leonetti, P.; Radicci, V.; Tava, A.; Avato, P. Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem. Rev. 2011, 10, 503–519. [Google Scholar] [CrossRef]
- Argentieri, M.P.; D’Addabbo, T.; Tava, A.; Agostinelli, A.; Jurzysta, M.; Avato, P. Evaluation of nematicidal properties of saponins from Medicago spp. Eur. J. Plant Pathol. 2008, 120, 189–197. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Avato, P.; Tava, A. Nematicidal potential of materials from Medicago spp. Eur. J. Plant Pathol. 2009, 125, 39–49. [Google Scholar] [CrossRef]
- Curto, G.; Dallavalle, E.; Santi, R.; Casadei, N.; D’Avino, L.; Lazzeri, L. The potential of Crotalaria juncea L. as a summer green manure crop in comparison to Brassicaceae catch crops for management of Meloidogyne incognita in the Mediterranean area. Eur. J. Plant Pathol. 2015, 42, 829–841. [Google Scholar]
- Frederick, K.; Suen, F.; Adomako, J. Nematicidal effect of sunn hemp Crotalaria juncea leaf residues on Meloidogyne incognita attacking tomato Solanum lycopersicum roots. J. Crop Prot. 2015, 4, 241–246. [Google Scholar]
- Yildiz, S. Rotational and nematicidal effect of lupine (Lupinus albus L.: Leguminosae). Afr. J. Biotechnol. 2013, 10, 13252–13255. [Google Scholar]
- Dong, Y.; Tang, D.; Zhang, N.; Li, Y.; Zhang, C.; Li, L.; Li, M. Phytochemicals and biological studies of plants in genus Hedysarum. Chem. Cent. J. 2013, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Piano, E.; Pecetti, L. Minor legume species. In Fodder Crops and Amenity Grasses; Boller, B., Posselt, U.K., Veronesi, F., Eds.; Springer: New York, NY, USA, 2010; pp. 477–500. [Google Scholar]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’Addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef] [PubMed]
- Tibe, O.; Maegher, L.P.; Fraser, K.; Harding, D.R.K. Condensed tannins and flavonoids from the forage legume sulla (Hedysarum coronarium). J. Agric. Food. Chem. 2011, 59, 9402–9409. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Fraga, C.G. Research trends in flavonoids and health. Arch. Biochem. Biophys. 2018, 15, 107–112. [Google Scholar] [CrossRef]
- Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food source, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 2009, 53, S310–S329. [Google Scholar] [CrossRef]
- Niezen, J.H.; Charleston, W.A.G.; Robertson, H.A.; Shelton, D.; Waghorn, G.C.; Green, R. The effect of feeding sulla (Hedysarum coronarium) or lucerne (Medicago sativa) on lamb parasite burdens and development of immunity to gastrointestinal nematodes. Vet. Parasitol. 2002, 105, 229–245. [Google Scholar] [CrossRef]
- Maistrello, L.; Vaccari, G.; Sasanelli, N. Effect of chestnut tannins on the root-knot nematode Meloidogyne javanica. Helminthologia 2010, 47, 48–57. [Google Scholar] [CrossRef]
- Mian, I.H.; Rodriguez-Kabana, R. Organic amendments with high tannin and phenolic contents for control of Meloidogyne arenaria in infested soil. Nematropica 1982, 12, 221–234. [Google Scholar]
- Bano, S.; Iqbal, E.Y.; Lubna, A.M.N.; Zil-ur-Rehman, S.; Fayyaz, S.; Faizi, S. Nematicidal activity of flavonoids with structure activity relationship (SAR) studies against root knot nematode Meloidogyne incognita. Eur. J. Plant Pathol. 2020, 157, 299–309. [Google Scholar] [CrossRef]
- Caboni, P.; Saba, M.; Tocco, G.; Casu, L.; Murgia, A.; Maxia, A.; Menkissoglu-Spiroudi, U.; Ntalli, N. Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 9784–9788. [Google Scholar] [CrossRef]
- Machado, A.R.T.; Ferreira, S.R.; Medeiros, F.D.S.; Fujiwara, R.T.; Filho, J.D.D.S.; Pimenta, L.P.S. Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasite Vectors 2015, 8, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Wuyts, N.; Swennen, R.; De Waele, D. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 2006, 8, 89–101. [Google Scholar] [CrossRef]
- d’Errico, G.; Woo, S.L.; Lombardi, N.; Manganiello, G.; Roversi, P.F. Activity of chestnut tannins against the southern root-knot nematode Meloidogyne incognita. Redia 2018, 101, 53–59. [Google Scholar] [CrossRef]
- Cheng, J.; Song, B. Natural nematicidal active compounds: Recent research progress and outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Maistrello, L.; Vaccari, G.; Sasanelli, N. Nematicidal effect of chestnut tannin solutions on the carrot cyst nematode Heterodera carotae Jones. Proceedings of Future IPM in Europe Conference, Riva del Garda, Italy, 19–21 March 2013; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2013; p. 165. [Google Scholar]
- Renčo, M.; Sasanelli, N.; Papajová, I.; Maistrello, L. Nematicidal effect of chestnut tannin solutions on the potato cyst nematode Globodera rostochiensis (Woll.) Barhens. Helminthologia 2012, 49, 108–114. [Google Scholar] [CrossRef]
- Taylor, C.E.; Murant, A.F. Nematicidal activity of aqueous extracts from raspberry canes and roots. Nematologica 1966, 12, 488–494. [Google Scholar]
- European Food Safety Authority. Outcome of the consultation with Member States and EFSA on the basic substance application for Castanea and Schinopsis tannins for use in plant protection as bactericide, fungicide and nematicide. EFSA J. 2018, 15, 1363E. [Google Scholar]
- Athanasiadou, S.; Almvik, M.; Hellström, J.; Madland, E.; Simic, N.; Steinshamn, H. Chemical analysis and anthelmintic activity against Teladorsagia circumcincta of nordic bark extracts in vitro. Front. Vet. Sci. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Hoste, H.; Manolaraki, F.; Brunet, S.; Arroyo López, C.; Martínez-Ortiz de Montellano, C.; Sotiraki, S.; Torres Acosta, F. The anthelmintic properties of tannin-rich legume forages: From knowledge to exploitation in farm conditions. In Challenging Strategies to Promote the Sheep and Goat Sector in the Current Global Context; Ranilla, M.J., Carro, M.D., Ben Salem, H., Morand-Fehr, P., Eds.; CIHEAM; CSIC; Universidad de León; FAO: Zaragoza, Spain, 2011; pp. 295–304. [Google Scholar]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- Jansen, H.H.; McGinn, S. Volatile loss of nitrogen during decomposition of legume green manure. Soil Biol. Biochem. 1991, 23, 291–297. [Google Scholar] [CrossRef]
- Stirling, G.R. Biological control of plant-parasitic nematodes. In Diseases of Nematodes; Poinar, G.O., Jansson, H.B., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 103–150. [Google Scholar]
- Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 2002, 19, 147–160. [Google Scholar] [CrossRef]
- De Giorgi, C.; Veronico, P.; De Luca, F.; Natilla, A.; Lanave, C.; Pesole, G. Structural and evolutionary analysis of the ribosomal genes of the parasitic nematode Meloidogyne artiellia suggests its ancient origin. Mol. Biochem. Parasitol. 2002, 124, 91–94. [Google Scholar] [CrossRef]
- Zijlstra, C.; Donkers-Venne, D.T.; Fargette, M. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2000, 2, 847–853. [Google Scholar]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Kristen, W.J. Rapid, automatic, high-capacity Dumas determination of nitrogen. Microchem. J. 1983, 28, 529–574. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–153. [Google Scholar]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- Tava, A.; Oleszek, W.; Jurzysta, M.; Berardo, N.; Odoardi, M. Alfalfa saponins and sapogenins: Isolation and quantification in two different cultivars. Phytochem. Anal. 1993, 4, 269–274. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Mella, M.; Quadrelli, P.; Avato, P. Artefact formation during acid hydrolysis of saponins from Medicago spp. Phytochemistry 2017, 238, 116–127. [Google Scholar] [CrossRef]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Statistical Method in Biological Assay, 3rd ed.; Charles Griffin & Company Ltd.: High Wycombe, UK, 1978; p. 508. [Google Scholar]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne spp.); North Carolina State University: Raleigh, NC, USA, 1978; p. 111. [Google Scholar]
- Coolen, W.A. Methods for the extraction of Meloidogyne spp. and other nematodes from roots and soil. In Root-Knot Nematodes (Meloidogyne species): Systematics, Biology and Control; Lamberti, F., Taylor, C.E., Eds.; Academic Press: London, UK, 1979; pp. 317–329. [Google Scholar]
- Marquez, J.; Hajihassani, A.; Davis, R.F. Evaluation of summer and winter cover crops for variations in host suitability for Meloidogyne incognita, M. arenaria and M. javanica. Nematology 2022, 24, 841–854. [Google Scholar] [CrossRef]
Parameter | Unit | Mean Value ± SE 1 |
---|---|---|
Total C | (% dw) | 41.66 ± 0.01 |
Total N | (% dw) | 2.97 ± 0.03 |
Total tannins | (mg g−1 dw) | 119.68 ± 4.27 |
Total phenolics 2 | (mg g−1 dw) | 4.89 ± 0.74 |
Total saponins | (mg g−1 dw) | 3.13 ± 0.23 |
Concentration (μg mL−1) | Exposure Time (Hours) | |||||
---|---|---|---|---|---|---|
24 | 48 | 96 | ||||
62.5 | 3.7 ± 0.7 | b | 4.7 ± 0.7 | a | 12.8 ±1.2 | b |
125 | 4.7 ± 0.7 | bc | 25.4 ± 0.8 | b | 80.3 ± 6.8 | c |
250 | 4.7 ± 0.3 | bc | 59.7 ± 2.0 | c | 89.6 ± 4.2 | d |
500 | 6.1 ± 1.1 | c | 65.4 ± 1.8 | d | 91.6 ± 2.1 | d |
1000 | 24.2 ±1.5 | d | 68.8 ± 0.5 | de | 93.2 ± 1.2 | d |
LC50 | ≫ * | 350 | 97.2 | |||
Fluopyram ** | 81.5 ± 1.8 | e | 80.7 ± 4.2 | f | 87.9 ± 2 | cd |
Ethanol (2%) | 0.5 ± 0.3 | a | 0.6 ± 0.5 | a | 1.8 ± 0.6 | a |
Water | 0.5 ± 0.3 | a | 0.5 ± 0.3 | a | 0.6 ± 0.6 | a |
Concentration (μg mL−1) | Exposure Time (Hours) | |||||
---|---|---|---|---|---|---|
24 | 48 | 96 | ||||
62.5 | 0.0 | a | 2.2 ± 0.2 | ab | 7.0 ± 1.4 | b |
125 | 0.0 | a | 2.7 ± 0.6 | ab | 22.3 ± 0.8 | c |
250 | 0.5 ± 0.5 | a | 5.6 ± 1.6 | b | 57.8 ± 2.7 | d |
500 | 1.7 ± 1.3 | a | 6.1 ± 2.9 | b | 71.0 ± 2.7 | e |
1000 | 15.0 ± 0.5 | b | 38.1 ± 1.5 | c | 88.8 ± 1.1 | f |
LC50 | ≫ * | ≫* | 272 | |||
Fluopyram ** | 84.9 ± 2.8 | c | 86.9 ± 1.4 | d | 92.0 ± 0.8 | f |
Ethanol (2%) | 1.1 ± 0.6 | a | 1.1 ± 0.7 | a | 3.0 ± 0.3 | a |
Water | 0.3 ± 0.1 | a | 0.7 ± 0.5 | a | 0.7 ± 0.5 | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Addabbo, T.; Tava, A.; Argentieri, M.P.; Biazzi, E.; Candido, V.; Avato, P. Nematicidal Potential of Sulla (Hedysarum coronarium L.) against the Root-Knot Nematode Meloidogyne incognita. Plants 2022, 11, 2550. https://doi.org/10.3390/plants11192550
D’Addabbo T, Tava A, Argentieri MP, Biazzi E, Candido V, Avato P. Nematicidal Potential of Sulla (Hedysarum coronarium L.) against the Root-Knot Nematode Meloidogyne incognita. Plants. 2022; 11(19):2550. https://doi.org/10.3390/plants11192550
Chicago/Turabian StyleD’Addabbo, Trifone, Aldo Tava, Maria Pia Argentieri, Elisa Biazzi, Vincenzo Candido, and Pinarosa Avato. 2022. "Nematicidal Potential of Sulla (Hedysarum coronarium L.) against the Root-Knot Nematode Meloidogyne incognita" Plants 11, no. 19: 2550. https://doi.org/10.3390/plants11192550
APA StyleD’Addabbo, T., Tava, A., Argentieri, M. P., Biazzi, E., Candido, V., & Avato, P. (2022). Nematicidal Potential of Sulla (Hedysarum coronarium L.) against the Root-Knot Nematode Meloidogyne incognita. Plants, 11(19), 2550. https://doi.org/10.3390/plants11192550