Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health
Abstract
:1. Introduction
2. The Development and Classification of Seed Coating Technology
2.1. The Development of Seed Coating Technology
2.2. Definition of Modern Seed Coating
2.3. Classification of Seed Coating Methods
2.3.1. Seed Dressing
2.3.2. Film Coating
2.3.3. Encrusting
2.3.4. Pelleting
2.3.5. Extruded Pelleting
3. Seed Coating Agents
3.1. Binders
3.2. Fillers
3.3. Active Ingredients
3.4. Biochar
4. Applications of Biochar-Based Seed Coating
4.1. Seed Germination and Seedling Establishment Promotion
4.2. Plant Growth Enhancement
4.3. Suitable Carrier for Microbial Inoculants
4.3.1. Biochar-Based Microbial Inoculants and Crop Growth
4.3.2. Biochar-Based Microbial Inoculants and Crop Nutrition
4.4. Herbicide Selectivity Increase
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed Coating: Science or Marketing Spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; He, A.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The Effect of Storage Condition and Duration on the Deterioration of Primed Rice Seeds. Front. Plant Sci. 2018, 9, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvinavashe, A.T.; Lim, E.; Sun, H.; Marelli, B. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proc. Natl. Acad. Sci. USA 2019, 116, 25555–25561. [Google Scholar] [CrossRef] [Green Version]
- Halmer, P. Seed Technology and Seed Enhancement. Acta Hortic. 2008, 771, 17–26. [Google Scholar] [CrossRef]
- Taylor, A.; Allen, P.; Bennett, M.; Bradford, K.; Burris, J.; Misra, M. Seed enhancements. Seed Sci. Res. 1998, 8, 245–256. [Google Scholar] [CrossRef]
- Anilkumar, L.; Malarkodi, K.P. Combined seed enhancement techniques involving seed priming and coating for improvised anatomical potential and vigour of okra seeds (Abelmoschus esculentus L.). J. Phytol. 2019, 11, 25–30. [Google Scholar]
- Farooq, M.; Usman, M.; Nadeem, F.; Rehman, H.U.; Wahid, A.; Basra, S.M.A.; Siddique, K.H.M. Seed priming in field crops: Potential benefits, adoption and challenges. Crop. Pasture Sci. 2019, 70, 731. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M.; Hussain, M.; Ahmad, R.; Wakeel, A. Zinc seed priming improves stand establishment, tissue zinc concentration and early seedling growth of chickpea. J. Anim. Plant Sci. 2019, 29, 1046–1053. [Google Scholar]
- Farooq, M.; Basra, S.; Hafeez, K. Seed invigoration by osmohardening in coarse and fine rice. Seed Sci. Technol. 2006, 34, 181–187. [Google Scholar] [CrossRef]
- Mhada, M.; Zvinavashe, A.T.; Hazzoumi, Z.; Zeroual, Y.; Marelli, B.; Kouisni, L. Bioformulation of Silk-Based Coating to Preserve and Deliver Rhizobium tropici to Phaseolus vulgaris Under Saline Environments. Front. Plant Sci. 2021, 12, 1260. [Google Scholar] [CrossRef]
- Adak, T.; Kumar, J.; Shakil, N.A.; Pandey, S. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings. J. Sci. Food Agric. 2016, 96, 4351–4357. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.D.; Davies, K.W.; Boyd, C.S.; Kerby, J.D.; Svejcar, T.J. Emerging seed enhancement technologies for overcoming barriers to restoration. Restor. Ecol. 2016, 24, S77–S84. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.-H.; Yin, H.; Wang, W.-X.; Zhao, X.-M.; Du, Y.-G. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol. Biochem. 2013, 62, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Rasool, B.; Mahmood Ur, R.; Zubair, M.; Khan, M.A.; Ramzani, P.M.A.; Dradrach, A.; Turan, V.; Iqbal, M.; Khan, S.A.; Tauqeer, H.M.; et al. Synergetic Efficacy of Amending Pb-Polluted Soil with P-Loaded Jujube (Ziziphus mauritiana) Twigs Biochar and Foliar Chitosan Application for Reducing Pb Distribution in Moringa Leaf Extract and Improving Its Anti-cancer Potential. Water Air Soil Pollut. 2022, 233, 344. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Turan, V.; Farhad, M.; Iqbal, M. Sustainable agriculture and plant production by virtue of biochar in the era of climate change. In Managing Plant Production Under Changing Environment; Springer: Berlin/Heidelberg, Germany, 2022; pp. 21–42. [Google Scholar]
- Tauqeer, H.M.; Basharat, Z.; Adnan Ramzani, P.M.; Farhad, M.; Lewińska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Faran, G.-e.; Iqbal, M. Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. Environ. Pollut. 2022, 313, 120064. [Google Scholar] [CrossRef]
- Vanangamudi, K.N. Seed Hardening, Pelleting and Coating: Principles and Practices; Satish Serial Publishing House: Delhi, India, 2006. [Google Scholar]
- James, M.S. Effects of Biochar-Based Seed Coatings on Seed Germination and Seedling Vigor of California Brome (Bromus carinatus L.) and Blue Wildrye (Elymus glaucus L.). Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2015. [Google Scholar]
- Jeffs, K.A. Seed Treatment, 2nd ed.; The British Crop Protection Council (BCPC) Publication: Surrey, UK, 1986; p. 332. [Google Scholar]
- Kaufman, G. Seed coating: A tool for stand establishment; a stimulus to seed quality. HortTechnol. 1991, 1, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Hill, H. Recent developments in seed technology. J. New Seeds 1999, 1, 105–112. [Google Scholar] [CrossRef]
- Scott, J.M. Seed coatings and treatments and their effects on plant establishment. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1989; Volume 42, pp. 43–83. [Google Scholar]
- Taylor, A.; Harman, G. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990, 28, 321–339. [Google Scholar] [CrossRef]
- Halmer, P. Commercial seed treatment technology. In Seed Technology and Its Biological Basis; Sheffield Academic Press: Sheffield, UK, 2000; pp. 257–286. [Google Scholar]
- Pedrini, S.; Balestrazzi, A.; Madsen, M.D.; Bhalsing, K.; Hardegree, S.P.; Dixon, K.W.; Kildisheva, O.A. Seed enhancement: Getting seeds restoration-ready. Restor. Ecol. 2020, 28, S266–S275. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Sohail, M.; Pirzada, T.; Opperman, C.H.; Khan, S.A. Recent advances in seed coating technologies: Transitioning toward sustainable agriculture. Green Chem. 2022, 24, 6052–6085. [Google Scholar] [CrossRef]
- Menz, M.H.; Dixon, K.W.; Hobbs, R.J. Hurdles and opportunities for landscape-scale restoration. Science 2013, 339, 526–527. [Google Scholar] [CrossRef] [PubMed]
- Seed Coating Market by Additive (Polymers, Colorants, Pellets, Minerals/Pumice, Active Ingredients), Process (Film Coating, Encrusting, Pelleting), Active Ingredient (Protectants and Phytoactive Promoters), Crop Type, Region—Global Forecast to 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/seed-coating-materials-market-149045530.html (accessed on 14 February 2022).
- Porter, F.; Scott, J. Seed coating methods and Purposes: A status report. In Proceedings of the Short Course for Seedsmen; Mississippi Agricultural and Forestry Experiment Station: Prairie, MS, USA, 1979. [Google Scholar]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Singh, U.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture-A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef] [Green Version]
- Brown, V.S.; Erickson, T.E.; Merritt, D.J.; Madsen, M.D.; Hobbs, R.J.; Ritchie, A.L. A global review of seed enhancement technology use to inform improved applications in restoration. Sci. Total Environ. 2021, 798, 149096. [Google Scholar] [CrossRef]
- Kimmelshue, C.; Goggi, A.S.; Cademartiri, R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Sci. Rep. 2019, 9, 17950. [Google Scholar] [CrossRef] [Green Version]
- Kavusi, E.; Shahi Khalaf Ansar, B.; Dehghanian, Z.; Asgari Lajayer, B.; Nobaharan, K.; Ma, Y.; Glick, B.R. Delivery of Beneficial Microbes via Seed Coating for Medicinal and Aromatic Plant Production: A Critical Review. J. Plant Growth Regul. 2022, 1–23. [Google Scholar] [CrossRef]
- Ma, Y. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 2019, 37, 107423. [Google Scholar] [CrossRef]
- Taylor, A.G. Seed storage, germination, quality and enhancements. In The Physiology of Vegetable Crops, 2nd ed.; Wien, H.C., Stutzel, H., Eds.; CAB International: Wallingford, UK, 2020; pp. 1–30. [Google Scholar]
- Scott, J.; Blair, G.; Andrews, A. The mechanics of coating seeds in a small rotating drum. Seed Sci. Technol. 1997, 25, 281–292. [Google Scholar]
- Szemruch, C.; Ferrari, L. Encrusting offers protection against phytotoxic chemicals and maintains the physiological quality of sunflower (Helianthus annuus) seeds. Seed Sci. Technol. 2013, 41, 125–132. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Rocha, I.; Ma, Y.; Vosátka, M.; Freitas, H. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.). J. Toxicol. Environ. Health Part A 2016, 79, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kangsopa, J.; Hynes, R.K.; Siri, B. Lettuce seeds pelleting: A new bilayer matrix for lettuce (Lactuca sativa) seeds. Seed Sci. Technol. 2018, 46, 521–531. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. Acta Hortic. 2020, 1273, 417–424. [Google Scholar] [CrossRef]
- Amirkhani, M.; Mayton, H.S.; Netravali, A.N.; Taylor, A.G. A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth. Sustainability 2019, 11, 5304. [Google Scholar] [CrossRef] [Green Version]
- Madsen, M.; Svejcar, T. Development and application of “Seed Pillow” Technology for Overcoming the Limiting Factors Controlling Rangeland Reseeding Success. U.S. Patent US9,326,451 B, 3 May 2016. [Google Scholar]
- Madsen, M.D.; Hulet, A.; Phillips, K.; Staley, J.L.; Davies, K.W.; Svejcar, T.J. Extruded seed pellets: A novel approach for enhancing sagebrush seedling emergence. Nativ. Plants J. 2016, 17, 230–243. [Google Scholar] [CrossRef]
- Lopisso, D.T.; Kühlmann, V.; Siebold, M. Potential of soil-derived fungal biocontrol agents applied as a soil amendment and a seed coating to control Verticillium wilt of sugar beet. Biocontrol Sci. Technol. 2017, 27, 1019–1037. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, B.; Zhang, Y.; Cobb, A.B.; Zhang, Z. Molybdate in rhizobial seed-coat formulations improves the production and nodulation of alfalfa. PLoS ONE 2017, 12, e0170179. [Google Scholar] [CrossRef] [Green Version]
- Ryu, C.-M.; Kim, J.; Choi, O.; Kim, S.H.; Park, C.S. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol. Control 2006, 39, 282–289. [Google Scholar] [CrossRef]
- Singh, A.; Jain, A.; Sarma, B.K.; Upadhyay, R.S.; Singh, H.B. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol. Res. 2014, 169, 353–360. [Google Scholar] [CrossRef]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Gault, R.; Brockwell, J. Studies of seed pelleting as an aid to legume inoculation. 5. Effects of incorporation of molybdenum compounds in the seed pellet on inoculant survival, seedling nodulation and plant growth of lucerne and subterranean clover. Aust. J. Exp. Agric. 1980, 20, 63–71. [Google Scholar] [CrossRef]
- Sikhao, P.; Taylor, A.G.; Marino, E.T.; Catranis, C.M.; Siri, B. Development of seed agglomeration technology using lettuce and tomato as model vegetable crop seeds. Sci. Hortic. 2015, 184, 85–92. [Google Scholar] [CrossRef]
- Berninger, T.; Mitter, B.; Preininger, C. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating. J. Microencapsul. 2016, 33, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, S.; Merritt, D.; Dixon, K. Smart seed for automated forest restoration. In Automated Forest Restoration: Could Robots Revive Rain Forests? Elliott, S., Gale, G., Robertson, M., Eds.; FORRU-CMU: Chiang Mai, Thailand, 2020; pp. 112–129. [Google Scholar]
- Nikita, G. Seed Coating with Beneficial Microbes for Precision Farming. Int. J. Mod. Agric. 2021, 10, 813–818. [Google Scholar]
- Smith, R.G.; Atwood, L.W.; Morris, M.B.; Mortensen, D.A.; Koide, R.T. Evidence for indirect effects of pesticide seed treatments on weed seed banks in maize and soybean. Agric. Ecosyst. Environ. 2016, 216, 269–273. [Google Scholar] [CrossRef]
- Rundlöf, M.; Andersson, G.K.S.; Bommarco, R.; Fries, I.; Hederström, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J.; et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 2015, 521, 77–80. [Google Scholar] [CrossRef]
- Alburaki, M.; Boutin, S.; Mercier, P.-L.; Loublier, Y.; Chagnon, M.; Derome, N. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS ONE 2015, 10, e0125790. [Google Scholar]
- Ziani, K.; Ursúa, B.; Maté, J.I. Application of bioactive coatings based on chitosan for artichoke seed protection. Crop. Prot. 2010, 29, 853–859. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Kontturi, M.; Peltonen, J. Phosphorus Seed Coating Enhancement on Early Growth and Yield Components in Oat. Agron. J. 2006, 98, 206–211. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Siddique, K.H. Micronutrient application through seed treatments: A review. J. Soil Sci. Plant Nutr. 2012, 12, 125–142. [Google Scholar] [CrossRef]
- Mašauskas, V.; Mašauskienė, A.; Repšienė, R.; Skuodienė, R.; Brazienė, Z.; Peltonen, J. Phosphorus seed coating as starter fertilization for spring malting barley. Acta Agric. Scand. Sect. B—Plant Soil Sci. 2008, 58, 124–131. [Google Scholar] [CrossRef]
- Madsen, M.D.; Fidanza, M.A.; Barney, N.S.; Kostka, S.J.; Badrakh, T.; McMillan, M.F. Low-dose application of nonionic alkyl terminated block copolymer surfactant enhances turfgrass seed germination and plant growth. HortTechnology 2016, 26, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Amirkhani, M.; Netravali, A.N.; Huang, W.; Taylor, A.G. Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience 2016, 51, 1121–1126. [Google Scholar] [CrossRef] [Green Version]
- Gorim, L.; Asch, F. Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. J. Agron. Crop. Sci. 2012, 198, 81–91. [Google Scholar] [CrossRef]
- Guan, Y.; Li, Z.; He, F.; Huang, Y.; Song, W.; Hu, J. “On-Off” Thermoresponsive Coating Agent Containing Salicylic Acid Applied to Maize Seeds for Chilling Tolerance. PLoS ONE 2015, 10, e0120695. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Honglu, X.; Guomei, X. Suspension Property of Gemini Surfactant in Seed Coating Agent. J. Dispers. Sci. Technol. 2008, 29, 496–501. [Google Scholar] [CrossRef]
- Akhter, J.; Mahmood, K.; Malik, K.; Mardan, A.; Ahmad, M.; Iqbal, M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 2004, 50, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Gorim, L.; Asch, F. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds. Biology 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Stahl, J.D.; Cameron, M.D.; Haselbach, J.; Aust, S.D. Biodegradation of superabsorbent polymers in soil. Environ. Sci. Pollut. Res. 2000, 7, 83–88. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.; He, F.; Guan, Y.; Zhu, S.; Hu, J. A novel anti-counterfeiting method: Application and decomposition of RB for broad bean seeds (Vicia faba L.). Ind. Crop. Prod. 2014, 61, 278–283. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, J.; Tian, Y.; Hu, W.; Zhu, L.; Zhu, S.; Hu, J. The Novel Approach to Enhance Seed Security: Dual Anti-Counterfeiting Methods Applied on Tobacco Pelleted Seeds. PLoS ONE 2013, 8, e57274. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.d.; Couto, H.T.Z.d.; Almeida, Á.F.d. Are camouflaged seeds less attacked by wild birds? Sci. Agric. 2010, 67, 170–175. [Google Scholar] [CrossRef]
- Sikhao, P.; Teerapornchaisit, P.; Taylor, A.; Siri, B. Seed coating with riboflavin, a natural fluorescent compound, for authentication of cucumber seeds. Seed Sci. Technol. 2014, 42, 171–179. [Google Scholar] [CrossRef]
- Wilson, H.T.; Amirkhani, M.; Taylor, A.G. Evaluation of Gelatin as a Biostimulant Seed Treatment to Improve Plant Performance. Front. Plant Sci. 2018, 9, 1006. [Google Scholar] [CrossRef]
- Ben-Jabeur, M.; Kthiri, Z.; Harbaoui, K.; Belguesmi, K.; Serret, M.D.; Araus, J.L.; Hamada, W. Seed coating with thyme essential oil or Paraburkholderia phytofirmans PsJN strain: Conferring Septoria leaf blotch resistance and promotion of yield and grain isotopic composition in wheat. Agronomy 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.J.; Mead, A.; Whipps, J.M. Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol. Control 2009, 51, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Khan, Z.; Liu, J.; Luo, T.; Zhu, K.; Hu, L.; Bi, J.; Luo, L. Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System. Agronomy 2022, 12, 1223. [Google Scholar] [CrossRef]
- Zeng, D.; Shi, Y. Preparation and application of a novel environmentally friendly organic seed coating for rice. J. Sci. Food Agric. 2009, 89, 2181–2185. [Google Scholar] [CrossRef]
- Tripti; Kumar, A.; Usmani, Z.; Kumar, V.; Anshumali. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J. Environ. Manag. 2017, 190, 20–27. [Google Scholar] [CrossRef]
- Khan, Z.; Zhang, K.; Khan, M.N.; Fahad, S.; Xu, Z.; Hu, L. Coupling of Biochar with Nitrogen Supplements Improve Soil Fertility, Nitrogen Utilization Efficiency and Rapeseed Growth. Agronomy 2020, 10, 1661. [Google Scholar] [CrossRef]
- Khan, Z.; Fan, X.; Khan, M.N.; Khan, M.A.; Zhang, K.; Fu, Y.; Shen, H. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. Chemosphere 2022, 308, 136466. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crop. Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Hussain, Q.; Usman, A.R.A.; Ahmad, M.; Abduljabbar, A.; Sallam, A.S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2018, 29, 2124–2161. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.; Ok, Y.S.; Gao, B. Biochar technology in wastewater treatment: A critical review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Luo, T.; Zhang, K.; Zhu, K.; Rana, M.S.; Hu, L.; Jiang, Y. Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield. GCB Bioenergy 2021, 13, 1765–1784. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Traxler, V.; Kim, H.S.; Malyala, R.; Thompson, T.A.; Buege, B.; Jarand, M.L. Biochar Coated Seeds. U.S. Patent 10,550,044 B2, 4 February 2020. [Google Scholar]
- Głodowska, M.; Husk, B.; Schwinghamer, T.; Smith, D. Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron. Sustain. Dev. 2016, 36, 21. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Parvin Banu, A.; Sujatha, K.; Geetha, R.; Kannan, P. Biochar coating and its effect on seed quality and biochemical parameters in black gram (Vigna mungo L.) var. VBN 11. Pharma Innov. 2022, 11, 2836–2840. [Google Scholar]
- Rocha, I.; Souza-Alonso, P.; Pereira, G.; Ma, Y.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Using microbial seed coating for improving cowpea productivity under a low-input agricultural system. J. Sci. Food Agric. 2020, 100, 1092–1098. [Google Scholar] [CrossRef]
- Rocha, I.; Duarte, I.; Ma, Y.; Souza-Alonso, P.; Látr, A.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Ghazi, A.A. Potential for biochar as an alternate carrier to peat moss for the preparation of Rhizobia bio inoculum. Microbiol. Res. J. Int. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Xavier, P.B.; Vieira, H.D.; Guimarães, C.P. Physiological potential of stylosanthes cv. Campo Grande seeds coated with different materials. J. Seed Sci. 2015, 37, 117–124. [Google Scholar] [CrossRef]
- Camara-Williams, I. Effect of Seed Pelleting and Biochar on Nodulation, Growth and Yield of Soybean (Glycine max L.). Doctoral Dissertation, University of Ghana, Accra, Ghana, 2019. [Google Scholar]
- Głodowska, M.; Schwinghamer, T.; Husk, B.; Smith, D. Biochar Based Inoculants Improve Soybean Growth and Nodulation. Agric. Sci. 2017, 08, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Reckling, M.; Wirth, S. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur. J. Soil Biol. 2017, 78, 38–42. [Google Scholar] [CrossRef]
- Elamparithi, R.; Sujatha, K.; Menaka, C.; Senthil, K. Impact of organic Seaweed pelleting on seed quality and biochemical parameters in brinjal seeds. Pharma Innov. 2021, 10, 1466–1469. [Google Scholar]
- Chen, Z. Effects of Biochar-Based Seed Coating Binders on Seed Germination and Radicle Extension. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2021. [Google Scholar]
- Davies, K.; Madsen, M.; Hulet, A. Using activated carbon to limit herbicide effects to seeded bunchgrass when revegetating annual grass-invaded rangelands. Rangel. Ecol. Manag. 2017, 70, 604–608. [Google Scholar] [CrossRef]
- Terry, T.J.; Madsen, M.D.; Gill, R.A.; Anderson, V.J.; St. Clair, S.B. Selective herbicide control: Using furrows and carbon seed coatings to establish a native bunchgrass while reducing cheatgrass cover. Restor. Ecol. 2021, 29, e13351. [Google Scholar] [CrossRef]
- Holfus, C.M.; Rios, R.C.; Boyd, C.S.; Mata-González, R. Preemergent Herbicide Protection Seed Coating: A Promising New Restoration Tool. Rangel. Ecol. Manag. 2021, 76, 95–99. [Google Scholar] [CrossRef]
- Taylor, J.B.; Cass, K.L.; Armond, D.N.; Madsen, M.D.; Pearson, D.E.; St. Clair, S.B. Deterring rodent seed-predation using seed-coating technologies. Restor. Ecol. 2020, 28, 927–936. [Google Scholar] [CrossRef]
- Madsen, M.D.; Davies, K.W.; Mummey, D.L.; Svejcar, T.J. Improving restoration of exotic annual grass-invaded rangelands through activated carbon seed enhancement technologies. Rangel. Ecol. Manag. 2014, 67, 61–67. [Google Scholar] [CrossRef]
- Clenet, D.R.; Davies, K.W.; Johnson, D.D.; Kerby, J.D. Native seeds incorporated into activated carbon pods applied concurrently with indaziflam: A new strategy for restoring annual-invaded communities? Restor. Ecol. 2019, 27, 738–744. [Google Scholar] [CrossRef]
- Baughman, O.W.; Griffen, J.; Kerby, J.; Davies, K.W.; Clenet, D.; Boyd, C. Herbicide protection pod technology for native plant restoration: One size may not fit all. Restor. Ecol. 2021, 29, e13351. [Google Scholar] [CrossRef]
- Brown, V.S.; Ritchie, A.L.; Stevens, J.C.; Harris, R.J.; Madsen, M.D.; Erickson, T.E. Protecting direct seeded grasses from herbicide application: Can new extruded pellet formulations be used in restoring natural plant communities? Restor. Ecol. 2019, 27, 488–494. [Google Scholar] [CrossRef]
- Davies, K. Incorporating seeds in activated carbon pellets limits herbicide effects to seeded bunchgrasses when controlling exotic annuals. Rangel. Ecol. Manag. 2018, 71, 323–326. [Google Scholar] [CrossRef]
- Dong, J.; Fu, P.; Pan, G.; Li, L.; Zhang, X.; Zheng, J.; Zheng, J. A Crop Seed Coating Agent Prepared by Using Agricultural Waste New Biomass Charcoal And Its Preparation Method. CN Patent 103053244B, 10 December 2014. (in Chinese). [Google Scholar]
- Dong, J. Preparation of Biochar-Wood Vinegar Derived Seed Coating and Its Effect on Maize Seedling Growth. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2014. (in Chinese with English abstract). [Google Scholar]
- Zhang, C. Effects of Seed Priming and Pelletization on Seed Germination and Plant Growth and Development of Rapeseed. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2019. (in Chinese with English abstract). [Google Scholar]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Khan, Z.; Zhang, K.; Khan, M.N.; Bi, J.; Zhu, K.; Luo, L.; Hu, L. How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System. Front. Plant Sci. 2022, 13, 853449. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R.J.; Kennedy, I.R. Legume seed inoculation technology—A review. Soil Biol. Biochem. 2004, 36, 1275–1288. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Hua, M.; Reckling, M.; Wirth, S.; Bellingrath-Kimura, S.D. Potential effects of biochar-based microbial inoculants in agriculture. Environ. Sustain. 2018, 1, 19–24. [Google Scholar] [CrossRef]
- Stanbury, K.E.; Stevens, J.C.; Ritchie, A.L. Legacy issues in post-pine (Pinus pinaster) restoration environments: Weeds compromise seedling growth and function more than edaphic factors. Land Degrad. Dev. 2018, 29, 1694–1704. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Dogra, K.S.; Kaur, S.; Kohli, R.K.; Negi, A. Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environ. Monit. Assess. 2014, 186, 3379–3389. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.L.; Veneklaas, E.J.; Lambers, H.; Loneragan, W.A. Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. Plant Soil 2006, 284, 253–264. [Google Scholar] [CrossRef]
- Kyser, G.B.; Wilson, R.G.; Zhang, J.; Ditomaso, J.M. Herbicide-Assisted Restoration of Great Basin Sagebrush Steppe Infested With Medusahead and Downy Brome. Rangel. Ecol. Manag. 2013, 66, 588–596. [Google Scholar] [CrossRef]
- Kenya, S. Seedballs Kenya. Available online: https://www.seedballskenya.com/seedballs (accessed on 10 September 2022).
- Williams, M.I.; Dumroese, R.K.; Page-Dumroese, D.S.; Hardegree, S.P. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions? J. Arid Environ. 2015, 125, 8–15. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Mao, J.; Chen, B. Effects of biochar nanoparticles on seed germination and seedling growth. Environ. Pollut. 2020, 256, 113409. [Google Scholar] [CrossRef]
Types of Active Ingredients | Active Ingredients | Ingredient Form | Ingredient Source | Ingredient Benefits | Ingredient Flaws | References |
---|---|---|---|---|---|---|
Protectants | Fungicides, insecticides, nematicides, bactericides, predator deterrents, herbicides | Variable | Synthetic chemicals | Protect seed; promote germination and growth | Ecosystem contamination | [56,57,58,59] |
Nutrients | Macronutrients: P, K; micronutrients: boron, copper, manganese, zinc | Solid | Synthetic chemicals; mineral | Improve growth and yield; alleviate trace elements deficiency in soil | Reduction in germination and emergence caused by nutrients | [22,60,61,62] |
Growth stimulants | Phytohormone: salicylic acid, gibberellic acid, auxin; protein hydrolysates: soy flour | Solid | Synthetic chemicals; natural products or derivatives | Stimulate germination, improve growth, development, and stress resistance | Sometimes delay germination and hamper root growth | [63,64,65,66] |
Microbial inoculants | Arbuscular mycorrhizal fungi, plant growth-promoting bacteria and rhizobia | Solid | Natural products | Promote growth, yield and nutrition; increase abiotic and biotic tolerance | Poor survival of the inoculant; the insufficient amount of microbial inoculant for small seeds | [22,31,35,36,67] |
Soil adjuvants | Soil hydrophilic materials or hydro absorbers: hydrogels; soil surfactant | Solid | Synthetic chemicals | Accelerate or delay germination through influencing water absorption | Environment risk due to the difficulty of degradation; sometimes unaffected germination or seedling growth | [1,65,68,69,70,71] |
Markers | Fluorescent dyes and magnetic powder | Solid | Synthetic chemicals | Improve the traceability of seed batches; limit the predation of seed by birds | Inconvenient application; requires sophisticated detection equipment | [72,73,74,75] |
Species | Biochar Sources | Coating Materials | Active Ingredients | Coating Equipment | Coating Type | Main Findings | Reference |
---|---|---|---|---|---|---|---|
Rice | Rice straw | Biochar, talc, attapulgite | Biochar | Rotary coater | Pelleting | Biochar seed coating improved the emergence rate and seedling growth both under laboratory study and field study. | [79] |
Corn | Hardwood and softwood | Biochar, peat moss, P. Libanensis, guar gum | P. Libanensis | Nd | Film coating | Biochar-based seed coating with inoculants enhanced germination speed and corn growth without increasing the phosphorous content of the plants. | [92] |
Black gram | Green waste of Prosopsis plant | Biochar, starch | Biochar | Nd | Nd | Biochar coating @ 200 g/kg of seed performed well and increased the seedling growth, vigor and biochemical parameters. | [94] |
Cowpea | Nd | Pseudomonas libanensis TR1, Rhizophagus irregularis, biochar, gum arabic | Pseudomonas libanensis TR1, Rhizophagus irregularis | Rotating pan | Seed dressing | Seed coating with PGPR and multiple AM fungal isolates increased shoot dry weight (76%), grain yield (56%) and grain lipid (25%). | [95] |
Chickpea | Nd | R. Irregularis inoculum, biochar, gum arabic | Multiple Rhizophagus irregularis isolates | Rotating pan | Seed dressing | Plants inoculated with multiple isolates in the greenhouse displayed higher shoot dry weight (14%) and seed individual weight (21%), while in the field increased pod (160%), seed number (148%), and grain yield (140%). | [96] |
Kidney bean | Rice straw | Peat moss, vermiculite, biochar | Rhizobium phaseoli | Nd | Nd | The biochar-based carrier inoculant gave the highest nodule dry weight, plant dry weight, plant height. | [97] |
Stylosanthes cv. Campo Grande | AC | Dolomitic limestone, sand, polyvinyl acetate, AC, calcium silicate | Calcium silicate | Rotating pan | Pelleting | Coating with calcium silicate and polyvinyl acetate was outstanding for germination speed index and fresh and dry matter of shoot and root. | [98] |
Soybean | Saw dust, groundnut husk, rice husk and rice straw | Biochar, rock phosphate, calcium carbonate, rhizobium inoculants | Biochar | Nd | Pelleting | Seed pelleting with biochar improved mean nodule number, nodule fresh weight and nodule dry weight in pot and field experiments. | [99] |
Soybean | Hardwood and softwood | Biochar, peat moss, Bradyrhizobium japonicum, guar gum | Bradyrhizobium japonicum | Nd | Film coating | Biochar solid inoculant positively affected plant growth metrics, root characteristics, and the chemical composition of plants supplied with N-free nutrient solution. | [100] |
Lupin | Maize silage, maize and wood | Hydrochar, pyrolysis biochar, Bradyrhizobium sp. (BR) inoculants | Bradyrhizobium sp. | Nd | Film coating | HTC-based BR Inoculants significantly enhanced plant growth, N and P uptake, and lupin nodulation under drought conditions than BR strain inoculation. | [101] |
Brinjal | Nd | Sargassum sp., Kappaphycus sp., azophos, biochar, talc powder | Biochar | Nd | Pelleting | Seed pelleting recorded higher seed quality and biochemical parameters. | [102] |
Radish, lettuce, coreopsis, white birch | Nd | Pectin, DTL 35% (lignin), methylcellulose, sodium hydroxide, starch, biobinder, biocoat | Biochar | Nd | Film coating | Seed coating with bio-based compounds and starch binder performed best for seed germination, radicle extension, and non-phytotoxicity. | [103] |
Tomato | Agricultural wastes | Flyash, biochar, Burkholderia sp., Bacillus megaterium | Burkholderia sp., Bacillus megaterium | Nd | Nd | The biochar based bioformulation using Burkholderia sp. Tremendously enhanced the productivity of tomatoes and soil fertility. A mixture of biochar and flyash inoculated with Burkholderia sp. Showed noteworthy results for the growth parameters and yield of tomato. | [81] |
Crested wheatgrass | AC | AC, Ca Bentonite, worm castings, compost, super absorbent powder, super absorbent fine granules | AC | Extruder | Extruded pelleting | HPPs increased the abundance of crested wheatgrass (300%) compared with bare seeds. | [104] |
Bluebunch wheatgrass | AC | AC, polyvinyl alcohol | AC | Rotary coater | Extruded pelleting | Combining carbon coatings and furrow treatments mitigated harmful herbicide effects on seedling emergence, plant densities, and growth. | [105] |
Bluebunch wheatgrass | AC | AC, compost, worm castings, bentonite clay, polyvinyl alcohol | AC | Rotary coater | Pelleting | The AC-based coating produced 307% higher emergence, 235% higher seedling height, and 87% higher biomass than uncoated seeds with herbicide application, respectively. | [106] |
Bluebunch wheatgrass | AC | Bentonite clay, polyvinyl alcohol, host pepper, cayenne pepper, anthraquinone, methyl-nonyl-ketone, pine needle essential oil, bergamot essential oil, neem oil, AC, beta cyclodextrin | AC | Rotary coater | Encrusting | Seeds coating with ghost pepper, neem oil, and AC reduced rodent seed-predation by 47–50% than control. | [107] |
Bluebunch wheatgrass, downy brome | AC | AC, diatomaceous earth, polyvinyl alcohol | AC | Extruder | Extruded pelleting | Coating with AC was 4.8-, 3.8-, and 19.0-fold higher than untreated seeds in density, height, and biomass, respectively, at the higher levels of herbicide application. | [108] |
Wyoming big sagebrush | Western juniper tree | Calcium bentonite, biochar, worm castings, compost, super-absorbent polymer, starch, surfactant, cytokinin, gibberellic acid, indole butyric acid | Nd | Extruder | Extruded pelleting | Extruded pellets improved seedling emergence between 2.3- to 10.0-fold in the silt–loam soil. | [45] |
Wyoming big sagebrush, bluebunch wheatgrass | AC | Ca bentonite, AC, worm castings, compost | AC | Extruder | Extruded pelleting | HPPs protected seeded species at low, mid, and high rates of the preemergent herbicide, and had a greater abundance and size of plants compared to bare seeds. | [109] |
Wyoming big sagebrush, sandberg bluegrass | AC | Bentonite clay, AC, compost, worm casting fines, fungicide | AC | Extruder | Extruded pelleting | The smaller HPPs produced about two-fold higher final emergence and higher aboveground biomass than larger pellets and maintained protection from herbicide toxicity. | [110] |
Lolium rigidum, annual ryegrass | AC | AC, bentonite, diatomaceous earth, sand, starch, water-holding crystals | AC | Extruder | Extruded pelleting | Extruded pellet formulation increased seedling tolerance to pre-emergent herbicide with mortality reduced from 96% in non-pelleted seeds to 22% in pellets containing AC. | [111] |
Bottlebrush squirreltail, Siberian wheatgrass | AC | Ca Bentonite, AC, worm castings, compost, superabsorbent powder, super absorbent fine granules | AC | Extruder | Extruded pelleting | These two bunchgrasses had greater density and growth (height, leaf length, number of stems, and leaves) when incorporated into AC pellets compared with bare seeds. | [112] |
California brome, blue Wildrye | Beetle-killed pine trees | Biochar, CaCO3, hydrophilic polymers, micronutrients, GA3 | Biochar | Nd | Nd | Seed coating showed equal or slightly higher germination over the untreated control. | [18] |
Mountain brome, prairie junegrass, Wyeth’s buckwheat, western yarrow | Beetle-killed ponderosa, lodgepole pine | Biochar, polyvinyl alcohol | Biochar | Rotating pan | Pelleting | Biochar seed coatings had either a neutral or negative effect on germination and growth under different temperature and moisture conditions, and slightly improved mountain brome root weight and prairie junegrass cover in the field. | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Khan, Z.; Yu, Q.; Qu, Z.; Liu, J.; Luo, T.; Zhu, K.; Bi, J.; Hu, L.; Luo, L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants 2022, 11, 2864. https://doi.org/10.3390/plants11212864
Zhang K, Khan Z, Yu Q, Qu Z, Liu J, Luo T, Zhu K, Bi J, Hu L, Luo L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants. 2022; 11(21):2864. https://doi.org/10.3390/plants11212864
Chicago/Turabian StyleZhang, Kangkang, Zaid Khan, Qing Yu, Zhaojie Qu, Jiahuan Liu, Tao Luo, Kunmiao Zhu, Junguo Bi, Liyong Hu, and Lijun Luo. 2022. "Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health" Plants 11, no. 21: 2864. https://doi.org/10.3390/plants11212864
APA StyleZhang, K., Khan, Z., Yu, Q., Qu, Z., Liu, J., Luo, T., Zhu, K., Bi, J., Hu, L., & Luo, L. (2022). Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants, 11(21), 2864. https://doi.org/10.3390/plants11212864