Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis
Abstract
:1. Introduction
2. Results
2.1. Characterization of M2Populations
2.2. Characterization of M3 Mutants
2.3. Characterization of M4 Mutants
2.4. Essential Oil Composition Analysis of M4 Selected Mutants
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Mutagen Agents
4.2.1. Physical Mutagen
4.2.2. Chemical Mutagen
4.3. Agronomic Practices and Data Collection
4.4. Measured Parameters
4.5. Essential Oil Analyses
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franke, R.; Schilcher, H. Chamomile: Industrial Profiles; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crop. Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.; Friedt, W.; Marquard, R.A.; Ordon, F. Molecular analyses on the genetic diversity and inheritance of (−)-α-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Sci. 2005, 169, 917–927. [Google Scholar] [CrossRef]
- Salamon, I.; Ghanavati, M.; Khazaei, H. Chamomile biodiversity and essential oil qualitative-quantitative characteristics in Egyptian production and Iranian landraces. Emir. J. Food Agric. 2010, 22, 59–64. [Google Scholar] [CrossRef] [Green Version]
- McKay, D.L.; Blumberg, J.B. A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef]
- Bradley, P.R. British Herbal Compendium. Volume 1. A Handbook of Scientific Information on Widely Used Plant Drugs. Companion to Volume 1 of the British Herbal Pharmacopoeia; British Herbal Medicine Association: Bournmouth, UK, 1992. [Google Scholar]
- Mericli, A.H. The lipophilic compounds of a Turkish Matricaria chamomilla variety with no chamazulene in the volatile oil. Int. J. Crude Drug Res. 1990, 28, 145–147. [Google Scholar] [CrossRef]
- OkoĔ, S.; Surmacz-Magdziak, A.; Paczos-GrzĊda, E. Genetic diversity among cultivated and wild chamomile germplasm based on ISSR analysis. Acta Sci. Pol-Hortoru 2013, 12, 43–50. [Google Scholar]
- Otto, L.G.; Junghanns, W.R.; Plescher, A.; Sonnenschein, M.; Sharbel, T.F. Towards breeding of triploid chamomile (Matricaria recutita L.)–Ploidy variation within German chamomile of various origins. Plant Breed. 2015, 134, 485–493. [Google Scholar] [CrossRef]
- Kharkwal, M.; Shu, Q. The role of induced mutations in world food security. Ind. Plant Mutat. Genomics Era Food Agric. Organ. U. N. Rome 2009, 42, 33–38. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Maluszynski, M.; Ahloowalia, B.S.; Sigurbjörnsson, B. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 1995, 85, 303–315. [Google Scholar] [CrossRef]
- Lal, R.K.; Chanotiya, C.S.; Singh, V.R.; Dhawan, S.S.; Gupta, P.; Shukla, S.; Mishra, A. Induced polygenic variations through γ-rays irradiation and selection of novel genotype in chamomile (Chamomilla recutita [L.] Rauschert). Int. J. Radiat. Biol. 2019, 95, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Muntean, L.S. The use and cultivation of medicinal and aromatical plants in Romania. Hop Med. Plants 2010, 1–2, 34–43. [Google Scholar]
- Ivanović, S.; Pajić, M.; Marković, T. Economic effectiveness of mechanized harvesting of chamomile. Eкoнoмика пoљoпривреде 2014, 61, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Filipović, V.; Popović, V. State of the Production and the Collecting of Medicinal Plants in the Republic of Serbia. Inst. Agric. Econ. Belgrade 2014, 957–973. [Google Scholar]
- Pajić, M.; Pajić, V.S.; Ivanović, S.; Oljača, M.V.; Gligorević, K.; Radojičić, D.; Dražić, M.; Zlatanović, I. Influence of harvester type and harvesting time on quality of harvested chamomile. J. Agric. Sci. 2016, 61, 201–213. [Google Scholar]
- Ati, H.M.; Adamu, A.K. Effect of combined doses of gamma ray and sodium azide (mutagenic agents) on the morphological traits of some varieties of okra (Abelmoschus esculentus). Afr. J. Agric. Res. 2016, 11, 2968–2973. [Google Scholar] [CrossRef] [Green Version]
- Kalpande, H.; Surashe, S.; Badigannavar, A.; More, A.; Ganapathi, T. Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes [Sorghum bicolor (L.) Moench]. Int. J. Radiat. Biol. 2022, 98, 230–243. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, B.; Kunadia, B. Induced variability in moong following two methods of handling M2 populations. Trop. Grain Legume Bull. 1980, 19, 30–34. [Google Scholar]
- Khan, S.; Parveen, K.; Goyal, S. Induced mutations in chickpea-morphological mutants. Front Agric China 2011, 5, 35–39. [Google Scholar] [CrossRef]
- Gaur, P.; Gour, V. Broad-few-leaflets and outwardly curved wings: Two new mutants of chickpea. Plant Breed. 2003, 122, 192–194. [Google Scholar] [CrossRef]
- Toker, C. A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet. Resour. Crop. Evol. 2009, 56, 7–12. [Google Scholar] [CrossRef]
- Toker, C.; Cagirgan, M. Spectrum and frequency of induced mutations in chickpea. Int. Chickpea Pigeonpea Newsl. 2004, 11, 8–10. [Google Scholar]
- Khursheed, S.; Raina, A.; Parveen, K.; Khan, S. Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J. Saudi Soc. Agric. Sci. 2019, 18, 113–119. [Google Scholar] [CrossRef]
- Gottschalk, W. The genetic basis of variation. In Improving Vegetatively Propagated Crops; Academic Press Limited: London, UK, 1987; pp. 317–334. [Google Scholar]
- Solanki, I.; Phogat, D.; Waldia, R. Frequency and spectrum of morphological mutations and effectiveness and efficiency of chemical mutagens in Macrosperma lentil. Nat. J. Plant Improv. 2004, 6, 22–25. [Google Scholar]
- Kumar, V.; Sharma, A.; Singh, V.; Kumar, M. Characterization of prebreeding genetic stocks of urdbean (Vigna mungo L. Hepper) induced through mutagenesis. Induc. Plant Mutat. Genomics Era Food Agric. Organ. U. N. Rome 2009, 391–394. [Google Scholar]
- Wani, M.; Kozgar, M.; Tomlekova, N.; Khan, S. Selection for polygenic variability in early mutant generations of mungbean (Vigna radiata (L.) Wilczek). In Mutagenesis: Exploring Genetic Diversity of Crops; Academic Publishers: Wageningen, The Netherlands, 2014; pp. 213–232. [Google Scholar]
- Talukdar, D. RETRACTED ARTICLE: Dwarf mutations in grass pea (Lathyrus sativus L.): Origin, morphology, inheritance and linkage studies. J. Genet. 2009, 88, 165–175. [Google Scholar] [CrossRef]
- Sethi, G. Long-peduncled dwarf: A new mutant type induced in barley. Euphytica 1974, 23, 237–239. [Google Scholar] [CrossRef]
- Hedden, P. The genes of the Green Revolution. Trends Genet. 2003, 19, 5–9. [Google Scholar] [CrossRef]
- Suganthy, C.; Reddy, V.; Edwin, R. Mutation breeding in some cereals IV. Biological parameters. Adv. Plant Sci. 1994, 7, 1–11. [Google Scholar]
- Shakoor, A.; Sadiq, M.; Hasan, M.; Saleem, M. Selection for useful semi dwarf mutants through induced mutation in bread wheat. In Proceedings of the Proc 5th Int Wheat Genet Symp, New Delhi, India, 23–28 February 1978; pp. 540–546. [Google Scholar]
- Kulkarni, R.; Baskaran, K.; Chandrashekara, R.; Kumar, S. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed. 1999, 118, 71–74. [Google Scholar] [CrossRef]
- Singh, N.; Balyan, H. Induced mutations in bread wheat (Triticum aestivum L.) CV.” Kharchia 65” for reduced plant height and improve grain quality traits. Adv. Biol. Res. 2009, 3, 215–221. [Google Scholar]
- Kulkarni, K.; Vishwakarma, C.; Sahoo, S.; Lima, J.; Nath, M.; Dokku, P.; Gacche, R.; Mohapatra, T.; Robin, S.; Sarla, N. Phenotypic characterization and genetic analysis of dwarf and early flowering mutants of rice variety Nagina22. ORYZA-An Int. J. Rice 2013, 50, 18–25. [Google Scholar]
- Albrecht, S.; Sonnenschein, M.; Plescher, A. Breeding of a high yielding chamomile variety (Matricaria recutita L.) with improved traits for machine harvesting. Jul.-Kühn-Arch. 2016, 453, 135. [Google Scholar]
- Hassanin, A.A.; Saad, A.M.; Bardisi, E.A.; Salama, A.; Sitohy, M.Z. Transfer of anthocyanin accumulating delila and rosea1 genes from the transgenic tomato micro-tom cultivar to moneymaker cultivar by conventional breeding. J. Agric. Food Chem. 2020, 68, 10741–10749. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Soliman, S.S.A.; Ismail, T.A.; Amin, M.K.A. The role of SLMYB gene in tomato fruit development. Zagazig J. Agric. Res. 2017, 44, 969–988. [Google Scholar]
- Abdelnour, S.A.; Xie, L.; Hassanin, A.A.; Zuo, E.; Lu, Y. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Front. Cell Dev. Biol. 2021, 9, 699597. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Hassanin, A.A.; Pant, S.D.; Bing, S.; Sitohy, M.Z.; Abdelnour, S.A.; Alotaibi, M.A.; Al-Hazani, T.M.; Abd El-Aziz, A.H.; Cheng, G. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J. Biol. Sci. 2021, 29, 1928–1935. [Google Scholar] [CrossRef]
- Fei Fang, E.; Abd Elazeem Hassanien, A.; Ho Wong, J.; Shui Fern Bah, C.; Saad Soliman, S.; Bun Ng, T. Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 843) with potential medicinal applications. Protein Pept. Lett. 2011, 18, 64–72. [Google Scholar] [CrossRef]
- Eldomiaty, A.; Mahgoub, E. Morphological, Biochemical and Molecular Characterization of Rhizobia of Faba Bean Plants Grown in North Nile Delta Egypt. Pak. J. Biol. Sci. 2021, 24, 672–679. [Google Scholar]
- Heakel, R.M. Analysis of Genetic Diversity among a Population of Canola Genotypes As Reveled By ISSR-PCR and Their Associations to Seed Yield and Oil Content. Ann. Agric. Sci. Moshtohor 2019, 57, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Al-Khayri, J.M.; Mahdy, E.M.B.; Taha, H.S.A.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Abdel Latef, A.A.H.; Rezk, A.A.; Shehata, W.F.; Almaghasla, M.I.; Shalaby, T.A.; et al. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.H.A.; Hassanin, A.A.; Dhshan, A.I.; Abdelnour, S.A.; Khan, R.; Mei, C.; Zan, L. In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electron. J. Biotechnol. 2021, 53, 61–70. [Google Scholar] [CrossRef]
- Fang, E.F.; Hassanien, A.A.E.; Wong, J.H.; Bah, C.S.F.; Soliman, S.S.; Ng, T.B. Purification and modes of antifungal action by Vicia faba cv. Egypt trypsin inhibitor. J. Agric. Food Chem. 2010, 58, 10729–10735. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.A.; Raza, S.H.A.; Ujjan, J.A.; ALrashidi, A.A.; Sitohy, B.M.; Al-Surhanee, A.A.; Saad, A.M.; Al-Hazani, T.M.; Atallah, O.O.; Al Syaad, K.M. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi J. Biol. Sci. 2021. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Osman, A.; Atallah, O.O.; El-Saadony, M.T.; Abdelnour, S.A.; Taha, H.S.A.; Awad, M.F.; Elkashef, H.; Ahmed, A.E.; El-Rahim, I.A.; et al. Phylogenetic comparative analysis: Chemical and biological features of caseins (alpha-S-1, alpha-S-2, beta- and kappa-) in domestic dairy animals. Front. Vet. Sci. 2022, 9, 952319. [Google Scholar] [CrossRef]
- Santich, R. Chamomile: Herbs and Spices Review. Pract. Hydroponics Greenh. 2010, 112, 60–62. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: DuPage, IL, USA, 2007; Volume 456. [Google Scholar]
Gamma Rays (Gy) | Sodium Azide (mol/mL) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mutation Type | 100 | 200 | 300 | 400 | 0.001 | 0.002 | 0.003 | Total | ||||||||||||||
Fa | Be | Me | Fa | Be | Me | Fa | Be | Me | Fa | Be | Me | Fa | Be | Me | Fa | Be | Me | Fa | Be | Me | ||
Dwarf | - | 1 | 1 | - | - | - | 2 | 1 | - | 1 | - | 1 | - | 1 | - | - | 1 | - | - | - | 9 | |
Semi-dwarf | - | - | 1 | - | 2 | 1 | 1 | 1 | - | 1 | - | 1 | 1 | 1 | - | 1 | - | 1 | 1 | - | - | 13 |
Tall | 3 | 2 | 1 | 1 | 1 | - | 1 | - | - | - | 1 | - | 1 | - | - | 2 | 1 | - | 1 | 15 | ||
Large stem diameter | 1 | 1 | 1 | - | 1 | - | - | - | - | - | - | - | - | 1 | - | 1 | 1 | 1 | 8 | |||
High number of branches | 2 | 2 | 1 | 1 | - | 1 | 1 | - | - | - | 1 | 1 | - | - | 1 | 1 | - | - | 1 | 3 | - | 16 |
Early flowering | 1 | 3 | - | 1 | 4 | - | 1 | - | 1 | 1 | - | 2 | 1 | - | 1 | - | 1 | - | 1 | 1 | 1 | 20 |
Late flowering | 1 | 2 | 1 | 1 | - | 2 | 3 | - | - | 1 | 1 | - | - | 1 | - | 1 | 2 | 2 | - | - | 18 | |
High number of flowers | - | 1 | 2 | 1 | 2 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | - | 2 | 1 | 2 | 3 | 1 | 4 | - | 25 |
Total | 8 | 12 | 6 | 6 | 9 | 7 | 8 | 4 | 2 | 4 | 3 | 5 | 5 | 2 | 6 | 5 | 3 | 10 | 7 | 9 | 3 | 124 |
26 | 22 | 14 | 12 | 13 | 18 | 19 | ||||||||||||||||
74 | 50 |
Mutants | Mutagens | Flowers Fresh Weight (g) | Flowers Dry Weight (g) | No. of Flowers | Plant Height (cm) | Stem Diameter (mm) | No. of Branches | Days to Flowering | Oil Content (%) | Oil Colors | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fayoum | Control | - | 211.9 c ± 40.1 | 43.7 b ± 5.9 | 1089.7 b ± 319.6 | 76 b ± 7.9 | 10.7 bc ± 1.5 | 15.3 ab ± 2.5 | 123.3 a ± 24.6 | 0.91 b ± 0.64 | Blue |
F/EF 5-1 | SA 0.001 | 143.4 e ± 21.7 | 33.9 c ± 6.7 | 780 b ± 119.1 | 68.3 bc ± 12.6 | 8 c ± 3.6 | 16.3 a ± 1.5 | 113.3 a ± 5.8 | 0.89 b ± 0.2 | Blue | |
F/LF 2-1 | G 200 | 168.7 d ± 24.4 | 38.3 c ± 6.1 | 606.6 d ± 71.4 | 61.3 c ± 9.1 | 11.3 ab ± 3.2 | 12.3 b ± 4.9 | 138 a ± 9.5 | 0.96 b ± 0.15 | Blue | |
F/LF 5-2 | G 300 | 571.3 a ± 220.6 | 131.5 a ± 50.5 | 1627.6 a ± 556.8 | 97.6 a ± 6.8 | 12 ab ± 1.7 | 17.6 a ± 2.1 | 136.3 a ± 3.2 | 1.77 a ± 0.46 | Very light blue | |
F/LF 6-3 | G 400 | 189.1 d ± 51.6 | 51.4 b ± 6.7 | 940.3 b ± 205.7 | 55.7 d ± 8.1 | 7 c ± 5.2 | 14.3 ab ± 4.6 | 130.3 a ± 2.1 | 1.01 b ± 0.3 | Blue | |
F/HNOF 3-1 | SA 0.001 | 300.7 b ± 91.6 | 50.8 b ± 10.6 | 1113.6 c ± 82.5 | 67.6 c ± 5 | 12 a ± 3.1 | 12 ab ± 4.5 | 137.3 a ± 8.5 | 1.09 b ± 0.17 | Blue | |
Benysuef | Control | - | 212.3 e ± 32.6 | 48.2 e ± 9.1 | 1224 d ± 64.5 | 80.7 a ± 8.1 | 9.7 b ± 1.2 | 14 d ± 1 | 130 cd ± 18.1 | 0.89 a ± 0.21 | Blue |
B/EF 3-1 | G 100 | 276.5 d ± 41.3 | 65.3 d ± 7.4 | 966.7 g ± 341.9 | 71 b ± 1.7 | 15.3 a ± 2.5 | 17.7 cd ± 4.1 | 103.6 f ± 16.5 | 0.81 a ± 0.1 | Blue | |
B/LF 2-1 | G 100 | 422.6 b ± 109.3 | 94.8 b ± 27.3 | 1619.3 c ± 45.4 | 69.7 b ± 13.8 | 10.7 ab ± 4.1 | 21.6 b ± 10.4 | 137.6 b ± 1.5 | 0.91 a ± 0.06 | Blue | |
B/HNOF 2-1 | G 100 | 228 e ± 60.5 | 55.6 e ± 21.6 | 1178.7 e ± 49.6 | 72.3 b ± 10.7 | 11 b ± 2 | 21 cd ± 8.1 | 151 a ± 5.2 | 0.9 a ± 0.36 | Blue | |
B/HNOF 3-2 | G 200 | 308.3 c ± 40.8 | 70.4 c ± 6.6 | 1097.3 f ± 46.6 | 67 b ± 9.6 | 9.7 b ± 5.5 | 20.3 c ± 9.4 | 113.3 d ± 8.6 | 0.79 a ± 0.16 | Blue | |
B/HNOF 4-3 | G 200 | 410.7 b ± 201.7 | 94.3 b ± 46.6 | 1798.7 b ± 958.6 | 73.6 b ± 11.2 | 10 b ± 1.7 | 31.3 a ± 11.1 | 136 bc ± 5.5 | 1.09 a ± 0.15 | Light brown | |
B/HNOF8-4 | SA 0.003 | 533.4 a ± 229.3 | 116.6 a ± 55.1 | 2181 a ± 920.1 | 79.7 a ± 4.5 | 12 ab ± 4.3 | 22 bc ± 7 | 123.3 cd ± 3.1 | 1.29 a ± 0.25 | Very light blue | |
Menia | Control | - | 188.9 g ± 8.2 | 44.4 d ± 4.5 | 1194.7 f ± 62.3 | 80 a ± 10 | 9.3 d ± 1.5 | 13 c ± 2.6 | 135.3 c ± 0.6 | 0.88 a ± 0.026 | Blue |
M/EF 4-1 | SA 0.001 | 536.6 a ± 57.7 | 114.1 a ± 12.7 | 2172 b ± 455.6 | 80 a ± 10 | 11 cd ± 1.7 | 21 b ± 3.6 | 94.3 e ± 5.8 | 0.96 a ± 0.47 | Blue | |
M/EF 5-2 | SA 0.003 | 578 b ± 148.6 | 120 a ± 24.3 | 1832 c ± 431.8 | 87 a ± 11.5 | 16 bc ± 6.3 | 26 ab ± 7.8 | 96 e ± 7.5 | 0.98 a ± 0.225 | Blue | |
M/LF 3-1 | G 200 | 320 f ± 46.7 | 75 c ± 10.1 | 1196 g ± 268.7 | 73 a ± 13.3 | 13 ab ± 4.3 | 21 bc ± 2.5 | 144 ab ± 10.8 | 0.95 a ± 0.37 | Blue | |
M/LF 5-2 | G 100 | 401 d ± 44.8 | 108 a ± 5.9 | 1328 d ± 554.1 | 82 a ± 7.5 | 17 a ± 2.9 | 30 ab ± 5.3 | 150 a ± 3.1 | 1 a ± 0.1 | Blue | |
M/HNOF 4-1 | G 400 | 571.7 a ± 126.7 | 124.5 a ± 30.7 | 2149 a ± 990.8 | 80.3 a ± 4.1 | 11 cd ± 1.7 | 19 b ± 6.1 | 140.3 bc ± 5.5 | 1.09 a ± 0.2 | Very dark yellow | |
M/HNOF 6-2 | SA 0.001 | 349.5 e ± 74 | 73.3 c ± 16.3 | 1246.3 fg ± 362.1 | 81.7 a ± 7.6 | 15.3 a ± 3.2 | 29.3 a ± 4.9 | 100 e ± 2.2 | 0.96 a ± 0.31 | Blue | |
M/HNOF 7-3 | SA 0.002 | 451.4 c ± 20.3 | 95.1 b ± 7.7 | 1622.3 e ± 33.5 | 59 a ± 41.4 | 12 c ± 1 | 20.7 b ± 1.5 | 124 d ± 13.5 | 0.97 a ± 0.35 | Blue |
Mutants | Mutagens | Flowers Fresh Weight (g) | Flowers Dry Weight (g) | No. of Flowers | Plant Height (cm) | Stem Diameter (mm) | No. of Branches | Days to Flowering | Oil Content (%) | Oil Colors |
---|---|---|---|---|---|---|---|---|---|---|
Control | - | 188.7 ab ± 61.6 | 47.3 cd ± 13.9 | 1079.1 d ± 240.8 | 77.2 c ± 2.6 | 9.3 b ± 1.15 | 13.6 c ± 2.1 | 126.5 b ± 11.1 | 0.9 c ± 0.24 | Blue |
F/LF 5-2-1 | G 300 | 505.1 a ± 262.7 | 115.5 b ± 47.6 | 1595.3 b ± 523.2 | 82.4 a ± 2.6 | 14 a ± 2.1 | 16.2 bc ± 2 | 138.1 a ± 3.1 | 1.75 a ± 0.11 | Light blue |
F/HNOF 3-1-1 | SA 0.001 | 206 b ± 48.1 | 46.6 d ± 6.6 | 1015.4 e ± 46.7 | 71.8 c ± 9.6 | 117 ab ± 5.5 | 11.5 c ± 9.4 | 131.2 a ± 8.6 | 0.99 bc ± 0.019 | Blue |
B/HNOF 4-3-1 | G 200 | 314.1 ab ± 115.4 | 72.4 bc ± 33.5 | 1380.5 c ± 315.1 | 75 bc ± 7.2 | 10.6 b ± 2.1 | 25.4 a ± 6.4 | 136 a ± 3.2 | 1.03 bc ± 0.19 | Light brown |
B/HNOF 8-4-2 | SA 0.003 | 510.2 a ± 192.1 | 111.5 a ± 46.7 | 1900 a ± 549 | 77.7 ab ± 3 | 137 ab ± 3.2 | 20 ab ± 4.1 | 124.4 b ± 1.5 | 1.22 b ± 0.18 | Very light blue |
M/HNOF 4-1-1 | G 400 | 433.9 ab ± 177.5 | 95.6 bc ± 48.3 | 1930 a ± 931.6 | 79.3 ab ± 2 | 127 ab ± 1.5 | 20 ab ± 2.1 | 138.5 a ± 4.5 | 0.99 bc ± 0.067 | Very dark yellow |
COMPOUND | LRI | RT | Basic Composition of Essential Oil (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | F/LF 5-2-1 | F/HNOF 3-1-1 | B/HNOF 4-3-1 | B/HNO F 8-4-2 | M/HNOF 4-1-1 | ||||
Peak Area % | |||||||||
1 | 2,4,5-Trimethyl-1,3-dioxolane | 695.4 | 3.236 | - | - | - | - | - | 0.78 |
2 | Amyl ethyl ether | 709 | 3.282 | - | - | - | - | - | 0.77 |
3 | Trimethylsilylmethanol | 493.1 | 4.197 | 2.73 | 4.52 | 2.37 | 6.13 | 4.52 | 32.4 |
4 | Acetone, dimethyl acetyl | 577.6 | 4.277 | - | - | - | 0.22 | 0.17 | 1.06 |
5 | Ethyl α-methylbutyrate | 405.2 | 4.821 | 0.56 | 1.67 | 0.53 | 0.19 | 0.77 | 0.99 |
6 | Propyl 2-methylbutanoate | 741.5 | 7.184 | 0.34 | 0.6 | 0.28 | - | - | - |
7 | 3,6-Heptadien-2-ol, 2,5,5-trimethyl-, (E)- | 996.9 | 8.769 | 0.4 | - | 0.28 | - | 0.24 | 0.95 |
8 | p-Cymene | 959.3 | 9.593 | 1.41 | 1.1 | 0.73 | 0.45 | 1.74 | - |
9 | Benzeneacetaldehyde | 767.8 | 10.205 | - | 0.76 | - | - | - | - |
10 | γ-Terpene | 1018.7 | 10.714 | - | - | - | - | 0.41 | - |
11 | Artemisia ketone | 1026.8 | 10.795 | 1.82 | 2.17 | 1.85 | 1.62 | 1.27 | 0.77 |
12 | Artemisia alcohol (2,5,5-trimethylhepta-2,6-dien-4-ol) | 1300 | 11.527 | 0.48 | - | 0.4 | - | 0.34 | - |
13 | Mequinol | 572.2 | 11.722 | - | 0.75 | - | - | - | - |
14 | (-)-Borneol | 935.4 | 14.354 | 0.88 | 1.27 | 0.93 | - | 0.88 | - |
15 | cis-3-Hexenyl-α-methylbutyrate | 1174.5 | 16.745 | - | - | - | - | 0.4 | - |
16 | trans-2-Hexenyl valerate | 1302 | 17.02 | - | - | - | - | 0.37 | - |
17 | 4,8-Dimethylnona-3,8-dien-2-one | 1401 | 18.01 | - | - | - | - | 0.31 | - |
18 | n-Decanoic acid | 1618.6 | 21.186 | - | 1.84 | 3.37 | 1.26 | 0.86 | - |
19 | cis-β-Farnesene | 2393.2 | 23.932 | 2.44 | - | - | - | - | - |
20 | (E)-β-Farnesene | 2393.8 | 23.938 | - | 3.47 | 2.23 | 2.04 | 1.74 | - |
21 | Dehydrosesquicineole | 2431.6 | 24.316 | 0.8 | - | - | - | 0.33 | - |
22 | γ-Cadinene | 2571.2 | 25.712 | - | 0.68 | - | - | - | - |
23 | Spathulenol | 2762.3 | 27.623 | 2.9 | 2.41 | 0.97 | 6.05 | 4.9 | - |
24 | Aristolene epoxide | 1419.2 | 28.081 | - | - | - | 0.41 | 0.39 | - |
25 | 4,4,7a-Trimethyl-2,3,3a,4,5,7a-hexahydro-1H-inden-1-one | 1185 | 28.739 | 0.81 | 0.81 | 0.54 | 2.41 | 1.24 | - |
26 | Aromadendrene oxide-(1) | 1510.2 | 28.991 | - | - | - | 0.49 | - | - |
27 | 6-[1-(Hydroxymethyl)vinyl]-4,8a-dimethyl-1,2,4a,5,6,7,8,8a-octahydro-2-naphthalenol | 1521.6 | 29.105 | - | - | 0.36 | 1.58 | 0.77 | - |
28 | α-epi-Cadinol | 1542.8 | 29.317 | - | 4.84 | - | 0.79 | 0.49 | - |
29 | Bisabolol oxide B | 1517.6 | 29.889 | 10.71 | 6.87 | 6.67 | 20.62 | 5.85 | 1.27 |
30 | β-Santalol | 1529.6 | 30.009 | 3.19 | 3.22 | 3.55 | 3.27 | 1.99 | 8.32 |
31 | Costol | 1553.1 | 30.244 | - | - | - | 0.48 | - | - |
32 | Bisabolone oxide A | 1497.1 | 30.684 | 12.36 | 10.2 | 7.92 | 4.23 | 6.93 | 1.34 |
33 | Calarene epoxide | 1595.4 | 30.667 | - | - | - | - | 0.41 | - |
34 | α-Bisabolone oxide A | 1316.3 | 30.713 | 2.75 | - | - | - | - | - |
35 | Chamazulene | 1431.3 | 31.863 | 1.58 | 1.35 | 2.74 | 0.62 | 13.93 | - |
36 | Alpha-bisabolol | 1275.6 | 32.59 | 36.34 | 41.11 | 45.91 | 33.19 | 39.52 | 47.32 |
37 | Campherene-2,13-diol | 1422.1 | 34.055 | - | - | 0.3 | - | - | - |
38 | cis-ene-yne-Dicycloether | 1375.4 | 35.834 | 7.86 | 9.25 | 9.57 | 10.06 | 7.39 | 2.26 |
39 | trans ene-yne-Dicycloether | 1400 | 36.08 | 0.98 | 1.11 | 1.25 | 1.21 | 0.74 | 0.75 |
40 | (E)-2-(Hepta-2,4-diyn-1-ylidene)-1,6-dioxaspiro[4.4]non-3-ene | 1640.2 | 37.482 | 0.49 | - | 0.58 | 0.54 | - | - |
41 | Palmitic acid | 1431.8 | 37.654 | 1.63 | - | 2.65 | 0.44 | 0.67 | - |
42 | Linoleic acid | 2024.9 | 41.585 | - | - | 0.47 | - | - | - |
43 | Oleic Acid | 2037.5 | 41.711 | - | - | 0.44 | - | - | - |
44 | (Z)-18-Octadec-9-enolide | 2061.5 | 41.951 | 0.59 | - | 0.62 | - | - | - |
45 | Tricosane | 2885.4 | 45.19 | - | - | 0.52 | - | - | - |
46 | Triacontane | 3968.3 | 49.019 | 1.41 | - | 1.55 | 0.76 | 0.46 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghareeb, Y.E.; Soliman, S.S.; Ismail, T.A.; Hassan, M.A.; Abdelkader, M.A.; Abdel Latef, A.A.H.; Al-Khayri, J.M.; ALshamrani, S.M.; Safhi, F.A.; Awad, M.F.; et al. Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. Plants 2022, 11, 2940. https://doi.org/10.3390/plants11212940
Ghareeb YE, Soliman SS, Ismail TA, Hassan MA, Abdelkader MA, Abdel Latef AAH, Al-Khayri JM, ALshamrani SM, Safhi FA, Awad MF, et al. Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. Plants. 2022; 11(21):2940. https://doi.org/10.3390/plants11212940
Chicago/Turabian StyleGhareeb, Yasser E., Said S. Soliman, Tarek A. Ismail, Mohammed A. Hassan, Mohammed A. Abdelkader, Arafat Abdel Hamed Abdel Latef, Jameel M. Al-Khayri, Salha M. ALshamrani, Fatmah A. Safhi, Mohamed F. Awad, and et al. 2022. "Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis" Plants 11, no. 21: 2940. https://doi.org/10.3390/plants11212940
APA StyleGhareeb, Y. E., Soliman, S. S., Ismail, T. A., Hassan, M. A., Abdelkader, M. A., Abdel Latef, A. A. H., Al-Khayri, J. M., ALshamrani, S. M., Safhi, F. A., Awad, M. F., El-Moneim, D. A., & Hassanin, A. A. (2022). Improvement of German Chamomile (Matricaria recutita L.) for Mechanical Harvesting, High Flower Yield and Essential Oil Content Using Physical and Chemical Mutagenesis. Plants, 11(21), 2940. https://doi.org/10.3390/plants11212940