Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species
Abstract
:1. Introduction
2. Effects of I. cylindrica on Microbial Community
3. Allelopathy of I. cylindrica
3.1. Plant Leachates and Exudates
3.2. Plant Residues
3.3. Plant Extract
4. Allelochemicals of I. cylindrica
5. Contribution of Allelopathy of I. cylindrica to Its Invasiveness
6. Conclusions
Funding
Institutional Review Statement
Informed Consent Statement
Conflicts of Interest
References
- Holm, L.G.; Pucknett, D.L.; Pancho, J.B.; Herberger, J.P. The World’s Worst Weeds. Distribution and Biology; University Press of Hawaii: Honolulu, HI, USA, 1977; pp. 1–609. [Google Scholar]
- Dozier, H.; Gaffney, J.; McDonald, S.; Johnson, E.; Shilling, D. Cogongrass in the United States: History, ecology, impacts, and management. Weed Technol. 1998, 12, 737–743. [Google Scholar] [CrossRef]
- MacDonald, G.E. Cogongrass (Imperata cylindrica): Biology, ecology, and management. Crit. Rev. Plant Sci. 2004, 23, 367–380. [Google Scholar] [CrossRef]
- Tominaga, T. Growth of seedlings and plants from rhizome pieces of co gongrass (Imperata cylindrica (L.) Beauv). Weed Biol. Manage. 2003, 3, 193–195. [Google Scholar] [CrossRef]
- Tominaga, T.; Nishiwaki, A.; Mizuguti, A.; Ezaki, T. Weed monograph 5: Imperata cylindrica (L.) Beauv. J. Weed Sci. Tech. 2007, 52, 17–27. [Google Scholar] [CrossRef]
- Tominaga, T. Rhizome systems and sprouting pattern of shoots in Imperata cylindrica. Jpn. J. Trop. Agric. 1993, 37, 120–123. [Google Scholar]
- Bryson, C.T.; Carter, R. Cogongrass, Imperata cylindrica, in the United States. Weed Technol. 1993, 7, 1005–1009. [Google Scholar] [CrossRef]
- Shilling, D.G.; Bewick, T.A.; Gaffney, J.F.; McDonald, S.K.; Chase, C.A.; Johnson, E.R.R.L. Ecology, Physiology, and Management of Cogongrass (Imperata cylindrica); Final Report; Florida Institute of Phosphate Research: Gainesville, FL, USA, 1997; pp. 1–128. [Google Scholar]
- Sellers, B.A.; Ferrell, J.A.; MacDonald, G.E.; Langeland, K.A.; Floy, S.L. Cogongrass (Imperata cylindrica) biology, ecology, and management in Florida grazing land. EDIS 2012, 2012, 8. [Google Scholar] [CrossRef]
- Rusdy, M. Imperata cylindrica: Reproduction, dispersal, and controls. CAB Rev. 2020, 15, 38. [Google Scholar] [CrossRef]
- Evans, H.C. Fungal pathogens of some subtropical and tropical weeds and the possibilities for biological control. Biocontrol. News Info. 1987, 8, 7–30. [Google Scholar]
- Global Invasive Species Database, Species Profile: Imperata cylindrica. Available online: http://www.iucngisd.org/gisd/speciesname/Imperata+cylindrica (accessed on 8 August 2022).
- Invasive Species Compendium. Imperata cylindrica. Available online: https://www.cabi.org/isc/datasheet/28580 (accessed on 8 August 2022).
- National Invasive Species Information Center, Cogongrass. Available online: https://www.invasivespeciesinfo.gov/terrestrial/plants/cogongrass#cit (accessed on 8 August 2022).
- Holzmueller, E.J.; Jose, S. Invasion success of cogongrass, an alien C4 perennial grass, in the southeastern United States: Exploration of the ecological basis. Boil. Invasions 2011, 13, 435–442. [Google Scholar] [CrossRef]
- Holzmueller, E.J.; Jose, S. Response of the invasive grass Imperata cylindrica to disturbance in the southeastern forests, USA. Forests 2012, 3, 853–863. [Google Scholar] [CrossRef]
- EDDMapS. Early Detection & Distribution Mapping System. The University of Georgia-Center for Invasive Species and Ecosystem Health. Available online: http://www.eddmaps.org/ (accessed on 8 August 2022).
- Suryatna, E.S.; McIntosh, J.L. Food Crops Production and Control of Imperata cylindrica (L.) Beauv. on Small Farms. In Proceedings of BIOTROP Workshop on Alang-Alang in Bogor, 27–29 July 1976; Biotropica Special Publication: Bogor, Indonesia, 1980; pp. 135–147. [Google Scholar]
- Garrity, D.P.; Aqustin, P.C. Historical land use evolution in a tropical acid upland agroecosystem. Agric. Ecosyst. Environ. 1995, 53, 83–95. [Google Scholar] [CrossRef]
- Pacific Island Ecosystems at Risk (PIER). Imperata cylindrica. Available online: http://www.hear.org/pier/species/imperata_cylindrica.htm (accessed on 8 August 2022).
- van Loan, A.N.; Meeker, J.R.; Minno, M.C. Cogon Grass. In Biological Control of Invasive Plants in the Eastern United States; van Driesche, R., Hoddle, M., Blossy, B., Reardon, D., Riffe, M., Eds.; USDA Forest Service Publication: Morgantown, WV, USA, 2002; pp. 36–372. [Google Scholar]
- Thompson, J.D.; McNeilly, T.; Gray, A.J. Population variation in Spartina anglica C.E. Hubbard. I. Evidence from a common garden experiment. New Phytol. 1991, 117, 115–128. [Google Scholar] [CrossRef]
- Mack, R.M. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 1996, 78, 107–121. [Google Scholar] [CrossRef]
- Chengxu, W.; Mingxing, Z.; Xuhui, C.; Bo, Q. Review on allelopathy of exotic invasive plants. Procedia Engin. 2011, 18, 240–246. [Google Scholar] [CrossRef]
- Warren, R.J.; Matt Candeias, M.; Labatore, A.; Olejniczak, M.; Yang, L. Multiple mechanisms in woodland plant species invasion. J. Plant Ecol. 2019, 12, 201–209. [Google Scholar] [CrossRef]
- Tominaga, T.; Kobayashi, H.; Ueki, K. Intra- and inter-populational variation of Imperata cylindrica var koenigii on Kii-ohshima island of Japan. J. Weed Sci. Tech. 1989, 34, 273–279. [Google Scholar] [CrossRef]
- Hubbard, C.E.; Whyte, R.O.; Brown, D.; Gray, A.P. Imperata cylindrica.: Taxonomy, Distribution, Economic Significance and Control; Commonwealth Agriculture Bureaux: Aberystwyth, UK, 1944; pp. 1–63. [Google Scholar]
- Santiago, A. Studies on the Autecology of Imperata cylindrica (L) Beauv. In Proceedings of the Ninth International Grassland Congress, San Paulo, Brazil, 7–20 January 1965; pp. 499–502. [Google Scholar]
- McDonald, S.K.; Shilling, D.G.; Bewick, T.A.; Okoli, C.A.N.; Smith, R. Sexual reproduction by cogongrass, Imperata cylindrica. Proc. South Weed Sci. Soc. 1995, 48, 188. [Google Scholar]
- King, S.E.; Grace, J.B. The effects of soil flooding on the establishment of cogongrass (Imperata cylindrica), a nonindigenous invader of the southeastern United States. Wetlands 2000, 20, 300–306. [Google Scholar] [CrossRef]
- Ayeni, A.O.; Duke, W.B. The influence of rhizome features on subsequent regenerative capacity in speargrass (Imperata cylindrica (L.) Beauv.). Agric. Ecosyst. Environ. 1985, 13, 309–317. [Google Scholar] [CrossRef]
- Soerjani, M. Alang-alang Imperata cylindrica (L.) Beav., pattern of growth as related to its problem of control. Biol. Trop. Bull. 1970, 1, 88–96. [Google Scholar]
- Terry, P.J.; Adjers, G.; Akobundu, I.O.; Anoka, A.U.; Drilling, M.E.; Tjitrosemito, S.; Utomo, M. Herbicides and mechanical control of Imperata cylindrica as a first step in grassland rehabilitation. Agroforest Syst. 1997, 16, 151–179. [Google Scholar] [CrossRef]
- Eussen, J.H.H. Biological and Ecological Aspects of Alang-Alang [Imperata cylindrica (L) Beauv.]. In Proceedings of BIOTROP Workshop on Alang-Alang in Bogor, 27–29 July 1976; Biotropica Special Publiation: Bogor, Indonesia, 1980; pp. 15–22. [Google Scholar]
- Brewer, J.S.; Cralle, S.P. Phosphorus addition reduces invasion of longleaf pine savanna (Southeastern USA) by an non-indigenous grass (Imperata cylindrica). Plant Ecol. 2003, 167, 237–245. [Google Scholar] [CrossRef]
- Collins, A.R.; Jose, S. Cogongrass Invasion Alters Soil Chemical Properties of Natural and Panted Forestlands. In Invasive Plants and Forest Ecosystems; Kohli, R.K., Jose, S., Batish, D., Singh, H., Eds.; CRC press: Boca Raton, FL, USA, 2008; pp. 237–247. [Google Scholar]
- Daneshgar, P.; Jose, S. Imperata cylindrica, an alien invasive grass, maintains control over nitrogen availability in an establishing pine forest. Plant Soil 2009, 320, 209–218. [Google Scholar] [CrossRef]
- Daneshgar, P.; Jose, S.; Ramsey, C.; Collins, A.R. Impacts of an invasive grass on the productivity of an establishing pine forest. For. Sci. 2008, 54, 579–587. [Google Scholar]
- Lippincott, C.L. Effects of Imperata cylindrica (L.) Beauv. (Cogongrass) invasion on fire regime in Florida sandhill (USA). Nat. Areas J. 2000, 20, 140–149. [Google Scholar]
- Fuscoa, E.J.; Finnb, J.T.; Balchc, J.K.R.; Nagyc, R.C.; Bradley, B.A. Invasive grasses increase fire occurrence and frequency across US ecoregions. PNAS 2019, 116, 47. [Google Scholar] [CrossRef]
- Sajise, P.E. Evaluation of cogon [Imperata cylindrica (L.) Beauv.] as a serial stage in Philippine vegetational succession. Diss. Abstr. Int. B 1973, 33, 3040–3041. [Google Scholar]
- King, S.E.; Grace, J.B. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae). Am. J. Bot. 2000, 87, 1279–1286. [Google Scholar] [CrossRef]
- Bryson, C.T.; Krutz, L.J.; Ervin, G.N.; Reddy, K.N.; Byrd, J.D., Jr. Ecotype variability and edaphic characteristics for cogongrass (Imperata cylindrica) populations in Mississippi. Invasive Plant Sci. Manag. 2010, 3, 199–207. [Google Scholar] [CrossRef]
- Santiago, A. Gene ecological aspects of the Imperata weed and practical implications. In Proceedings of BIOTROP Workshop on Alang-Alang in Bogor, 27–29 July 1976; Biotropica Special Publication: Bogor, Indonesia, 1980; pp. 23–24. [Google Scholar]
- Hiatt, D.S.; Flory, S.L. Populations of a widespread invader and co-occurring native species vary in phenotypic plasticity. New Phytol. 2020, 225, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Lucardi, R.D.; Wallace, L.E.; Ervin, G.N. Patterns of genetic diversity in highly invasive species: Cogongrass (Imperata cylindrica) expansion in the invaded range of the Southern United States (US). Plants 2020, 9, 423. [Google Scholar] [CrossRef] [PubMed]
- Keane, R.M.; Crawley, M.J. Exotic plant invsions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–169. [Google Scholar] [CrossRef]
- Javaid, A.; Naqvi, S.F.; Shoaib, A.; Iqbal, S.M. Management of Macrophomina phaseolina by extracts of an allelopathic grass Imperata cylindrica. Pak. J. Agric. Sci. 2015, 52, 37–41. [Google Scholar]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 419–426. [Google Scholar] [CrossRef]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–193. [Google Scholar] [CrossRef]
- Meiners, S.J.; Kong, C.H.; Ladwig, L.M.; Pisula, N.L.; Lang, K.A. Developing an ecological context for allelopathy. Plant. Ecol. 2012, 213, 1861–1867. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 1–422. [Google Scholar]
- Holly, D.C.; Ervin, G.N.; Jackson, C.R.; Diehl, S.V.; Kirker, G.T. Effect of an invasive grass on ambient rates of decomposition and microbial community structure: A search for causality. Biol Invasions 2009, 11, 1855–1868. [Google Scholar] [CrossRef]
- Trautwig, A.N.; Eckhardt, L.G.; Loewenstein, N.G.; Hoeksema, J.D.; Carter, E.A.; Nadel, R.L. Cogongrass (Imperata cylindrica) affects above and belowground processes in commercial loblolly pine (Pinus taeda) stands. For. Sci. 2017, 63, 10–16. [Google Scholar] [CrossRef]
- Brewer, S. Declines in plant species richness and endemic plant species in longleaf pine savannas invaded by Imperata cylindrica. Biol. Invasions 2008, 10, 1257–1264. [Google Scholar] [CrossRef]
- Bajwa, R.; Javaid, A.; Tasneem, Z.; Nasim, G. Allelopathy and VA mycorrhiza I. Suppression of VA mycorrhiza in Leguminous plants by phytotoxic exudates of Imperata cylindorica (L.) Beauv. Pak. J. Phytopathol. 1996, 8, 25–27. [Google Scholar]
- Bajwa, R. Effects of arbuscular mycorrhizae (AM) and effective microoganisms (EM) on various plant under allelopathic stress. Allelopath. J. 2005, 16, 261–271. [Google Scholar]
- Inderjit, S.; Dakshini, K.M.M. Investigations on some aspects of chemical ecology of cogongrass, Imperata cylindrica (L.) Beauv. J. Chem. Ecol. 1991, 17, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Eussen, J.H.H. Some competitive experiments with alang-alang (Imperta cylindrica (L.) Beauv.) in replacement series. Oecologia 1979, 40, 351–356. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Bonanomi, G.; Sicurezza, M.G.; Caporaso, S.; Esposito, A.; Mazzoleni, S. Phytotoxicity dynamics of decaying plant materials. New Phytol. 2006, 169, 571–578. [Google Scholar] [CrossRef]
- Belz, R.G. Allelopathy in crop/weed interactions-an update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Chou, C.H. Comparative phytotoxic nature of leachate from four subtropical grasses. J. Chem. Ecol. 1989, 15, 2149–2159. [Google Scholar] [CrossRef]
- Hussain, F.; Abidi, N. Allelopathy exhibited by Imperata cylindrica (L.) Beauv. Pak. J. Bot. 1991, 23, 15–25. [Google Scholar]
- Hagan, D.L.; Jose, S.; Lin, C.H. Allelopathic exudates of cogongrass (Imperata cylindrica): Implications for the performance of native pine savanna plant species in the southeastern US. J. Chem. Ecol. 2013, 39, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Toyama, T.; Fukuta, M.; Khanh, T.D.; Tawata, S. Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.). J. Agric. Food Chem. 2009, 57, 9448–9453. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; Watanabe, O. Weed growth suppression by cogongrass (Imperata cylindrica) leaves. Weed Sci. Tech. 1997, 42, 289–293. [Google Scholar] [CrossRef]
- Koger, C.H.; Bryson, C.T. Effect of cogongrass (Imperata cylindrica) extracts on germination and seedling growth of selected grass and broadleaf species. Weed Technol. 2004, 18, 236–242. [Google Scholar] [CrossRef]
- Casini, P.; Vecchio, V. Allelopathic interaction pf itchgrass and cogongrass: Germination and early development of rice. Trop. Agric. 1998, 75, 445–451. [Google Scholar]
- Rajan, A.; Lovett, J.V.; Anderws, A.C. Evaluation of potential source of allelochemical in lalang (Imperata cylindrica). Pertanika 1988, 11, 175–189. [Google Scholar]
- Anjum, T.; Bajwa, R.; Javaid, A. Biological control of Parthenium I: Effect of Imperata cylindrica on Distribution, Germination and Seedling Growth of Parthenium hysterophorus L. Int. J. Agri. Biol. 2005, 7, 448–450. [Google Scholar]
- Salim, M.A.A.; Linatoc, A.C.; Jikan, S.S.; Jamil, S.; Latif, M.S. Allelopathic effects of Imperata cylindrica aqueous extract on the germination of Cucumis sativus and Lolium perenne. Int. J. Recent. Technol. Eng. 2020, 8, 2503–2508. [Google Scholar] [CrossRef]
- Rusdy, M.; Riadi, M.; Sari, A.M.; Normal, A. Comparative allelopathic effect of Imperata cylindrica and Chromolaena odorata on germination and seedling growth of Centrosema pubescens. Int. J. Sci. Res. Pub. 2015, 5, 1–5. [Google Scholar]
- Eussen, J.H.H.; Niemann, G.J. Growth inhibiting substances from leaves of Imperata cylindrica (L.) Beauv. Z. Pflanzenphysiol. 1981, 102, 262–266. [Google Scholar] [CrossRef]
- Koger, C.H.; Bryson, C.T.; Byrd, J.D., Jr. Response of selected grass and broadleaf species to cogongrass (Imperata cylindrica) residues. Weed Technol. 2004, 18, 353–357. [Google Scholar] [CrossRef]
- Afzal, B.; Bajwa, R.; Javaid, A. Allelopathy and VA mycorrhiza VII: Cultivation of Vigna radiata and Phaseolus vulgaris under allelopathic stress caused by Imperata cylindrica. Pak. J. Biol. Sci. 2000, 3, 1926–1928. [Google Scholar] [CrossRef]
- Suzuki, M.; Tominaga, T.; Ohno, O.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Plant growth inhibitory activity and active substances with allelopathic potential of cogongrass (Imperata cylindrica) rhizome. Weed Biol. Manag. 2018, 18, 92–98. [Google Scholar] [CrossRef]
- Erida, G.; Saidi, N.; Hasanuddin, S. Allelopathic screening of several weed species as potential bioherbicides. IOP Conf. Ser. Earth Environ. Sci. 2019, 334, 012034. [Google Scholar] [CrossRef]
- Cerdeira, A.L.; Cantrell, C.L.; Dayan, F.E.; Byrd, J.D.; Duke, S.O. Tabanone, a new phytotoxic constituent of cogongrass (Imperata cylindrica). Weed Sci. 2012, 60, 212–218. [Google Scholar] [CrossRef]
- Lu, Z.; Smyth, S.A.; De Silva, A.O. Distribution and fate of synthetic phenolic antioxidants in various wastewater treatment processes in Canada. Chemosphere 2019, 219, 826–835. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, X.; Zhao, Y.; Liu, W.; Martyniuk, C.J. Neurotoxic effects of synthetic phenolic antioxidants on dopaminergic, serotoninergic, and GABAergic signaling in larval zebrafish (Danio rerio). Sci. Total Environ. 2020, 830, 154688. [Google Scholar] [CrossRef]
- Löschner, D.; Rapp, T.; Schlosser, F.U.; Schuster, R.; Stottmeister, E.; Zanderm, S. Experience with the application of the draft european standard prEN 15768 to the identification of leachable organic substances from materials in contact with drinking water by GC-MS. Anal. Method 2011, 3, 2547–2556. [Google Scholar] [CrossRef]
- Estrada, J.A.; Flory, S.L. Cogongrass (Imperata cylindrica) invasions in the US: Mechanisms, impacts, and threats to biodiversity. Glob. Ecol. Conserv. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef]
- Dalton, B.R. The Occurrence and Behavior of Plant Phenolic Acids in Soil Environments and their Potential Involvement in Allelochemical Interference Interactions: Methodological Limitations in Establishing Conclusive Proof of Allelopathy. In Principals and Practices in Plant Ecology: Allelochemical Interactions; Inderjit Dakshini, K.M.M., Foy, C.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of Action of Allelochemical Action of Phenolic Compounds. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 217–238. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Xiang, R.H.; Wang, J.Q. Hydrogen sulfide-phytohormone interaction in plants under physiological and stress conditions. J. Plant Growth Regul. 2021, 40, 2476–2484. [Google Scholar] [CrossRef]
- Nakano, M.; Omae, N.; Tsuda, K. Inter-organismal phytohormone networks in plant-microbe interactions. Curr. Opin. Plant Biol. 2022, 68, 102258. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Lee, M.K.; Sung, S.H.; Kim, Y.C. Neuroprotective 2-(2-phenylethyl)chromones of Imperata cylindrica. J. Nat. Prod. 2006, 69, 290–291. [Google Scholar] [CrossRef]
- An, H.J.; Nugroho, A.; Song, B.M.; Park, H.J. Isoeugenin, a novel nitric oxide synthase inhibitor. Molecules 2015, 20, 21336–21345. [Google Scholar] [CrossRef]
- Nayim, P.; Mbaveng, A.T.; Ntyam, A.M.; Kuete, V. A botanical from the antiproliferative cameroonian spice, Imperata cylindrica is safe at lower doses, as demonstrated by oral acute and sub-chronic toxicity screenings. BMC Complement. Med. Ther. 2020, 20, 273. [Google Scholar] [CrossRef]
- Jung, Y.K.; Shin, D. Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications. Molecules 2021, 26, 1454. [Google Scholar] [CrossRef]
- Maryati, M.; Widyaningrum, I.; Sulistyowati, E. Effects of Imperata cylindrica on anti-hyperlipidemia: A review. Biointerface Res. App. Chem. 2022, 12, 8184–8194. [Google Scholar]
- Nago, R.D.T.; Nayim, P.; Mbaveng, A.T.; Mpetga, J.D.S.; Bitchagno, G.T.M.; Garandi, B.; Tane, P.; Lenta, B.N.; Sewald, N.; Tene, M.; et al. Prenylated dlavonoids and C-15 isoprenoid analogues with antibacterial properties from the whole plant of Imperata cylindrica (L.) Raeusch (Gramineae). Molecules 2021, 26, 4717. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Cao, H.N.; Jiang, H.Y.; Li, H.M.; Hao, M.M.; Zhao, W.; Zhang, Y.; Han, Y.; Zhang, Y.; Wang, T. Structural characterization of phenolic constituents from the rhizome of Imperata cylindrica var major and their anti-inflammatory activity. Phytochemistry 2022, 196, 113076. [Google Scholar] [PubMed]
- Lockwood, J.L.; Simberloff, D.; McKinney, M.L.; Von Holle, B. How many, and which, plants will invade natural areas. Biol. Inva. 2001, 3, 1–8. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; pp. 1–815. [Google Scholar]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef]
- Tsyganova, A.V.; Brewin, N.J.; Tsyganov, V.E. Structure and development of the legume-rhizobial symbiotic interface in infection threads. Cells 2021, 10, 1050. [Google Scholar] [CrossRef]
- Mathesius, U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. J. Plant Physiol. 2022, 276, 153765. [Google Scholar] [CrossRef]
- Hale, A.N.; Kalisz, S. Perspectives on allelopathic disruption of plant mutualisms: A framework for individual- and population-level fitness consequences. Plant Ecol. 2012, 213, 1991–2006. [Google Scholar] [CrossRef]
- Pinzone, P.; Potts, D.; Pettibone, G.; Warren, R. Do novel weapons that degrade mycorrhizal mutualisms promote species invasion? Plant Ecol. 2018, 219, 539–548. [Google Scholar] [CrossRef]
- Mutshekwa, T.; Cuthbert, R.N.; Wasserman, R.J.; Murungweni, F.M.; Dalu, T. Macroinvertebrate colonisation associated with native and invasive leaf litter decomposition. Knowl. Manag. Aquat. Ecosyst. 2020, 421, 32. [Google Scholar] [CrossRef]
- Zubek, S.; Majewska, M.L.; Błaszkowski, J.; Stefanowicz, A.M.; Nobis, M.; Kapusta, P. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soil 2016, 52, 879–893. [Google Scholar] [CrossRef]
- Zubek, S.; Kapusta, P.; Stanek, M.; Woch, M.W.; Błaszkowski, J.; Stefanowicz, A.M. Reynoutria japonica invasion negatively affects arbuscular mycorrhizal fungi communities regardless of the season and soil conditions. Appl. Soil Ecol. 2022, 169, 104152. [Google Scholar] [CrossRef]
- Řezáčová, V.; Řezáč, M.; Gryndler, M.; Hršelová, H.; Gryndlerová, H.; Michalová, T. Plant invasion alters community structure and decreases diversity of arbuscular mycorrhizal fungal communities. Appl. Soil Ecol. 2021, 167, 104039. [Google Scholar] [CrossRef]
- Duke, S.O.; Blair, A.C.; Dayan, F.E.; Johnson, R.D.; Meepagala, K.M.; Cook, D.; Bajsa, J. Is (−)-catechin a novel weapon of spotted knapweed (Centaurea stoebe)? J. Chem. Ecol. 2009, 35, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Ito, I.; Kobayashi, K.; Yoneyama, T. Fate of dehydromatricaria ester added to soil and its implications for the allelopathic effect of Solidago altissima L. Ann. Bot. 1998, 82, 625–630. [Google Scholar] [CrossRef]
- Blum, U. Fate of Phenolic Allelochemicals in Soils-the Role of Soil and Rhizosphere Microorganism. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 57–76. [Google Scholar]
- Kobayashi, K.; Koyama, H.; Shim, I.S. Relationship between behavior of dehydromatricaria ester in soil and the allelopathic activity of Solidago altissima L. in the laboratory. Plant Soil 2004, 259, 97–102. [Google Scholar] [CrossRef]
Source | Inhibition | Target Plant Species | Reference | ||
---|---|---|---|---|---|
Germination | Growth | Mycorrhizal colonization, nodulation | |||
Leachate | ✓ | Brachiaria mutica, Digitaria decumbens | [64] | ||
✓ | ✓ | Dichanthium annulatum | [65] | ||
✓ | Chrysopogon montanus, Medicago polymorpha, Pinus roxburghii | [65] | |||
Leachate/ exudate | ✓ | ✓ | Aristida stricta | [66] | |
Exudate | ✓ | Pinus elliottii | [66] | ||
✓ | Echinochloa crus-galli | [67] | |||
Plant residue | ✓ | Erigeron candensis, Portulaca oleracea | [68] | ||
✓ | ✓ | Sida spinosa, Brachiaria ramosa, Echinochloa crus-galli, Lolium multiflorum | [69] | ||
✓ | Lolium multiflorum | [69] | |||
✓ | Oryza sativa | [70] | |||
✓ | Trifolium subterraneum | [71] | |||
Soil extract | ✓ | ✓ | Dichanthium annulatum, Chrysopogon montanus | [65] | |
✓ | Setaria italica, Medicago polymorpha, Pinus roxburghii | [65] | |||
Plant extract | ✓ | Oryza sativa | [70] | ||
✓ | ✓ | Parthenium hysterophorus | [72] | ||
✓ | ✓ | Cucumis sativus, Lolium perenne | [73] | ||
✓ | ✓ | Centrosema pubescens | [74] | ||
✓ | ✓ | Raphanus sativus, Brassica juncea, Trigonella foenum-graecum, Lycopersicon esculentum | [59] | ||
✓ | Solanum lycopersicum (syn; L.esculentum) | [75] | |||
✓ | ✓ | Sida spinosa, Brachiaria ramosa, Echinochloa crus-galli, Cynodon dactylon, Lolium multiflorum | [76] | ||
✓ | ✓ | Setaria italica, Dichanthium annulatum, Chrysopogon montanus, Medicago polymorpha, Pinus roxburghii | [65] | ||
✓ | Vigna radiata, Phaseolus vulgaris | [77] | |||
✓ | Echinochloa crus-galli, Lolium multiflorum, Phleum pratense, Lepidium sativum, Lactuca sativa, Medicago sativa | [78] | |||
✓ | Amaranthus spinosus | [79] | |||
✓ | ✓ | Lactuca sativa, Agrostis stolonifera | [80] |
Chemical Class | Compound | Source | Reference | ||||
---|---|---|---|---|---|---|---|
Leachate | Exudate | Essential oil | Rhizome extract | Leaf extract | |||
Fatty acid | 1: Palmitic acid | ✓ | ✓ | [67,80] | |||
2: Linoleic acid | ✓ | [67] | |||||
Terpenoid | 3: Phytol | ✓ | [80] | ||||
4: Tabanone | ✓ | [80] | |||||
Simple phenolic | 5: p-Vinylguaiacol | ✓ | [80] | ||||
6: 2,4-Di-tert-butylphenol | ✓ | [67] | |||||
Benzoic acid | 7: Benzoic acid | ✓ | ✓ | [66,75] | |||
Phenolic acid | 8: Salicylic acid | ✓ | [66] | ||||
9: Gentisic acid | ✓ | [75] | |||||
10: Gallic acid | ✓ | [66] | |||||
11: p-Hydroxybenzoic acid | ✓ | ✓ | [64,75] | ||||
13: van ilic acid | ✓ | [75] | |||||
Phenolic aldehyde | 14: van illin | ✓ | ✓ | [67,75] | |||
15: p-Hydroxybenzaldehyde | ✓ | [75] | |||||
Acetophenone | 16: 4-Acetyl-2-methoxyphenol (acetoguaiacone) | ✓ | [67] | ||||
Phenylpropanoid | 17: Isoeugenol | ✓ | [67] | ||||
18: cinnamic acid | ✓ | [66] | |||||
19: p-coumaric acid | ✓ | ✓ | [64,75] | ||||
20: o-coumaric acid | ✓ | [75] | |||||
21: Caffeic acid | ✓ | [66] | |||||
22: Ferulic acid | ✓ | [67] | |||||
23: Isoferulic acid | ✓ | [67] | |||||
24: Sinapinic acid (sinapic acid) | ✓ | [66] | |||||
25: Methyl caffeate | ✓ | [78] | |||||
Flavonoid | 26: 5-Methoxyflavone | ✓ | [78] | ||||
27: 5,2′-Dimethoxyflavone | ✓ | [78] | |||||
Quinone | 28: Emodin | ✓ | [66] | ||||
Alkaloid | 29: Hexadecahydro-1-azachrysen-8-yl ester | ✓ | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H. Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species. Plants 2022, 11, 2551. https://doi.org/10.3390/plants11192551
Kato-Noguchi H. Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species. Plants. 2022; 11(19):2551. https://doi.org/10.3390/plants11192551
Chicago/Turabian StyleKato-Noguchi, Hisashi. 2022. "Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species" Plants 11, no. 19: 2551. https://doi.org/10.3390/plants11192551
APA StyleKato-Noguchi, H. (2022). Allelopathy and Allelochemicals of Imperata cylindrica as an Invasive Plant Species. Plants, 11(19), 2551. https://doi.org/10.3390/plants11192551