Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System
Abstract
:1. Introduction
2. Results
2.1. Selection of the Nutrient Solution
2.1.1. Germination and Early Growth
2.1.2. Growth and Development
2.2. Effects of the NO3−/NH4+ Ratio in the Nutrient Solution
2.2.1. Germination
2.2.2. Growth and Development
2.3. Effects of Urea and Silicon
3. Discussion
4. Materials and Methods
4.1. Home Hydroponic System
4.2. Pod (Seed Kit)
4.3. Plant Materials
4.4. Nutrient Solution
4.5. Germination
4.6. Measurement of Growth Parameters
4.7. Chlorophyll Content and Root Activity
4.8. Contents of Soluble Sugar and Starch
4.9. Soluble Proteins and Activities of Antioxidant Enzymes
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gómez-Merino, F.C.; Trejo-Téllez, L.I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic and Abiotic Stress Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2018; pp. 137–172. [Google Scholar]
- Buoso, S.; Tomasi, N.; Said-Pullicino, D.; Arkoun, M.; Yvin, J.C.; Pinton, R.; Zanin, L. Characterization of physiological and molecular responses of Zea mays seedlings to different urea-ammonium ratios. Plant Physiol. Biochem. 2021, 162, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Cramer, M. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Conesa, E.; Niñirola, D.; Vicente, M.; Ochoa, J.; Bañón, S.; Fernández, J. The influenc of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. Acta Hortic. 2009, 843, 269–274. [Google Scholar] [CrossRef]
- Shang, H.; Shen, G. Effect of ammonium/nitrate ratio on pak choi (Brassica chinensis L.) photosynthetic capacity and biomass accumulation under low light intensity and water deficit. Photosynthetica 2018, 56, 1039–1046. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Li, J.; Zhang, X.; Tang, C.; Wang, C.; Gan, Y. Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy 2019, 9, 683. [Google Scholar] [CrossRef] [Green Version]
- Jeong, B.R.; Lee, C.W. Effect of NH4+, NO3−, and Cl− ions on ion uptake and solution pH in hydroponic culture of ageratum and salvia. HortScience 1990, 25, 1171. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Growth, quality, and nitrogen assimilation in response to high ammonium or nitrate supply in cabbage (Brassica campestris L.) and lettuce (Lactuca sativa L.). Agronomy 2021, 11, 2556. [Google Scholar] [CrossRef]
- Mengel, K. Influence of exogenous factors on the quality and chemical composition of vegetables. Acta Hortic. 1979, 93, 133–152. [Google Scholar] [CrossRef]
- Wolf, I.; Wasserman, A. Nitrates, nitrites, and nitrosamines. Science 1972, 177, 15–19. [Google Scholar] [CrossRef]
- Mazur, L.J. Pediatric environmental health. Curr. Probl. Pediatr. Adolesc. Health Care 2003, 33, 6–25. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Chamandoost, S.; Moradi, M.F.; Hosseini, M.J. A review of nitrate and nitrite toxicity in foods. J. Hum. Environ. Health Promot. 2016, 1, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Li, Y.; Hu, J.; Lee, J.; Jeong, B.R. Pre-and/or postharvest silicon application prolongs the vase life and enhances the quality of cut peony (Paeonia lactiflora Pall.) flowers. Plants 2021, 10, 1742. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Hanson, J.B. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 1980, 31, 239–298. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.N.S.; Júnior, G.B.D.S.; Prado, R.D.M.; David, C.H.O.D.; Junior, J.P.D.S.; Teodoro, P.E. Silicon mitigates ammonium toxicity in plants. Agron. J. 2020, 112, 635–647. [Google Scholar] [CrossRef]
- Sarasketa, A.; González-Moro, M.B.; González-Murua, C.; Marino, D. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. J. Exp. Bot. 2014, 65, 6023–6033. [Google Scholar] [CrossRef] [Green Version]
- Viciedo, D.O.; Prado, R.M.; Toledo, R.L.; Santos, L.C.N.; Hurtado, A.C.; Nedd, L.L.T.; Gonzalez, L.C. Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). J. Soil Sci. Plant Nutr. 2019, 19, 413–419. [Google Scholar] [CrossRef]
- Hu, J.; Cai, X.; Jeong, B.R. Silicon affects root development, tissue mineral content, and expression of silicon transporter genes in poinsettia (Euphorbia pulcherrima Willd.) cultivars. Plants 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Soundararajan, P.; Manivannan, A.; Ko, C.H.; Jeong, B.R. Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. J. Plant Growth Regul. 2018, 37, 16–34. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Gruda, N.S. The potential of introduction of Asian vegetables in Europe. Horticulturae 2020, 6, 38. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Dasberg, S.; Mendel, K. The effect of soil water and aeration on seed germination. J. Exp. Bot. 1971, 22, 992–998. [Google Scholar] [CrossRef]
- Garnica, M.; Houdusse, F.; Zamarreño, A.M.; García-Mina, J. Nitrate modifies the assimilation pattern of ammonium and urea in wheat seedlings. J. Sci. Food Agric. 2010, 90, 357–369. [Google Scholar] [CrossRef]
- Olivera, V.D.; Mello, P.R.; Lizcano, T.R.; Salas, A.D.; Santos, L.C.N.; Calero, H.A.; Peña, C.K.; Betancourt, A.C. Physiological role of silicon in radish seedlings under ammonium toxicity. J. Sci. Food Agric. 2020, 100, 5637–5644. [Google Scholar] [CrossRef]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Houdusse, F.; Zamarreño, A.M.; Garnica, M.; García-Mina, J. The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: The relationships with free polyamines and plant proline contents. Funct. Plant Biol. 2005, 32, 1057–1067. [Google Scholar] [CrossRef]
- Naulin, P.A.; Armijo, G.I.; Vega, A.S.; Tamayo, K.P.; Gras, D.E.; Cruz, J.; Gutiérrez, R.A. Nitrate induction of primary root growth requires cytokinin signaling in Arabidopsis thaliana. Plant Cell Physiol. 2020, 61, 342–352. [Google Scholar] [CrossRef]
- Barreto, R.F.; Júnior, A.A.S.; Maggio, M.A.; Mello, P.R. Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Sci. Hortic. 2017, 225, 743–750. [Google Scholar] [CrossRef]
- Silva, G.B.D.; Prado, R.M.; Campos, C.; Agostinho, F.B.; Silva, S.L.; Santos, L.C.; González, L.C. Silicon mitigates ammonium toxicity in yellow passionfruit seedlings. Chil. J. Agric. Res. 2019, 79, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Sadeghianfar, P.; Nazari, M.; Backes, G. Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants 2019, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Kim, Y.; Kim, Y.; Yun, Y. Ssam food recipe: A case study on jongka ancestral ritual food. J. Ethn. Foods 2018, 5, 194–201. [Google Scholar] [CrossRef]
- Song, J.; Yang, J.; Jeong, B.R. Alleviation of ammonium toxicity in salvia splendens ‘Vista Red’ with silicon supplementation. Toxics 2022, 10, 446. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Jeong, B.R. Silicon alleviates temperature stresses in poinsettia by regulating stomata, photosynthesis, and oxidative damages. Agronomy 2020, 10, 1419. [Google Scholar] [CrossRef]
- Afsheen, S.; Naseer, H.; Iqbal, T.; Abrar, M.; Bashir, A.; Ijaz, M. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Mater. Chem. Phys. 2020, 252, 123216. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Xiang, Y.; Zhang, S.; Wang, J.; Sun, Q. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118488. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, J.; Wei, H.; Jeong, B.R. Supplementary light source affects growth and development of carnation ‘Dreambyul’cuttings. Agronomy 2020, 10, 1217. [Google Scholar] [CrossRef]
- Noh, K.; Jeong, B.R. Optimizing temperature and photoperiod in a home cultivation system to program normal, delayed, and hastened growth and development modes for leafy Oak-leaf and Romaine lettuces. Sustainability 2021, 13, 10879. [Google Scholar] [CrossRef]
- Onanuga, A.O.; Adl, S. Effect of phytohormones, phosphorus and potassium on cotton varieties (Gossypium hirsutum) root growth and root activity grown in hydroponic nutrient solution. J. Agric. Sci. 2012, 4, 93. [Google Scholar] [CrossRef]
- Vasseur, F.; Pantin, F.; Vile, D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 2011, 34, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.X.; Xue, J.Q.; Wang, S.L.; Xue, Y.Q.; Zhang, P.; Jiang, H.D.; Zhang, X.X. Proteomic analysis of tree peony (Paeonia ostii ‘Feng Dan’) seed germination affected by low temperature. J. Plant Physiol. 2018, 224, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Muneer, S.; Soundararajan, P.; Jeong, B.R. Proteomic and antioxidant analysis elucidates the underlying mechanism of tolerance to hyperhydricity stress in in vitro shoot cultures of Dianthus caryophyllus. J. Plant Growth Regul. 2016, 35, 667–679. [Google Scholar] [CrossRef]
- Ginnopolitis, C.; Rice, S. Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling. Plant Physiol. 1977, 59, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, K.; Kumar, R.G.; Verma, S.; Dubey, R. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001, 161, 1135–1144. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
Nutrient Solution | GR z (Seeds per Day) | MGT (Day) | GEn (%) | |
---|---|---|---|---|
GE2 | GE3 | |||
GNU1 | 7.8 | 2.04 a y | 6.7 | 93.3 b |
GNU2 | 8.0 | 1.97 ab | 6.7 | 100.0 a |
Peters Professional | 7.8 | 1.97 ab | 10.0 | 100.0 a |
Nutrient Solution (A) | NO3−/NH4+ (%) (B) | Code | GR y (Seeds per Day) | MGT (Day) | GE (%) | |
---|---|---|---|---|---|---|
GE2 | GE3 | |||||
GNU1 | 100.0:0.0 z | GNU1-1 | 8.1 bc w | 1.97 ab | 10.0 b | 93.3 |
83.3:16.7 | GNU1-2 | 7.8 c | 2.00 a | 6.7 b | 93.3 | |
66.7:33.3 | GNU1-3 | 8.8 b | 1.84 c | 16.7 b | 100.0 | |
50.0:50.0 | GNU1-4 | 8.5 bc | 1.87 bc | 13.3 b | 100.0 | |
GNU2 | 100.0:0.0 | GNU2-1 | 8.3 bc | 1.90 abc | 10.0 b | 100.0 |
83.3:16.7 | GNU2-2 | 8.0 bc | 1.93 abc | 6.7 b | 100.0 | |
66.7:33.3 | GNU2-3 | 8.8 b | 1.84 c | 16.7 b | 100.0 | |
50.0:50.0 | GNU2-4 | 10.0 a | 1.67 d | 33.3 a | 100.0 | |
F-test x | A | * | * | NS | NS | |
B | * | * | * | NS | ||
A × B | * | NS | * | NS |
Nutrient Solution | Ion Concentration (me·L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cation | Anion | Total | |||||||
H+ | Ca2+ | Mg2+ | K+ | NH4+ | NO3− | SO42− | H2PO4− | ||
GNU1 | 0.0 | 6.0 | 2.0 | 5.0 | 2.2 | 10.8 | 2.4 | 2.0 | 30.4 |
GNU2 | 0.0 | 5.0 | 1.0 | 4.0 | 1.7 | 8.3 | 2.4 | 1.0 | 23.4 |
Nutrient Solution | NO3−/NH4+ (%) | Ion Concentration (me·L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cation | Anion | Total | ||||||||
H+ | Ca2+ | Mg2+ | K+ | NH4+ | NO3− | SO42− | H2PO4− | |||
GNU1-1 | 100.0:0.0 | 0.0 | 7.9 | 2.6 | 6.5 | 0.0 | 13.0 | 2.0 | 2.0 | 34.0 |
GNU1-2 | 83.3:16.7 | 0.0 | 6.0 | 2.0 | 5.0 | 2.2 | 10.8 | 2.4 | 2.0 | 30.4 |
GNU1-3 | 66.7:33.3 | 0.0 | 6.0 | 2.0 | 5.0 | 4.3 | 8.7 | 6.6 | 2.0 | 34.6 |
GNU1-4 | 50.0:50.0 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 11.0 | 2.0 | 39.0 |
GNU2-1 | 100.0:0.0 | 0.0 | 6.0 | 1.2 | 4.8 | 0.0 | 10.0 | 1.0 | 1.0 | 24.0 |
GNU2-2 | 83.3:16.7 | 0.0 | 5.0 | 1.0 | 4.0 | 1.7 | 8.3 | 2.4 | 1.0 | 23.4 |
GNU2-3 | 66.7:33.3 | 0.0 | 5.0 | 1.0 | 4.0 | 3.3 | 6.7 | 5.6 | 1.0 | 26.6 |
GNU2-4 | 50.0:50.0 | 0.0 | 5.0 | 1.0 | 4.0 | 5.0 | 5.0 | 9.0 | 1.0 | 30.0 |
Nutrient Solution | NO3−/NH4+/Urea (%) | Si (mmol·L−1) | Ion Concentration (me·L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cation | Anion | Total | |||||||||
H+ | Ca2+ | Mg2+ | K+ | NH4+ | NO3− | SO42− | H2PO4− | ||||
GNUa | 83:17:0 | 0.0 | 0.0 | 6.0 | 2.0 | 5.0 | 2.2 | 10.8 | 2.4 | 2.0 | 30.4 |
GNUa’ | 83:17:0 | 10.7 | 1.4 | 6.0 | 2.0 | 5.0 | 2.0 | 11.0 | 2.0 | 2.0 | 30.0 |
GNUb | 50:50:0 | 0.0 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 11.0 | 2.0 | 39.0 |
GNUb’ | 50:50:0 | 10.7 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 9.6 | 2.0 | 37.6 |
GNUc | 50:25:25 | 0.0 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 7.8 | 2.0 | 35.8 |
GNUc’ | 50:25:25 | 10.7 | 0.0 | 6.0 | 2.0 | 6.4 | 6.5 | 6.5 | 7.8 | 2.0 | 37.2 |
GNUd | 50:0:50 | 0.0 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 4.5 | 2.0 | 32.5 |
GNUd’ | 50:0:50 | 10.7 | 0.0 | 6.0 | 2.0 | 5.0 | 6.5 | 6.5 | 3.1 | 2.0 | 31.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, K.; Jeong, B.R. Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System. Plants 2022, 11, 2882. https://doi.org/10.3390/plants11212882
Noh K, Jeong BR. Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System. Plants. 2022; 11(21):2882. https://doi.org/10.3390/plants11212882
Chicago/Turabian StyleNoh, Kyungdeok, and Byoung Ryong Jeong. 2022. "Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System" Plants 11, no. 21: 2882. https://doi.org/10.3390/plants11212882
APA StyleNoh, K., & Jeong, B. R. (2022). Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System. Plants, 11(21), 2882. https://doi.org/10.3390/plants11212882