Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem)
Abstract
:1. Introduction
2. Results
2.1. Characterisation of Parental Lines
2.2. Inheritance Studies of Aroma
2.3. Inheritance Studies of Fruit Colour
2.4. Organoleptic Test and Volatile Organic Compounds Analysis
3. Discussion
3.1. Inheritance of Aroma
3.2. Segregation of Aroma and Fruit Colour
3.3. Volatiles and Organoleptic Taste
3.4. Breeding Strategies for Aroma in Sponge Gourd
4. Materials and Methods
4.1. Plant Materials
4.2. Making of Crosses
4.3. Fruit Aroma Test
4.4. Extraction of Volatile Organic Compounds
4.5. Gas Chromatography (GC), Chiral GC and GC–Mass Spectrometry Analysis
4.6. Recording of the Horticultural Traits
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wakte, K.; Zanan, R.; Hinge, V.; Khandagale, K.; Nadaf, A.; Henry, R. Thirty-Three Years of 2-Acetyl-1-Pyrroline, a Principal Basmati Aroma Compound in Scented Rice (Oryza sativa L.): A Status Review. J. Sci. Food Agric. 2016, 97, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, E.A.; Vemireddy, L.R.; Nagaraju, J. Basmati Rices: Genetics, Breeding and Trade. Agric. Res. 2012, 1, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Saensuk, C.; Ruangnam, S.; Pitaloka, M.K.; Dumhai, R.; Mahatheeranont, S.; de Hoop, S.J.; Balatero, C.; Riangwong, K.; Ruanjaichon, V.; Toojinda, T.; et al. A SNP of Betaine Aldehyde Dehydrogenase (BADH) Enhances an Aroma (2-Acetyl-1-Pyrroline) in Sponge Gourd (Luffa cylindrica) and Ridge Gourd (Luffa acutangula). Sci. Rep. 2022, 12, 3718. [Google Scholar] [CrossRef]
- Singh, Y.P.; Singh, V.B.; Kumar, A. Pramila Studies on General and Specific Combining Ability for Yield and Its Contributing Traits in Sponge Gourd (Luffa cylindrica (Roem) L.). Int. J. Curr. Microb. Appl. Sci. 2018, 7, 5066–5078. [Google Scholar]
- Sidhu, M.K.; Kaur, J. Interspecific Hybridization between Sponge Gourd (Luffa cylindrica L.) and ‘Satputia’ (Luffa hermaphrodita Singh & Bhandari) for Pre-Introgression of Cluster Bearing, High Yield and Gynoecism. J. Genet. 2021, 100, 73. [Google Scholar] [CrossRef] [PubMed]
- Hlel, B.T.; Belhadj, F.; Gül, F.; Altun, M.; Yağlıoğlu, Ş.A.; Smaali, I.; Marzouki, N.M.; Demirtaş, I. The Molecular Characterization and Biological Assessment of the Leaves Extracts of Loofah Reveal Their Nutraceutical Potential. Recent Pat. Food. Nutr. Agric. 2021, 12, 63–72. [Google Scholar] [CrossRef]
- Basha, S.K.; Sudarsanam, G. Traditional Use of Plants against Snakebite in Sugali Tribes of Yerramalais of Kurnool District, Andhra Pradesh, India. Asian Pac. J. Trop. Biomed. 2012, 2, S575–S579. [Google Scholar] [CrossRef]
- Sutharshana, V. Protective Role of Luffa cylindrica. J. Pharm. Sci. Res. 2013, 5, 184–186. [Google Scholar]
- Ha, H.; Lim, H.-S.; Lee, M.-Y.; Shin, I.-S.; Jeon, W.Y.; Kim, J.-H.; Shin, H.K. Luffa cylindrica Suppresses Development of Dermatophagoides Farinae—Induced Atopic Dermatitis-like Skin Lesions in Nc/Nga Mice. Pharm. Biol. 2015, 53, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Kao, T.H.; Huang, C.W.; Chen, B.H. Functional Components in Luffa cylindrica and Their Effects on Anti-Inflammation of Macrophage Cells. Food Chem. 2012, 135, 386–395. [Google Scholar] [CrossRef]
- Bor, J.-Y.; Chen, H.-Y.; Yen, G.-C. Evaluation of Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Some Common Vegetables. J. Agric. Food Chem. 2006, 54, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Xu, Y.; Li, L.; Zhao, Y.; Jerz, G.; Winterhalter, P. Antioxidant Constituents in the Fruits of Luffa cylindrica (L.) Roem. J. Agric. Food Chem. 2006, 54, 4186–4190. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.S.; Yadav, R.; Yadav, R.B.; Garg, M. Antioxidant Activity of Various Extracts of Selected Gourd Vegetables. J. Food Sci. Technol. 2016, 53, 1823–1833. [Google Scholar] [CrossRef]
- Umehara, M.; Yamamoto, T.; Ito, R.; Nonaka, S.; Yanae, K.; Sai, M. Effects of Phenolic Constituents of Luffa cylindrica on UVB-Damaged Mouse Skin and on Dome Formation by MDCK I Cells. J. Funct. Foods 2018, 40, 477–483. [Google Scholar] [CrossRef]
- Lee, J.; Jo, S.E.; Han, E.C.; Kim, J.H. Evaluating the Effect of Luffa cylindrica Stem Sap on Dermal Fibroblasts; An Invitro Study. Biochem. Biophys. Res. Commun. 2021, 580, 41–47. [Google Scholar] [CrossRef] [PubMed]
- D’silva, W.W.; Biradar, P.R.; Patil, A. Luffa cylindrica: A Promising Herbal Treatment in Progesterone Induced Obesity in Mice. J. Diabetes Metab. Disord. 2021, 20, 329–340. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, M.; Ji, J.; Hu, X.; Chen, F. Gut Microbiota Determines the Prevention Effects of Luffa cylindrica (L.) Roem Supplementation against Obesity and Associated Metabolic Disorders Induced by High-Fat Diet. FASEB J. 2019, 33, 10339–10352. [Google Scholar] [CrossRef] [Green Version]
- Yehia, S.; Abdel-Salam, I.M.; Elgamal, B.M.; El-Agamy, B.; Hamdy, G.M.; Aldesouki, H.M. Cytotoxic and Apoptotic Effects of Luffa cylindrica Leaves Extract against Acute Lymphoblastic Leukemic Stem Cells. Asian Pacific J. Cancer Prev. 2020, 21, 3661–3668. [Google Scholar] [CrossRef]
- Abdel-Salam, I.M.; Awadein, N.E.-S.; Ashour, M. Cytotoxicity of Luffa cylindrica (L.) M. Roem. Extract against Circulating Cancer Stem Cells in Hepatocellular Carcinoma. J. Ethnopharmacol. 2019, 229, 89–96. [Google Scholar] [CrossRef]
- Quyen, T.; Ah, J.; Hee, M.; Sun, B. SARS-CoV-2 Main Protease Inhibition by Compounds Isolated from Luffa Cylindrica Using Molecular Docking. Bioorg. Med. Chem. Lett. 2021, 40, 127972. [Google Scholar]
- Pramnoi, P.; Somata, P.; Chankaew, S.; Juwattanasomran, R.; Srinives, P. A Single Recessive Gene Controls Fragrance in Cucumber (Cucumis sativus L.). J. Genet. 2013, 92, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Assaf, S.; Hadar, Y.; Dosoretz, C.G. 1-Octen-3-Ol and 13-Hydroperoxylinoleate Are Products of Distinct Pathways in the Oxidative Breakdown of Linoleic Acid by Pleurotus Pulmonarius. Enzyme Microb. Technol. 1997, 21, 484–490. [Google Scholar] [CrossRef]
- Sood, B.C.; Siddiq, E.A. A Rapid Technique for Scent Determination in Rice. Indian J. Genet. Plant Breed. 1978, 38, 268–271. [Google Scholar]
- Prodhan, Z.H.; Qingyao, S. Rice Aroma: A Natural Gift Comes with Price and the Way Forward. Rice Sci. 2020, 27, 86–100. [Google Scholar] [CrossRef]
- Jie, Y.; Shi, T.; Zhang, Z.; Yan, Q. Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites 2021, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Arikit, S.; Yoshihashi, T.; Wanchana, S.; Tanya, P.; Juwattanasomran, R.; Srinives, P.; Vanavichit, A. A PCR-Based Marker for a Locus Conferring Aroma in Vegetable Soybean (Glycine max L.). Theor. Appl. Genet. 2011, 122, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Yundaeng, C.; Somta, P.; Tangphatsornruang, S.; Wongpornchai, S.; Srinives, P. Gene Discovery and Functional Marker Development for Fragrance in Sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2013, 126, 2897–2906. [Google Scholar] [CrossRef]
- Phan, T.T.; Truong, H.T.H.; Nguyen, S.C.H.; Nguyen, T.T.T.; Tran, V.T. Evaluation of Promising Sponge Gourd (Luffa cylindrica L.) Accessions in Summer-Autumn Season 2014 in Thua Thien Hue. Agr. Sci. Techn. A B Hue. Univ. J. Sci. 2015, 5, 508–514. [Google Scholar]
- Lorieux, M.; Petrov, M.; Huang, N.; Guiderdoni, E.; Ghesquière, A. Aroma in Rice: Genetic Analysis of a Quantitative Trait. Theor. Appl. Genet. 1996, 93, 1145–1151. [Google Scholar] [CrossRef]
- Hong Hai, T.T.; Thao, P.T.; Ha, L.T.K. Correlations Between Fruit’S Yield with Horticultural Traits and Inheritance of Morphological Traits of Sponge Gourd (Luffa cylindrica). Hue Univ. J. Sci. Agric. Rural Dev. 2019, 128, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.H.; Kim, S.Y.; Kyoon, C.H.; Suk, K.Y. Characterization of Aroma-Active Compounds in Raw and Cooked Pine-Mushrooms (Tricholoma matsutake Sing.). J. Agric. Food Chem. 2006, 54, 6332–6335. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Volatile 1-Octen-3-Ol Induces a Defensive Response in Arabidopsis Thaliana. J. Gen. Plant Pathol. 2007, 73, 35–37. [Google Scholar] [CrossRef]
- Schnürer, J.; Olsson, J.; Börjesson, T. Fungal Volatiles as Indicators of Food and Feeds Spoilage. Fungal Genet. Biol. 1999, 27, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hayata, Y.; Sakamoto, T.; Maneerat, C.; Li, X.; Kozuka, H.; Sakamoto, K. Evaluation of Aroma Compounds Contributing to Muskmelon Flavor in Porapak Q Extracts by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2003, 51, 3415–3418. [Google Scholar] [CrossRef] [PubMed]
- Sagar, V.; Dhawan, G.; Gopala Krishnan, S.; Vinod, K.K.; Ellur, R.K.; Mondal, K.K.; Rathour, R.; Prakash, G.; Nagarajan, M.; Bhowmick, P.K.; et al. Marker Assisted Introgression of Genes Governing Resistance to Bacterial Blight and Blast Diseases into an Elite Basmati Rice Variety, ‘Pusa Basmati 1509. Euphytica 2020, 216, 16. [Google Scholar] [CrossRef]
- Sagar, V.; Krishnan, S.G.; Dwivedi, P.; Prakash, G.; Nagarajan, M.; Singh, A.K. Development of Basmati Rice Genotypes with Resistance to Both Bacterial Blight and Blast Diseases Using Marker Assisted Restricted Backcross Breeding. Indian J. Genet. Plant Breed. 2018, 78, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Pragadheesh, V.S.; Saroj, A.; Yadav, A.; Samad, A.; Chanotiya, C.S. Compositions, Enantiomer Characterization and Antifungal Activity of Two Ocimum Essential Oils. Ind. Crops Prod. 2013, 50, 333–337. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 8, 804. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1984. [Google Scholar]
Generation | Total No. of Plants | Non-aromatic | Aromatic | Expected | Calculated χ2 Value | p Value (0.05) |
---|---|---|---|---|---|---|
P1(VRSG-194) Non-aromatic | 10 | |||||
P2(VRSG-7-17) Aromatic | 10 | |||||
F1 | 50 | 50 | - | - | - | |
F2 | 250 | 196 | 54 | 3:1 | 1.54 | 0.214 |
BCP1 | 100 | 59 | 41 | 1:1 | 3.24 | 0.071 |
BCP2 | 100 | 100 | - | - | - |
Generation | Total Plants (No.) | Dark Green (DG) | Green | Light Green (LG) | Expected | Calculated χ2 Value | p Value (0.05) | |||
---|---|---|---|---|---|---|---|---|---|---|
P1(VRSG194) | 10 | DG | 1:0:0 | |||||||
P2(VRSG-7-17) | 10 | LG | 0:0:1 | |||||||
F1 | 50 | 50 | 0:1:0 | - | - | |||||
F2 | 250 | 64 | 129 | 57 | 1:2:1 | 0.64 | 0.72 | |||
Generation | Total plants (No.) | NADG | NAG | NALG | ADG | AG | ALG | |||
F2 | 250 | 50 | 99 | 47 | 14 | 30 | 10 | 3:6:3:1:2:1 | 3.85 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaubey, T.; Sagar, V.; Singh, R.K.; Chanotiya, C.S.; Pandey, S.; Singh, P.M.; Karmakar, P.; Singh, J.; Singh, B.; Singh, D.P.; et al. Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem). Plants 2022, 11, 2881. https://doi.org/10.3390/plants11212881
Chaubey T, Sagar V, Singh RK, Chanotiya CS, Pandey S, Singh PM, Karmakar P, Singh J, Singh B, Singh DP, et al. Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem). Plants. 2022; 11(21):2881. https://doi.org/10.3390/plants11212881
Chicago/Turabian StyleChaubey, Tribhuvan, Vidya Sagar, Ramesh Kumar Singh, Chandan Singh Chanotiya, Sudhakar Pandey, Prabhakar M. Singh, Pradip Karmakar, Jagdish Singh, Bijendra Singh, Dhananjay Pratap Singh, and et al. 2022. "Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem)" Plants 11, no. 21: 2881. https://doi.org/10.3390/plants11212881
APA StyleChaubey, T., Sagar, V., Singh, R. K., Chanotiya, C. S., Pandey, S., Singh, P. M., Karmakar, P., Singh, J., Singh, B., Singh, D. P., Pandey, K. K., & Behera, T. K. (2022). Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem). Plants, 11(21), 2881. https://doi.org/10.3390/plants11212881