The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy
Abstract
:1. Introduction
2. Phytochemical Constituents of P. granatum
3. P. granatum in Traditional Medicine
4. Photodynamic Therapy
5. Mechanism of Action and Therapeutic Properties of P. granatum
5.1. Anticancer Properties
5.2. Antioxidant Properties
5.3. Anti-Osteoarthritis Properties
5.4. Anti-Inflammatory Properties
5.5. Antiviral Properties
5.6. Toxicity of P. granatum
6. Conclusions and Future Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ER+ | Estrogen receptor-positive |
Erα | Estrogen receptors alpha |
Erβ | Estrogen receptors beta |
Bcl-2 | B-cell lymphoma 2 |
Bax | Bcl-2-associated X |
ET | Ellagitannins |
UA | Urolithin A |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
COX-2 | Cyclooxygenase-2 |
iNOS | Inducible nitric oxide synthase |
MCF-7 | Breast cancer cell line |
PC3 | Human prostate cancer cell lines |
HIF1α | Hypoxia-inducible factor 1-alpha |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
NF-κB_ | Nuclear factor kappa B |
IL-1β_ | Interleukin-1β |
HIV-1 | Human immunodeficiency virus |
CD4 | Cluster of differentiation 4 |
MDCK | Madin-Darby canine kidney |
PPE | Pomegranate peel extract |
References
- Uzuner, S. Pomegranate. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 549–563. ISBN 978-0-12-812780-3. [Google Scholar]
- Perez, J. Food as Medicine Pomegranate (Punica granatum, Lythraceae)—American Botanical Council. Available online: https://www.herbalgram.org/resources/herbalegram/volumes/volume-18/issue-1-january-2021/food-as-medicine-pomegranate/food-as-medicine-pomegranate/ (accessed on 16 May 2022).
- Bhandari, P.R. Pomegranate (Punica granatum L). Ancient Seeds for Modern Cure? Review of Potential Therapeutic Applications. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2, 171. [Google Scholar] [CrossRef]
- Bonesi, M.; Tundis, R.; Vincenzo, S.; Loizzo, M. The Juice of Pomegranate (Punica granatum L.): Recent Studies on Its Bioactivities. In Quality Control in the Beverage Industry; Academic Press: Cambridge, MA, USA, 2019; pp. 459–489. ISBN 978-0-12-816681-9. [Google Scholar]
- Kumari, A.; Dora, J.; Kumar, A. Pomegranate (Punica granatum)—Overview. Int. J. Pharm. Chem. Sci. 2012, 1, 1218–1222. [Google Scholar]
- Hechtman, L. Clinical Naturopathic Medicine; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; ISBN 978-0-7295-8576-7. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Moga, M.A.; Dimienescu, O.G.; Bălan, A.; Dima, L.; Toma, S.I.; Bîgiu, N.F.; Blidaru, A. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules 2021, 26, 1054. [Google Scholar] [CrossRef]
- Ahmed, H.H.; El-Abhar, H.S.; Hassanin, E.A.K.; Abdelkader, N.F.; Shalaby, M.B. Punica granatum Suppresses Colon Cancer through Downregulation of Wnt/β-Catenin in Rat Model. Rev. Bras. Farmacogn. 2017, 27, 627–635. [Google Scholar] [CrossRef]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant Activities of Antioxidants and Their Impact on Health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef]
- Banihani, S.; Swedan, S.; Alguraan, Z. Pomegranate and Type 2 Diabetes. Nutr. Res. 2013, 33, 341–348. [Google Scholar] [CrossRef]
- Stefanou, V.; Papatheodorou, S.; Tsakni, A.; Lougovois, V.; Talelli, A.; Panourgias, G.; Dariatos, A.; Tsaknis, I. Anti-Inflammatory Properties of Pomegranate. Int. J. Adv. Res. Microbiol. Immunol. 2020, 2, 1–13. [Google Scholar]
- Miguel, M.G.; Neves, M.A.; Antunes, M.D. Pomegranate (Punica granatum L.): A Medicinal Plant with Myriad Biological Properties—A Short Review. J. Med. Plants Res. 2010, 4, 2836–2847. [Google Scholar] [CrossRef]
- Panth, N.; Manandhar, B.; Paudel, K.R. Anticancer Activity of Punica granatum (Pomegranate): A Review. Phytother. Res. 2017, 31, 568–578. [Google Scholar] [CrossRef]
- de Paula Rodrigues, R.; Tini, I.R.P.; Soares, C.P.; da Silva, N.S. Effect of Photodynamic Therapy Supplemented with Quercetin in HEp-2 Cells. Cell Biol. Int. 2014, 38, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Lu, Y.; Zhang, S.-J.; Wang, K.-G.; Li, Y. The Effect of Ellagic Acid on Photodynamic Therapy in Leukemia Cells. Gen. Physiol. Biophys. 2018, 37, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapathy, G.J.; George, B.P.; Abrahamse, H. Enhancement of Phthalocyanine Mediated Photodynamic Therapy by Catechin on Lung Cancer Cells. Molecules 2020, 25, 4874. [Google Scholar] [CrossRef]
- Thakur, N.S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y.N.; Kushwah, V.; Jain, S.; Kalia, Y.N.; Bhaumik, J.; Banerjee, U.C. Co-Administration of Zinc Phthalocyanine and Quercetin via Hybrid Nanoparticles for Augmented Photodynamic Therapy. Nanomed. Nanotechnol. Biol. Med. 2021, 33, 102368. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New Photosensitizers for Photodynamic Therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik-Hausmann, S.; Hellwig, E.; Müller, M.; Al-Ahmad, A. Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers. Nutrients 2021, 13, 710. [Google Scholar] [CrossRef] [PubMed]
- Venkitasamy, C.; Zhao, L.; Zhang, R.; Pan, Z. Chapter 8—Pomegranate. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 181–216. ISBN 978-0-12-814138-0. [Google Scholar]
- Puneeth, H.R.; Chandra, S.S.P. A Review on Potential Therapeutic Properties of Pomegranate (Punica granatum L.). Plant Sci. Today 2020, 7, 9–16. [Google Scholar] [CrossRef]
- Pereira de Melo, I.; Carvalho, E.; Filho, J. Pomegranate Seed Oil (Punica Granatum L.): A Source of Punicic Acid (Conjugated α-Linolenic Acid). J. Hum. Nutr. Food Sci. 2014, 2, 1024. [Google Scholar]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef]
- Arun, N.; Singh, D.P. Punica granatum: A review on pharmacological and therapeutic properties. Int. J. Pharm. Sci. Res. 2012, 3, 1240–1245. [Google Scholar]
- Houston, D.M.J.; Bugert, J.; Denyer, S.P.; Heard, C.M. Anti-Inflammatory Activity of Punica granatum L. (Pomegranate) Rind Extracts Applied Topically to Ex Vivo Skin. Eur. J. Pharm. Biopharm. 2017, 112, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A Review Study on Punica granatum L. J. Evid.-Based Complement. Altern. Med. 2016, 21, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J. Evid.-Based Complement. Altern. Med. 2017, 22, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.R.; Arastoo, M.; Ostad, S.N. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches. Iran. J. Pharm. Res. IJPR 2012, 11, 385–400. [Google Scholar]
- Wu, S.; Tian, L. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules 2017, 22, 1606. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Compounds as Beneficial Phytochemicals in Pomegranate (Punica granatum L.) Peel: A Review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Jasuja, N.D.; Saxena, R.; Chandra, S.; Sharma, R. Pharmacological Characterization and Beneficial Uses of Punica granatum. Asian J. Plant Sci. 2013, 11, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Haque, N.; Lecture; Sofi, G.; Lecture; Sofi, G.; Ali, W.; Rashid, M.; Itrat, M. Comprehensive Review of Phytochemical and Pharmacological Profile of Anar (Punica granatum Linn): A Heaven’s Fruit. J. Ayurvedic Herb. Med. 2015, 1, 22–26. [Google Scholar] [CrossRef]
- Sharma, J.; Maity, A. Pomegranate Phytochemicals: Nutraceutical and Therapeutic Values. Fruit Veg. Cereal Sci. Biotech. 2010, 4, 56–76. [Google Scholar]
- Costantini, S.; Rusolo, F.; De Vito, V.; Moccia, S.; Picariello, G.; Capone, F.; Guerriero, E.; Castello, G.; Volpe, M.G. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L.) Seed Oil on Breast Cancer Cell Lines. Molecules 2014, 19, 8644–8660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A.; Bhatia, D.; Bishayee, A. Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: The Role of NF-ΚB and Nrf2 Signaling Pathways. Nutrients 2017, 9, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamali, B.; Bonyanpour, A. Comparison of Fruit Quality Characteristics and Polyphenolic Compounds in Seven Iranian Pomegranate Cultivars. Hortic. Int. J. 2018, 2, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.M.; Kashani, H.H. Chemical Composition of the Plant Punica granatum L. (Pomegranate) and Its Effect on Heart and Cancer. J. Med. Plants Res. 2012, 6, 5306–5310. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; BiBi, J.; Kamboh, A.A.; Arain, M.A.; Shah, Q.A.; Alagawany, M.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Yatoo, M.I.; et al. The Promising Pharmacological Effects and Therapeutic/Medicinal Applications of Punica granatum L. (Pomegranate) as a Functional Food in Humans and Animals. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Rajiv, P.; Gopalan, R.; Lakshmanaperumalsamy, P. An Overview of Phytochemical and Pharmacological Potentials of Punica granatum L. Pharmacogn. J. 2019, 11, 1167–1171. [Google Scholar] [CrossRef]
- Prasad, D.; Kunnaiah, R. Punica granatum: A Review on Its Potential Role in Treating Periodontal Disease. J. Indian Soc. Periodontol. 2014, 18, 428–432. [Google Scholar] [CrossRef]
- Lechner, J.F.; Stoner, G.D. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules 2019, 24, 1602. [Google Scholar] [CrossRef] [Green Version]
- Govind, J.K.; Magnus, A.A.; Subba Rao, G.; Takanari, A.; Akira, I.; Harukuni, T. Cytotoxic Effect of the Red Beetroot (Beta vulgaris L.) Extract Compared to Doxorubicin (Adriamycin) in the Human Prostate (PC-3) and Breast (MCF-7) Cancer Cell Lines. Anticancer Agents Med. Chem. 2011, 11, 280–284. [Google Scholar]
- Kapadia, G.J.; Rao, G.S. Anticancer Effects of Red Beet Pigments. In Red Beet Biotechnology: Food and Pharmaceutical Applications; Neelwarne, B., Ed.; Springer US: Boston, MA, USA, 2012; pp. 125–154. ISBN 978-1-4614-3458-0. [Google Scholar]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Le, W.; Cui, Z. A Novel Therapeutic Anticancer Property of Raw Garlic Extract via Injection but Not Ingestion. Cell Death Discov. 2018, 4, 108. [Google Scholar] [CrossRef]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A Review of Potential Therapeutic Effects. Avicenna J. Phytomed. 2014, 4, 1–14. [Google Scholar]
- Anaya Esparza, L.M.; Montalvo-González, E. Bioactive Compounds of Soursop (Annona muricata L.) Fruit. In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–15. ISBN 978-3-030-06120-3. [Google Scholar]
- Hadisaputri, Y.E.; Habibah, U.; Abdullah, F.F.; Halimah, E.; Mutakin, M.; Megantara, S.; Abdulah, R.; Diantini, A. Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells. Breast Cancer Targets Ther. 2021, 13, 447–457. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus Carota and Their Health Benefits—Review Article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Mroueh, M.A.; Shebaby, W.; Smith, K.; Karam, M.; Mansour, A.; Asmar, M.E.; El-Sibai, M.; Daher, C.F. The Anti-Cancer Effect of the Pentane Fraction of Daucus Carota Oil Extract Is Mediated through Cell Cycle Arrest and an Increase in Apoptosis. Planta Med. 2013, 79, PN66. [Google Scholar] [CrossRef]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive Compounds and Health Benefits of Artemisia Species. Nat. Prod. Commun. 2019, 14, 1934578–19850354. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.J.; Schmiech, M.; Hafner, S.; Paetz, C.; Steinborn, C.; Huber, R.; Gaafary, M.E.; Werner, K.; Schmidt, C.Q.; Syrovets, T.; et al. Antitumor Activity of an Artemisia Annua Herbal Preparation and Identification of Active Ingredients. Phytomedicine 2019, 62, 152962. [Google Scholar] [CrossRef]
- Mukavi, J.W.; Mayeku, P.W.; Nyaga, J.M.; Kituyi, S.N. In Vitro Anti-Cancer Efficacy and Phyto-Chemical Screening of Solvent Extracts of Kigelia Africana (Lam.) Benth. Heliyon 2020, 6, e04481. [Google Scholar] [CrossRef]
- Nabatanzi, A.M.; Nkadimeng, S.; Lall, N.; Kabasa, J.D.; McGaw, L.J. Ethnobotany, Phytochemistry and Pharmacological Activity of Kigelia Africana (Lam.) Benth. (Bignoniaceae). Plants 2020, 9, 753. [Google Scholar] [CrossRef]
- del Socorro Santos Díaz, M.; Barba de la Rosa, A.-P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia Spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, e8634249. [Google Scholar] [CrossRef] [Green Version]
- Heikal, A.; Abd El-Sadek, M.E.; Salama, A.; Taha, H.S. Comparative Study between in Vivo- and in Vitro-Derived Extracts of Cactus (Opuntis Ficus-Indica L. Mill) against Prostate and Mammary Cancer Cell Lines. Heliyon 2021, 7, e08016. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, I. Traditional and Complementary Systems of Medicine. In The Energetics of Health; Elsevier: Amsterdam, The Netherlands, 2009; pp. 13–27. ISBN 978-0-443-06955-0. [Google Scholar]
- Che, C.-T.; George, V.; Ijinu, T.P.; Pushpangadan, P.; Andrae-Marobela, K. Chapter 2—Traditional Medicine. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 15–30. ISBN 978-0-12-802104-0. [Google Scholar]
- Izquierdo-Vega, J.A.; Morales-González, J.A.; Sánchez-Gutiérrez, M.; Betanzos-Cabrera, G.; Sosa-Delgado, S.M.; Sumaya-Martínez, M.T.; Morales-González, Á.; Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Duo, L.; Wang, J.; GegenZhula; Yang, J.; Li, Z.; Tu, Y. A Unique Understanding of Traditional Medicine of Pomegranate, Punica granatum L. and Its Current Research Status. J. Ethnopharmacol. 2021, 271, 113877. [Google Scholar] [CrossRef]
- Gairola, S.; Sharma, J.; Bedi, Y.S. A Cross-Cultural Analysis of Jammu, Kashmir and Ladakh (India) Medicinal Plant Use. J. Ethnopharmacol. 2014, 155, 925–986. [Google Scholar] [CrossRef]
- Kumar, K.; Sharma, Y.P.; Manhas, R.K.; Bhatia, H. Ethnomedicinal Plants of Shankaracharya Hill, Srinagar, J&K, India. J. Ethnopharmacol. 2015, 170, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, M.H. Photodynamic Therapy: From Theory to Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-39629-8. [Google Scholar]
- dos Santos, A.F.; de Almeida, D.R.Q.; Terra, L.F.; Baptista, M.S.; Labriola, L. Photodynamic Therapy in Cancer Treatment—An Update Review. J. Cancer Metastasis Treat. 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24–29. [Google Scholar] [CrossRef]
- Chilakamarthi, U.; Giribabu, L. Photodynamic Therapy: Past, Present and Future. Chem. Rec. 2017, 17, 775–802. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Rkein, A.M.; Ozog, D.M. Photodynamic Therapy. Dermatol. Clin. 2014, 32, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Khwairakpam, A.D.; Bordoloi, D.; Thakur, K.K.; Monisha, J.; Arfuso, F.; Sethi, G.; Mishra, S.; Kumar, A.P.; Kunnumakkara, A.B. Possible Use of Punica granatum (Pomegranate) in Cancer Therapy. Pharmacol. Res. 2018, 133, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikmen, M.; Ozturk, N.; Ozturk, Y. The Antioxidant Potency of Punica granatum L. Fruit Peel Reduces Cell Proliferation and Induces Apoptosis on Breast Cancer. J. Med. Food 2011, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti Tumoral Properties of Punica granatum (Pomegranate) Peel Extract on Different Human Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5697–5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceci, C.; Lacal, P.M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid. Nutrients 2018, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Ismail, T.; Layla, A. Pomegranate Bioactive Molecules and Health Benefits. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 1253–1279. ISBN 978-3-319-78030-6. [Google Scholar]
- Marín, M.; María Giner, R.; Ríos, J.-L.; Carmen Recio, M. Intestinal Anti-Inflammatory Activity of Ellagic Acid in the Acute and Chronic Dextrane Sulfate Sodium Models of Mice Colitis. J. Ethnopharmacol. 2013, 150, 925–934. [Google Scholar] [CrossRef]
- Ahmadiankia, N. Molecular Targets of Pomegranate (Punica granatum) in Preventing Cancer Metastasis. Iran. J. Basic Med. Sci. 2019, 22, 977–988. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Yang, F.; Zeng, A.; Yang, S.; Luo, Y.; Zhang, Y.; Xie, Y.; Ye, T.; Xia, Y.; et al. The Extract from Punica granatum (Pomegranate) Peel Induces Apoptosis and Impairs Metastasis in Prostate Cancer Cells. Biomed. Pharmacother. 2017, 93, 976–984. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Zheng, W.; Hu, M.; Wang, J.; Ma, S.; Deng, Y.; Luo, Y.; Ye, T.; Yin, W. Punica granatum (Pomegranate) Leaves Extract Induces Apoptosis through Mitochondrial Intrinsic Pathway and Inhibits Migration and Invasion in Non-Small Cell Lung Cancer in Vitro. Biomed. Pharmacother. 2016, 80, 227–235. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Chapter 108—Potential Health Benefits of Pomegranate (Punica granatum) Seed Oil Containing Conjugated Linolenic Acid. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 919–924. ISBN 978-0-12-375688-6. [Google Scholar]
- Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The Role of Oxidative Stress and Antioxidants in Diabetic Complications. Sultan Qaboos Univ. Med. J. 2012, 12, 5–18. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuncio-Jáuregui, N.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Pérez-López, A.J.; Frutos-Fernández, M.J.; Carbonell-Barrachina, Á.A. Chapter 76—Processing Pomegranates for Juice and Impact on Bioactive Components. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 629–636. ISBN 978-0-12-404699-3. [Google Scholar]
- Dutta, T. Antioxidants and its effects. JERHP 2016, 2, 5. [Google Scholar]
- Althunibat, O.Y.; Al-Mustafa, A.H.; Tarawneh, K.; Khleifat, K.M.; Ridzwan, B.H.; Qaralleh, H.N. Protective Role of Punica granatum L. Peel Extract against Oxidative Damage in Experimental Diabetic Rats. Process Biochem. 2010, 45, 581–585. [Google Scholar] [CrossRef]
- Bedel, H.A.; Turgut, N.T.; Kurtoglu, A.U.; Usta, C. Effects of Nutraceutical Punicic Acid. Indian J. Pharm. Sci. 2017, 79, 328–334. [Google Scholar] [CrossRef]
- Merkeb Alamneh, Y.; Sume, B.W.; Abebaw Shiferaw, A. Musculoskeletal Disorders among the Population in Northwest Ethiopia. SAGE Open Med. 2022, 10, 20503121221085108. [Google Scholar] [CrossRef]
- O’Neill, T.W.; McCabe, P.S.; McBeth, J. Update on the Epidemiology, Risk Factors and Disease Outcomes of Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 312–326. [Google Scholar] [CrossRef]
- Grässel, S.; Muschter, D. Recent Advances in the Treatment of Osteoarthritis. F1000Research 2020, 9, 325. [Google Scholar] [CrossRef]
- Anandacoomarasamy, A.; March, L. Current Evidence for Osteoarthritis Treatments. Ther. Adv. Musculoskelet. Dis. 2010, 2, 17–28. [Google Scholar] [CrossRef]
- Anjum, A.; Akram, M.; Rashid, A. Epidemiology and herbal treatment of osteoarthritis. Pak. J. Med. Biol. Sci. 2017, 1, 48–57. [Google Scholar]
- Choi, B.-R.; Ku, S.-K.; Kang, S.-J.; Park, H.-R.; Sung, M.-S.; Lee, Y.-J.; Park, K.-M. Anti-Osteoarthritis Effects of Pomegranate, Eucommiae Cortex and Achyranthis Radix Extracts on the Primary Cultured Rat Articular Chondrocytes. J. Soc. Prev. Korean Med. 2017, 21, 87–98. [Google Scholar] [CrossRef]
- Liu, F.; Yang, H.; Li, D.; Wu, X.; Han, Q. Punicalagin Attenuates Osteoarthritis Progression via Regulating Foxo1/Prg4/HIF3α Axis. Bone 2021, 152, 116070. [Google Scholar] [CrossRef]
- Mahdavi, A.M.; Javadivala, Z. Systematic Review of the Effects of Pomegranate (Punica granatum) on Osteoarthritis. Health Promot. Perspect. 2021, 11, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Hadipour-Jahromy, M.; Mozaffari-Kermani, R. Chondroprotective Effects of Pomegranate Juice on Monoiodoacetate-Induced Osteoarthritis of the Knee Joint of Mice. Phytother. Res. 2010, 24, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Marusawa, H.; Endo, Y.; Chiba, T. Inflammation-Mediated Genomic Instability: Roles of Activation-Induced Cytidine Deaminase in Carcinogenesis. Cancer Sci. 2012, 103, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Okada, F. Inflammation-Related Carcinogenesis: Current Findings in Epidemiological Trends, Causes and Mechanisms. Yonago Acta Med. 2014, 57, 65–72. [Google Scholar]
- Kim, H.; Banerjee, N.; Sirven, M.A.; Minamoto, Y.; Markel, M.E.; Suchodolski, J.S.; Talcott, S.T.; Mertens-Talcott, S.U. Pomegranate Polyphenolics Reduce Inflammation and Ulceration in Intestinal Colitis—Involvement of the MiR-145/P70S6K1/HIF1α Axis in Vivo and in Vitro. J. Nutr. Biochem. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, C.; Fu, C.; Lu, H.; Jin, H.; Chen, Q.; Pan, J. The Protective Effect of Ellagic Acid (EA) in Osteoarthritis: An in Vitro and in Vivo Study. Biomed. Pharmacother. 2020, 125, 109845. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Aisa, H.A. Anti-Inflammatory Effect of Pomegranate Flower in Lipopolysaccharide (LPS)-Stimulated RAW264.7 Macrophages. Pharm. Biol. 2017, 55, 2095–2101. [Google Scholar] [CrossRef] [Green Version]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-Inflammatory Potential of Ellagic Acid, Gallic Acid and Punicalagin A&B Isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.B.; D’Souza, D.H. The Pomegranate: Effects on Bacteria and Viruses That Influence Human Health. Evid.-Based Complement. Altern. Med. 2013, 2013, 606212. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.-T.; Karimi, A.; Shahrani, M.; Hashemi, L.; Ghaffari-Goosheh, M.-S. Anti-Influenza Virus Activity and Phenolic Content of Pomegranate (Punica granatum L.) Peel Extract and Fractions. Avicenna J. Med. Biotechnol. 2019, 11, 285–291. [Google Scholar]
- Neurath, A.R.; Strick, N.; Li, Y.-Y.; Debnath, A.K. Punica granatum (Pomegranate) Juice Provides an HIV-1 Entry Inhibitor and Candidate Topical Microbicide. Ann. N. Y. Acad. Sci. 2005, 1056, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.-T.; Karimi, A.; Rafieian-kopaei, M.; Rabiei-Faradonbeh, M.; Momtaz, H. Pomegranate Peel Extract Inhibits Internalization and Replication of the Influenza Virus: An in Vitro Study. Avicenna J. Phytomed. 2020, 10, 143–151. [Google Scholar] [PubMed]
- Salles, T.S.; Meneses, M.D.F.; Caldas, L.A.; Sá-Guimarães, T.E.; de Oliveira, D.M.; Ventura, J.A.; Azevedo, R.C.; Kuster, R.M.; Soares, M.R.; Ferreira, D.F. Virucidal and Antiviral Activities of Pomegranate (Punica granatum) Extract against the Mosquito-Borne Mayaro Virus. Parasit. Vectors 2021, 14, 443. [Google Scholar] [CrossRef]
- Karimi, A.; Moradi, M.-T.; Rabiei, M.; Alidadi, S. In Vitro Anti-Adenoviral Activities of Ethanol Extract, Fractions, and Main Phenolic Compounds of Pomegranate (Punica granatum L.) Peel. Antivir. Chem. Chemother. 2020, 28, 2040206620916571. [Google Scholar] [CrossRef] [Green Version]
- Bhandary, B.S.K.; Sharmila, K.P.; Kumari, N.S.; Bhat, S.V. Acute and subacute toxicity study of the ethanol extracts of Punica granatum (Linn). Whole fruit and seeds and synthetic ellagic acid in swiss albino mice. Asian J. Pharm. Clin. Res. 2013, 6, 192–198. [Google Scholar]
- Salwe, K.J.; Sachdev, D.O.; Bahurupi, Y.; Kumarappan, M. Evaluation of Antidiabetic, Hypolipedimic and Antioxidant Activity of Hydroalcoholic Extract of Leaves and Fruit Peel of Punica granatum in Male Wistar Albino Rats. J. Nat. Sci. Biol. Med. 2015, 6, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassiri Jahromi, S.; Pourshafie, M.R.; Mirabzadeh, E.; Tavasoli, A.; Katiraee, F.; Mostafavi, E.; Abbasian, S. Punica granatum Peel Extract Toxicity in Mice. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e23770. [Google Scholar] [CrossRef]
- Setiadhi, R.; Sufiawati, I.; Zakiawati, D.; Nuraeny, N.; Hidayat, W.; Firman, D. Evaluation of Antibacterial Activity and Acute Toxicity of Pomegranate (Punica granatum L.) Seed Ethanolic Extracts in Swiss Webster Mice. J. Dentomaxillofacial Sci. 2017, 2, 119. [Google Scholar] [CrossRef]
- Madireddy, R.K.; Alluri, K.V.; Somepalli, V.; Golakoti, T.; Sengupta, K. Toxicological Assessments of a Proprietary Blend of Punica granatum Fruit Rind and Theobroma Cacao Seed Extracts: Acute, Subchronic, and Genetic Toxicity Studies. J. Toxicol. 2022, 2022, e3903943. [Google Scholar] [CrossRef]
- Elnawasany, S. Clinical Applications of Pomegranate; IntechOpen: London, UK, 2018; ISBN 978-1-78923-273-8. [Google Scholar]
- Bassiri-Jahromi, S. Punica granatum (Pomegranate) Activity in Health Promotion and Cancer Prevention. Oncol. Rev. 2018, 12, 345. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.-Z.; Wang, C.-M.; Li, L.; Ding, N.; Gao, X.-L. Effect of Pomegranate Peel Polyphenols on Human Prostate Cancer PC-3 Cells in Vivo. Food Sci. Biotechnol. 2015, 24, 1887–1892. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Aiello, F.; Tenuta, M.C.; Leporini, M.; Falco, T.; Tundis, R. Chapter 3.46—Pomegranate (Punica granatum L.). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 467–472. ISBN 978-0-12-812491-8. [Google Scholar]
Plant Parts | Phytochemicals | Reference |
---|---|---|
Bark | Ellagitannins and Gallotannins: brevifolin, castalagin, carboxylic acid, punicalagin, galloylpunicalin castalagin; Alkaloids: serine, hygrine, pseudopelletierine; Sterols and Terpenoids: friedooleanan-3-one | [30,31] |
Peel | Catechin: gallocatechin; Ellagitannins and Gallotannins: granatin b, pedunculagin, punicalagin; Flavonoids: delphinidin, pelargonidin, quercetin; Tannins: Phenolic acid: ellagic, chlorogenic | [32,33] |
Fruit | Ellagic acid derivatives: ellagic acid; Ellagitannins and Gallotannins: corilagin; Flavonols: kaempferol, quercime, ritrin | [2,34] |
Seed | Ellagic acid derivatives: ellagic acid; Fatty Acids and Triglycerides: conjugated linolenic acid, tri-O-punicylglycerol, palmitic acid; Sterols and Terpenoids: estrone, testosterone | [35,24,26,36,37] |
Juice | Catechin and Procyanidins: catechin, procyanidin B1 and B2; Anthocyanins and Anthocyanidins: anthocyanins, cyanidin, delphinidin; Organic Acids: chlorogenic acid, citric acid, gallic acid; Flavonoid: quercetin, rutin | [26,38] |
Root | Alkaloids: norhygrine, isopelletierine, hygrine, pelletierine | [39,40] |
Leaves | Ellagitannins and Gallotannins: punicalin, tellimagrandin, punicafolin, tercatain; Flavonols: apigenin-4′-o-β-d-glucoside, luteolin-3′-o-β-d-glucoside; Simple Gallyol Derivatives: brevifolin | [41,42] |
Plant Name | Bioactive Compounds | Mechanism of Action | Cancer Types | Reference |
---|---|---|---|---|
Beta vulgaris L. | Betaine, p-coumaric acid, rutin, kaempferol, rhamnocitrin, syringic acid, astragalin, oleanolic acid, β-carotene, caffeic acid, lutein, rhamnetin, betalains, ferulic acid | Cytotoxicity activity is caused by methylation of DNA in cancer cells. These compounds also showed scavenging activities of free radicals, inhibition of NF-κB, and DNA intercalation. | Skin and lung cancer | [43,44,45] |
Allium sativum L. | Organosulfur, polysaccharides, saponins and phenolic compounds | Blockage of G2/M phase of cell cycle and inhibition in tumor growth. | Bone cancer | [46,47,48] |
Annona muricata L. | Alkaloids, phenols, kauranes, flavonoids, lignans, megatigmanes, terpenoids, acetogenin, tannins, glycosides, cyclopeptides, and oils | Reduced mitochondrial membrane integrity and ATP production and induction of apoptosis. | Breast cancer | [49,50] |
Daucus carota L. | Phenols, ascorbic acid (vitamin C), carotenoids, and polyacetylenes | Blocking of cell proliferation by apoptosis and cell cycle cessation of cancer cells. | Colorectal cancer | [51,52] |
Artemisia annual L. | Arteannuin B, scopoletin, artemisinin and arteannic acid | Cell viability inhibition, activation of caspase 3 and fragmentation of DNA leads to apoptosis. | Prostate, lung, and breast cancer | [53,54] |
Kigelia Africana | Terpenoids, steroids, flavonoids, phenols, furanonaphthoquinoids, coumarins, fatty acids, caffeic acid norviburtinal, and iridoids | Inhibition of cell viability and proliferation. | Skin and renal carcinoma | [55,56] |
Opuntia spp. | Ascorbate, flavonoids, carotenoids, phenolic acids, kaempferol, and betalains | DNA fragmentation and cell arrest at the G2/M phase | Prostrate and breast cancer | [57,58] |
Research Topics | Results Found | Reference |
---|---|---|
Acute and subacute toxicity study of the ethanol extracts of P. granatum (Linn) whole fruit and seeds and synthetic ellagic acid in Swiss albino mice | No adverse effects were found, and it was classified as non-toxic, and safe to utilize. The dosage used was 2000 mg/kg of body weight of the extracts. | [108] |
Evaluation of the antidiabetic, hypolipidemic, and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of P. granatum in male Wistar albino rats | No toxicity effects were found. The highest dose administered was 2000 mg/kg body weight of the extracts. | [109] |
P. granatum peel extract toxicity in mice | No adverse effects were found on the utilization of P. granatum in mice with a maximum oral dose of 7.5 mg/kg or intravenous amount of 224 mg/kg body weight. | [110] |
Evaluation of antibacterial activity and acute toxicity of pomegranate (P. granatum L.) seed ethanolic extracts in Swiss webster mice | The toxicity test showed a positive result. Results showed that only a high systemic dose would cause death, LD50 was assumed to be greater than 2000 mg. | [111] |
Toxicological assessments of a proprietary blend of P. granatum fruit rind and Theobroma cacao seed extracts: acute, subchronic, and genetic toxicity studies | No toxicity was found during testing at 5000 mg/kg body weight of the extract. | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakudze, N.T.; Aniogo, E.C.; George, B.P.; Abrahamse, H. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. Plants 2022, 11, 2820. https://doi.org/10.3390/plants11212820
Fakudze NT, Aniogo EC, George BP, Abrahamse H. The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. Plants. 2022; 11(21):2820. https://doi.org/10.3390/plants11212820
Chicago/Turabian StyleFakudze, Nosipho Thembekile, Eric Chekwube Aniogo, Blassan P. George, and Heidi Abrahamse. 2022. "The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy" Plants 11, no. 21: 2820. https://doi.org/10.3390/plants11212820
APA StyleFakudze, N. T., Aniogo, E. C., George, B. P., & Abrahamse, H. (2022). The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy. Plants, 11(21), 2820. https://doi.org/10.3390/plants11212820