Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. AMF Colonization
2.2. Nutrient Content
2.3. Plant Height
2.4. Canopy Diameter
2.5. Dry Yield
2.6. Essential Oil Content and Yield
2.7. Essential Oil Constituents
2.8. Water Use Efficiency (WUE)
2.9. Chlorophylls Content
2.10. Carotenoid Content
2.11. Relative Water Content (RWC)
2.12. Proline
2.13. Malondialdehyde (MDA)
2.14. Antioxidant Enzymes Activity
2.15. Phenolic and Flavonoid Content
2.16. Net Income
2.17. Correlation
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experiment Design and Crop Management
4.3. Implementation of Irrigation Regimes
4.4. Synthesis of TiO2 Nanoparticle
4.5. Measurements
4.5.1. Agronomic Traits, Dry Yield, and Water User Efficiency
4.5.2. Essential Oil Analysis
Essential Oil Extraction
GC/MS and GC-FID Analysis
4.5.3. Nutrient Content
4.5.4. Relative Water Content (RWC)
4.5.5. Chlorophyll and Carotenoid
4.5.6. Malondialdehyde (MDA)
4.5.7. Proline
4.5.8. Antioxidant Enzyme Activity
Guaiacol Peroxidases (GPX) Activity
Ascorbate Peroxidase (APX) Activity
Superoxide Dismutase (SOD) Activity
4.5.9. Total Phenolic and Flavonoid Content
4.5.10. Determination of Root Colonization
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghouti, I.; Cristobal, R.; Brenko, A.; Stara, K.; Markos, N.; Chapelet, B.; Hamrouni, L.; Buršić, D.; Bonet, J.-A. The market evolution of medicinal and aromatic plants: A global supply chain analysis and an application of the delphi method in the mediterranean area. Forests 2022, 13, 808. [Google Scholar] [CrossRef]
- Peter, K.V. Handbook of Herbs and Spices: Volume 3; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crop. Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Chen, C.; van Groenigen, K.J.; Yang, H.; Hungate, B.A.; Yang, B.; Tian, Y.; Chen, J.; Dong, W.; Huang, S.; Deng, A.; et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Sec. 2020, 24, 100359. [Google Scholar] [CrossRef]
- Mora, C.; Caldwell, I.R.; Caldwell, J.M.; Fisher, M.R.; Genco, B.M.; Running, S.W. Suitable days for plant growth disappear under projected climate change: Potential human and biotic vulnerability. PLoS Biol. 2015, 13, e1002167. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Qi, T.; Hu, Z.; Fan, X.; Zhu, L.; Iqbal, M.F.; Yin, X.; Xu, G.; Fan, X. OsNAR2.1 positively regulates drought tolerance and grain yield under drought stress conditions in rice. Front. Plant Sci. 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, N.; Han, S.-G.; Yoon, T.-M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Aghaee, A.; Maggi, F. Funneliformis mosseae inoculation under water deficit stress improves the yield and phytochemical characteristics of thyme in intercropping with soybean. Sci. Rep. 2021, 11, 15279. [Google Scholar] [CrossRef]
- Abbaszadeh, B.; Layeghhaghighi, M.; Azimi, R.; Hadi, N. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Ind. Crop. Prod. 2020, 144, 111893. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Sadeghpour, A.; Maggi, F.; Nouraein, M.; Morshedloo, M.R.; Hano, C.; Lorenzo, J.M. Co-application of TiO2 nanoparticles and arbuscular mycorrhizal fungi improves essential oil quantity and quality of sage (Salvia officinalis L.) in drought stress conditions. Plants 2022, 11, 1659. [Google Scholar] [CrossRef]
- Rahimi, Y.; Taleei, A.; Ranjbar, M. Long-term water deficit modulates antioxidant capacity of peppermint (Mentha piperita L.). Sci. Hortic. 2018, 237, 36–43. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Bansal, M. Chapter 43—Organic farming: Is it a solution to safe food? In Food Safety in the 21st Century; Gupta, R.K., Dudeja, P., Singh, M., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 515–525. [Google Scholar]
- Amani Machiani, M.; Javanmard, A.; Habibi Machiani, R.; Sadeghpour, A. Arbuscular mycorrhizal fungi and changes in primary and secondary metabolites. Plants 2022, 11, 2183. [Google Scholar] [CrossRef]
- Bücking, H.; Kafle, A. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy 2015, 5, 587–612. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef]
- Varma, A.; Prasad, R.; Tuteja, N. Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Abdollahi Arpanahi, A.; Feizian, M.; Mehdipourian, G.; Khojasteh, D.N. Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Eur. J. Soil Sci. 2020, 100, 103217. [Google Scholar] [CrossRef]
- Ghanbarzadeh, Z.; Mohsenzadeh, S.; Rowshan, V.; Moradshahi, A. Evaluation of the growth, essential oil composition and antioxidant activity of Dracocephalum moldavica under water deficit stress and symbiosis with Claroideoglomus etunicatum and Micrococcus yunnanensis. Sci. Hortic. 2019, 256, 108652. [Google Scholar] [CrossRef]
- Thokchom, S.D.; Gupta, S.; Kapoor, R. Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum L.—A popular green tea additive. Ind. Crop. Prod. 2020, 153, 112418. [Google Scholar] [CrossRef]
- Ingle, A.P. Nanotechnology in Plant Growth Promotion and Protection; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F. Nanotechnology and Plant Sciences; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Dias, M.C.; Silva, A. Titanium and zinc based nanomaterials in agriculture: A promising approach to deal with (A) biotic stresses? Toxics 2022, 10, 172. [Google Scholar] [CrossRef]
- Ahmad, B.; Shabbir, A.; Jaleel, H.; Khan, M.M.A.; Sadiq, Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol. 2018, 13, 6–15. [Google Scholar] [CrossRef]
- Golami, A.; Abbaspour, H.; Hashemi-Moghaddam, H.; Gerami, M. Photocatalytic effect of TiO2 nanoparticles on essential oil of Rosmarinus officinalis. J. Biochem. Technol. 2018, 9, 50. [Google Scholar]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef]
- Sanaullah, M.; Rumpel, C.; Charrier, X.; Chabbi, A. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil. 2012, 352, 277–288. [Google Scholar] [CrossRef]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Akhtar, K.; Ahanger, M.A.; Iqbal, M.; Wang, P.; Mustafa, N.S.; Zhang, L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ. Sci. Pollut. Res. 2021, 28, 45276–45295. [Google Scholar] [CrossRef]
- Chaudhary, I.; Singh, V. Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: A review. Res. J. Nanosci. Nanotechnol. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Šebesta, M.; Ramakanth, I.; Zvěřina, O.; Šeda, M.; Diviš, P.; Kolenčík, M. Effects of titanium dioxide nanomaterials on plants growth. In Nanotechnology in Plant Growth Promotion Protection: Recent Advances Impacts; Ingle, A.P., Ed.; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2021; pp. 17–44. [Google Scholar]
- Gao, S.; Wang, Y.; Yu, S.; Huang, Y.; Liu, H.; Chen, W.; He, X. Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Sci. Hortic. 2020, 259, 108795. [Google Scholar] [CrossRef]
- Govahi, M.; Ghalavand, A.; Nadjafi, F.; Sorooshzadeh, A. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Ind. Crop. Prod. 2015, 74, 20–27. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Rydlová, J.; Jelínková, M.; Dušek, K.; Dušková, E.; Vosátka, M.; Püschel, D. Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 2016, 26, 123–131. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sirousmehr, A.-R.; Azad, H. Effect of titanium dioxide nanoparticles on essential oil quantity and quality in Thymus vulgaris under water deficit. J. Med. Plants By-Prod. 2018, 7, 125–133. [Google Scholar] [CrossRef]
- Faridvand, S.; Rezaei-Chiyaneh, E.; Battaglia, M.L.; Gitari, H.I.; Raza, M.A.; Siddique, K.H. Application of bio and chemical fertilizers improves yield, and essential oil quantity and quality of Moldavian balm (Dracocephalum moldavica L.) intercropped with mung bean (Vigna radiata L.). Food Energy Secur. 2022, 11, e319. [Google Scholar] [CrossRef]
- Rostaei, M.; Fallah, S.; Lorigooini, Z.; Abbasi Surki, A. The effect of organic manure and chemical fertilizer on essential oil, chemical compositions and antioxidant activity of dill (Anethum graveolens) in sole and intercropped with soybean (Glycine max). J. Clean. Prod. 2018, 199, 18–26. [Google Scholar] [CrossRef]
- Karagiannidis, N.; Thomidis, T.; Lazari, D.; Panou-Filotheou, E.; Karagiannidou, C. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hortic. 2011, 129, 329–334. [Google Scholar] [CrossRef]
- Ghorbanpour, M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol. 2015, 20, 249–256. [Google Scholar] [CrossRef]
- Abd Elbar, O.H.; Farag, R.E.; Shehata, S.A. Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Ann. Agric. Sci. 2019, 64, 129–137. [Google Scholar] [CrossRef]
- Jahani, F.; Tohidi-Moghadam, H.R.; Larijani, H.R.; Ghooshchi, F.; Oveysi, M. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arab. J. Geosci. 2021, 14, 691. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Han, A.R.; Han, A.; Kim, H.S. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol. Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.I.; Fernandes, A.S.; Deprá, M.C.; Jacob-Lopes, E.; Zepka, L.Q. Introductory chapter: Chlorophyll molecules and their technological relevance. In Chlorophyll; Jacob-Lopes, E., Zepka, L.Q., Queiroz, M.I., Eds.; IntechOpen: London, UK, 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Browne, M.; Yardimci, N.T.; Scoffoni, C.; Jarrahi, M.; Sack, L. Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct. 2020, 4, e00197. [Google Scholar] [CrossRef]
- Gholinezhad, E.; Darvishzadeh, R.; Siavash Moghaddam, S.; Popović-Djordjević, J. Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): The assessment of agrobiochemical traits and enzymatic antioxidant activity. Agric. Water Manag. 2020, 238, 106234. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Furlan, A.L.; Bianucci, E.; Giordano, W.; Castro, S.; Becker, D.F. Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiol. Biochem. 2020, 151, 566–578. [Google Scholar] [CrossRef]
- Javanmard, A.; Ashrafi, M.; Morshedloo, M.R.; Machiani, M.A.; Rasouli, F.; Maggi, F. Optimizing phytochemical and physiological characteristics of Balangu (Lallemantia iberica) by foliar application of chitosan nanoparticles and Myco-Root inoculation under water supply restrictions. Horticulturae 2022, 8, 695. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Srivastava, A.K.; El-sadek, M.S.A.; Kordrostami, M.; Tran, L.S.P. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. L. Degrad. Dev. 2018, 29, 1065–1073. [Google Scholar] [CrossRef]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 2018, 9, 2525. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, H.; Yu, F.; Hu, B.; Jia, Y.; Sha, H.; Zhao, H. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci. Rep. 2019, 9, 8543. [Google Scholar] [CrossRef] [Green Version]
- Shenavaie Zare, A.; Ganjeali, A.; Vaezi Kakhki, M.R.; Cheniany, M.; Mashreghi, M. Plant elicitation and TiO2 nanoparticles application as an effective strategy for improving the growth, biochemical properties, and essential oil of peppermint. Physiol. Mol. Biol. Plants 2022, 28, 1391–1406. [Google Scholar] [CrossRef]
- Begum, N.; Ahanger, M.A.; Su, Y.; Lei, Y.; Mustafa, N.S.A.; Ahmad, P.; Zhang, L. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 2019, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci. 2021, 11, 612299. [Google Scholar] [CrossRef]
- Shoarian, N.; Jamei, R.; Pasban Eslam, B.; Salehi Lisar, S.Y. Titanium dioxide nanoparticles increase resistance of Lallemantia iberica L. to drought stress due to increased accumulation of protective antioxidants. Iran. J. Plant Physiol. 2020, 10, 3343–3354. [Google Scholar] [CrossRef]
- Rashidi, S.; Yousefi, A.R.; Pouryousef, M.; Goicoechea, N. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem. Biol. Technol. Agric. 2022, 9, 23. [Google Scholar] [CrossRef]
- Amiri, R.; Nikbakht, A.; Etemadi, N.; Sabzalian, M.R. Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis 2017, 73, 15–25. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 2012, 132, 178–184. [Google Scholar] [CrossRef]
- Pant, H.R.; Pant, B.; Sharma, R.K.; Amarjargal, A.; Kim, H.J.; Park, C.H.; Tijing, L.D.; Kim, C.S. Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 2013, 39, 1503–1510. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Yan, Y.; Wang, H.; Wang, X.; Fu, X.; Li, G. Synthesis and photoluminescence of well-dispersible anatase TiO2 nanoparticles. J. Colloid Interface Sci. 2008, 318, 29–34. [Google Scholar] [CrossRef]
- Maleki, A.; Hayati, B.; Najafi, F.; Gharibi, F.; Joo, S.W. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. J. Mol. Liq. 2016, 224, 95–104. [Google Scholar] [CrossRef]
- Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A.; MacKenzie, K.J. Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 2001, 84, 1591–1596. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Fan, H.; Su, J.; Fei, C.; Wang, K.; Ma, F.; Kisekka, I. Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet. Agric. Water Manag. 2019, 223, 105701. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Ind. Crop. Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kalra, Y. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A manual for the West Asia and North Africa Region; International Center for Agricultural Research in the Dry Areas (ICARDA) Publication: Beirut, Lebanon, 2013; Available online: https://hdl.handle.net/20.500.11766/7512 (accessed on 4 November 2013).
- Levitt, J. Salt and ion stresses. In Responses of Plants to Environmental Stress; Academic Press: New York, NY, USA, 1980; Volume 2, pp. 365–434. [Google Scholar]
- Armon, D.l. Copper enzymes in isolated chloroplast. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Sankhla, D.; Davis, T.D.; Sankhla, N.; Smith, B.N. Effect of Paclobutrazol on the Activities of some Enzymes of Activated Oxygen Metabolism and Lipid Peroxidation in Senescing Soybean Leaves. J. Plant Physiol. 1985, 121, 453–461. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Blanchamp, C.; Fridovich, I. Superoxide dismutage: Improved assays and an assay applicable to acrylamyde gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Nagy, M.; Grancai, D. Colorimetric determination of flavanones in propolis. J. Pharm. 1996, 51, 100–101. [Google Scholar]
- Koske, R.; Gemma, J. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
Source of Variation | Root Colonization | N Content | P Content | K Content | Plant Height | Canopy Diameter | Dry Yield | EO Content | EO Yield | WUE | Net Income |
---|---|---|---|---|---|---|---|---|---|---|---|
Y | 0.028 * | 0.225 ns | 0.336 ns | 0.04 * | 0.98 ns | 0.101 ns | 0.167 ns | 0.615 ns | 0.199 ns | 0.016 * | 0.141 ns |
I | <0.0001 ** | 0.022 * | 0.012 * | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.041 * | <0.0001 ** |
F | <0.0001 ** | 0.003 ** | 0.031 * | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.025 * | 0.0007 ** | <0.0001 ** | 0.064 ns | <0.0001 ** |
Y*I | 0.196 ns | 0.387 ns | 0.052 ns | 0.873 ns | 0.072 ns | 0.239 ns | 0.334 ns | 0.921 ns | 0.580 ns | 0.135 ns | 0.561 ns |
I*F | <0.0001 ** | 0.007 ** | <0.0001 ** | 0.04 * | 0.526 ns | 0.720 ns | <0.0001 ** | 0.032 * | <0.0001 ** | 0.012 * | <0.0001 ** |
Y*F | 0.298 ns | 0.977 ns | 0.101 ns | 0.909 ns | 0.365 ns | 0.190 ns | 0.104 ns | 0.916 ns | 0.701 ns | 0.079 ns | 0.766 ns |
Y*I*F | 0.217 ns | 0.998 ns | 0.839 ns | 0.577 ns | 0.754 ns | 0.079 ns | 0.743 ns | 0.547 ns | 0.317 ns | 0.313 ns | 0.408 ns |
Source of Variation | Cha | Chb | Chtotal | Carotenoid | RWC | APX | GPX | SOD | MDA | Proline | Total Phenolic Content | Total Flavonoid Content |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | 0.021 * | 0.816 ns | 0.087 ns | 0.414 ns | 0.094 ns | 0.526 ns | 0.735 ns | 0.935 ns | 0.745 ns | 0.952 ns | 0.523 ns | 0.412 ns |
I | 0.034 * | 0.023 * | 0.04 * | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
F | 0.021 * | 0.035 * | 0.003 ** | 0.040 * | <0.0001 ** | <0.0001 ** | 0.023 * | <0.0001 ** | 0.145 ns | 0.015 * | <0.0001 ** | <0.0001 ** |
Y*I | 0.452 ns | 0.56 ns | 0.014 * | 0.089 ns | 0.299 ns | 0.155 ns | 0.058 ns | 0.635 ns | 0.091 ns | 0.326 ns | 0.287 ns | 0.217 ns |
I*F | 0.014 * | 0.015 * | 0.02 * | 0.713 ns | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | 0.085 ns | <0.0001 ** | <0.0001 ** | 0.001 ** |
Y*F | 0.196 ns | 0.116 ns | 0.213 ns | 0.983 ns | 0.204 ns | 0.703 ns | 0.638 ns | 0.669 ns | 0.934 ns | 0.702 ns | 0.635 ns | 0.613 ns |
Y*I*F | 0.632 ns | 0.808 ns | 0.320 ns | 0.377 ns | 0.628 ns | 0.999 ns | 0.999 ns | 0.999 ns | 0.955 ns | 0.998 ns | 0.999 ns | 0.999 ns |
Treatments | N (g kg−1) | P (g kg−1) | K (g kg−1) | |
---|---|---|---|---|
I20 | Control | 20.03 e | 1.55 de | 20.78 cde |
TiO2 NPs | 26.75 a | 1.72 c | 22.92 bc | |
Myco-Root | 25.48 b | 1.86 b | 25.02 b | |
Myco-Root + TiO2 NPs | 26.92 a | 2.04 a | 27.80 a | |
I40 | Control | 21.53 d | 1.40 f | 20.68 cde |
TiO2 NPs | 21.53 d | 1.55 de | 19.72 def | |
Myco-Root | 21.50 d | 1.62 d | 22.87 bc | |
Myco-Root + TiO2 NPs | 22.52 c | 1.61 d | 21.65 cd | |
I60 | Control | 17.43 g | 1.28 g | 17.54 f |
TiO2 NPs | 18.57 f | 1.41 f | 17.95 f | |
Myco-Root | 18.75 f | 1.50 e | 18.80 ef | |
Myco-Root + TiO2 NPs | 19.03 f | 1.39 f | 18.88 ef | |
LSD0.05 | 0.97 | 0.08 | 2.45 |
Treatments | Dry Yield (g m−2) | Essential Oil Content (%) | Essential Oil Yield (g m−2) | Water Use Efficiency (g m−3) | |
---|---|---|---|---|---|
I20 | Control | 163.81 c | 1.06 ef | 1.73 c | 141.38 efg |
TiO2 NPs | 187.03 b | 1.15 de | 2.15 ab | 161.45 bc | |
Myco-Root | 179.05 b | 1.15 de | 2.06 b | 154.57 bcde | |
Myco-Root + TiO2 NPs | 195.72 a | 1.13 e | 2.21 ab | 168.97 ab | |
I40 | Control | 117.62 f | 1.27 cd | 1.49 d | 135.42 g |
TiO2 NPs | 131.15 e | 1.39 ab | 1.83 c | 151.00 cdef | |
Myco-Root | 121.35 f | 1.34 bc | 1.62 cd | 139.73 efg | |
Myco-Root + TiO2 NPs | 154.40 d | 1.49 a | 2.30 a | 177.77 a | |
I60 | Control | 78.76 h | 1.01 f | 0.79 f | 135.98 fg |
TiO2 NPs | 85.74 gh | 1.13 e | 0.97 ef | 148.02 cdefg | |
Myco-Root | 91.17 g | 1.12 ef | 1.02 e | 157.40 bcd | |
Myco-Root + TiO2 NPs | 82.58 h | 1.10 ef | 0.91 ef | 142.55 defg | |
LSD 0.05 | 8.20 | 0.120 | 0.213 | 15.03 |
Treatments | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Components | RI a | LIT. RI b | I20 Control | I20 TiO2 NPs | I20 Myco-Root | I20 Myco-Root + TiO2 NPs | I40 Control | I40 TiO2 NPs | I40 Myco-Root | I40 Myco-Root + TiO2 NPs | I60 Control | I60 TiO2 NPs | I60 Myco-Root | I60 Myco-Root + TiO2 NPs |
1 | α-Pinene | 931 | 932 | 0.79 | 0.66 | 0.59 | 0.57 | 0.46 | 0.54 | 0.62 | 0.42 | 0.64 | 0.63 | 0.56 | 0.59 |
2 | Sabinene | 970 | 969 | 0.83 | 0.75 | 0.55 | 0.60 | 0.47 | 0.53 | 0.58 | 0.49 | 0.65 | 0.58 | 0.57 | 0.67 |
3 | β-Pinene | 975 | 974 | 1.10 | 1.08 | 1.04 | 1.04 | 0.83 | 0.90 | 0.96 | 0.80 | 1.14 | 1.05 | 1.04 | 1.08 |
4 | Myrcene | 988 | 988 | 0.69 | 0.35 | 0.33 | 0.44 | 0.28 | 0.30 | 0.29 | 0.25 | 0.34 | 0.33 | 0.33 | 0.38 |
5 | 3-Octanol | 1000 | 998 | 0.51 | 0.32 | 0.38 | 0.29 | 0.64 | 0.41 | 0.54 | 0.72 | 0.69 | 0.65 | 0.71 | 0.66 |
6 | α-Terpinene | 1017 | 1014 | 0.14 | 0.14 | 0.16 | 0.15 | 0.10 | 0.14 | 0.11 | 0.09 | 0.18 | 0.18 | 0.12 | 0.14 |
7 | Limonene | 1026 | 1024 | 2.10 | 2.02 | 1.97 | 1.67 | 2.00 | 2.32 | 2.25 | 1.82 | 2.24 | 2.21 | 2.25 | 2.04 |
8 | 1,8-Cineole | 1029 | 1026 | 6.55 | 6.99 | 7.16 | 6.89 | 7.30 | 7.27 | 7.04 | 7.84 | 6.84 | 7.80 | 7.78 | 7.76 |
9 | γ-Terpinene | 1058 | 1054 | 0.42 | 0.36 | 0.24 | 0.35 | 0.22 | 0.20 | 0.36 | 0.21 | 0.28 | 0.27 | 0.23 | 0.25 |
10 | cis-Sabinene hydrate | 1066 | 1065 | 3.00 | 2.85 | 2.81 | 2.92 | 2.57 | 2.64 | 2.64 | 2.79 | 2.68 | 2.74 | 2.78 | 2.78 |
11 | Linalool | 1103 | 1095 | 0.54 | 0.57 | 0.58 | 0.51 | 0.63 | 0.58 | 0.48 | 0.68 | 0.64 | 0.62 | 0.65 | 0.60 |
12 | Menthone | 1152 | 1148 | 20.10 | 20.13 | 13.88 | 17.87 | 16.20 | 12.72 | 13.31 | 12.77 | 13.83 | 18.81 | 15.43 | 13.86 |
13 | Menthofuran | 1161 | 1159 | 0.33 | 0 | 0 | 0.26 | 0 | 0 | 0.28 | 0 | 0 | 0.43 | 0 | 0 |
14 | δ-Terpineol | 1162 | 1162 | 2.83 | 2.78 | 2.44 | 2.53 | 2.23 | 2.14 | 2.29 | 2.81 | 2.05 | 3.18 | 3.35 | 3.04 |
15 | neo-Menthol | 1163 | 1161 | 3.29 | 3.79 | 4.39 | 4.38 | 3.88 | 4.14 | 4.06 | 4.52 | 3.14 | 3.93 | 3.60 | 4.18 |
16 | Menthol | 1175 | 1167 | 38.99 | 42.04 | 47.25 | 44.33 | 46.66 | 48.49 | 47.15 | 52.00 | 48.24 | 44.31 | 45.89 | 47.50 |
17 | Terpinen-4-ol | 1177 | 1177 | 0.83 | 0.96 | 1.01 | 1.06 | 1.03 | 1.15 | 1.62 | 1.02 | 0.95 | 1.04 | 1.01 | 1.34 |
18 | neo-iso-Menthol | 1184 | 1184 | 1.14 | 1.00 | 1.39 | 1.27 | 1.05 | 1.18 | 1.38 | 1.23 | 1.07 | 0.99 | 0.99 | 1.42 |
19 | Pulegone | 1236 | 1233 | 0.00 | 0.10 | 0.10 | 0.00 | 0.16 | 0.21 | 0.00 | 0.00 | 0.41 | 0.23 | 0.34 | 0.14 |
20 | Piperitone | 1252 | 1252 | 0.58 | 0.58 | 0.47 | 0.43 | 0.55 | 0.61 | 0.73 | 0.55 | 0.51 | 0.58 | 0.58 | 0.50 |
21 | neo-Menthyl acetate | 1273 | 1271 | 0.24 | 0.13 | 0.28 | 0.30 | 0.20 | 0.24 | 0.22 | 0.19 | 0.11 | 0.09 | 0.10 | 0.19 |
22 | p-Menth-l-en-9-ol | 1294 | 1294 | 1.96 | 2.27 | 3.26 | 3.03 | 2.30 | 3.09 | 2.97 | 2.29 | 1.93 | 1.95 | 1.29 | 2.76 |
23 | iso-Menthyl acetate | 1307 | 1304 | 0.39 | 0.11 | 0.17 | 0.49 | 0.11 | 0.16 | 0.22 | 0.11 | 0.00 | 0.11 | 0.11 | 0.14 |
24 | β-Bourbonene | 1382 | 1387 | 0.72 | 0.51 | 0.52 | 0.46 | 0.48 | 0.51 | 0.63 | 0.38 | 0.49 | 0.41 | 0.47 | 0.58 |
25 | (E)-Caryophyllene | 1416 | 1417 | 1.62 | 1.88 | 1.72 | 1.79 | 1.83 | 1.82 | 1.87 | 1.24 | 1.83 | 1.73 | 2.00 | 1.85 |
26 | (E)-β-Farnesene | 1457 | 1454 | 0.52 | 0.27 | 0.29 | 0.28 | 0.33 | 0.34 | 0.81 | 0.22 | 0.28 | 0.26 | 0.40 | 0.31 |
27 | Germacrene D | 1479 | 1484 | 2.73 | 2.19 | 1.78 | 2.04 | 1.94 | 1.91 | 2.51 | 1.47 | 1.92 | 1.73 | 2.19 | 2.02 |
28 | Elixene | 1494 | 1492 | 1.02 | 0.35 | 0.31 | 0.32 | 0.32 | 0.37 | 0.37 | 0.31 | 0.36 | 0.30 | 0.46 | 0.35 |
29 | Viridiflorol | 1589 | 1592 | 1.08 | 1.24 | 1.29 | 1.82 | 1.33 | 1.44 | 1.81 | 1.32 | 1.40 | 1.01 | 1.42 | 1.33 |
Total identified (%) | 95.05 | 96.40 | 96.36 | 98.05 | 96.07 | 96.32 | 98.09 | 98.51 | 94.82 | 98.16 | 96.63 | 98.46 | |||
Grouped compounds (%) | |||||||||||||||
Monoterpene hydrocarbons | 6.08 | 5.35 | 4.89 | 4.81 | 4.36 | 4.92 | 5.17 | 4.07 | 5.46 | 5.26 | 5.10 | 5.15 | |||
Oxygenated monoterpenes | 80.76 | 84.30 | 85.18 | 86.24 | 84.85 | 84.61 | 84.38 | 88.78 | 82.39 | 86.82 | 83.89 | 86.21 | |||
Sesquiterpene hydrocarbons | 6.62 | 5.19 | 4.62 | 4.88 | 4.90 | 4.95 | 6.18 | 3.62 | 4.88 | 4.42 | 5.51 | 5.11 | |||
Oxygenated sesquiterpenes | 1.08 | 1.24 | 1.29 | 1.82 | 1.33 | 1.44 | 1.81 | 1.32 | 1.40 | 1.01 | 1.42 | 1.33 | |||
Others | 0.51 | 0.32 | 0.38 | 0.29 | 0.64 | 0.41 | 0.54 | 0.72 | 0.69 | 0.65 | 0.71 | 0.66 |
Treatments | Chlorophyll a (mg g−1 Fresh Weight) | Chlorophyll b (mg g−1 Fresh Weight) | Chlorophyll Total (mg g−1 Fresh Weight) | Relative Water Content (%) | |
---|---|---|---|---|---|
I20 | Control | 3.35 cd | 0.87 c | 4.22 c | 78.85 e |
TiO2 NPs | 4.68 ab | 1.31 ab | 5.99 ab | 83.90 c | |
Myco-Root | 3.95 bc | 1.19 bc | 5.14 b | 87.05 b | |
Myco-Root + TiO2 NPs | 5.13 a | 1.67 a | 6.80 a | 90.12 a | |
I40 | Control | 2.17 e | 0.83 cd | 3.00 d | 69.90 g |
TiO2 NPs | 2.67 de | 1.00 bc | 3.67 cd | 75.82 f | |
Myco-Root | 2.68 de | 1.02 bc | 3.70 cd | 77.30 ef | |
Myco-Root + TiO2 NPs | 2.91 de | 1.08 bc | 3.98 c | 80.95 d | |
I60 | Control | 0.90 f | 0.34 e | 1.24 e | 61.13 i |
TiO2 NPs | 0.94 f | 0.39 e | 1.33 e | 68.08 h | |
Myco-Root | 1.08 f | 0.44 de | 1.52 e | 71.40 g | |
Myco-Root + TiO2 NPs | 0.91 f | 0.44 de | 1.35 e | 67.63 h | |
LSD 0.05 | 0.97 | 0.40 | 0.87 | 1.80 |
Treatments | APX (μmol min−1 mg−1 Protein) | GPX (μmol min−1 mg−1 Protein) | SOD (μmol min−1 mg−1 Protein) | Proline (µmol g−1 Fresh Weight) | Total Phenolic Content (mg g−1) | Total Flavonoid Content (mg g−1) | |
---|---|---|---|---|---|---|---|
I20 | Control | 0.203 j | 0.337 l | 2.73 l | 0.52 k | 25.26 k | 9.77 k |
TiO2 NPs | 0.227 i | 0.422 j | 3.03 j | 0.61 j | 26.73 i | 11.19 j | |
Myco-Root | 0.243 h | 0.388 k | 2.93 k | 0.63 j | 27.77 h | 13.17 h | |
Myco-Root + TiO2 NPs | 0.245 h | 0.473 i | 3.48 i | 0.66 i | 30.27 f | 13.44 g | |
I40 | Control | 0.312 f | 0.773 e | 6.17 d | 1.01 h | 31.03 e | 14.21 f |
TiO2 NPs | 0.350 b | 0.882 b | 6.62 b | 1.39 g | 34.13 b | 15.85 c | |
Myco-Root | 0.330 d | 0.832 c | 6.35 c | 1.46 f | 32.46 d | 16.60 b | |
Myco-Root + TiO2 NPs | 0.402 a | 1.035 a | 8.13 a | 1.61 d | 34.79 a | 17.24 a | |
I60 | Control | 0.245 h | 0.508 h | 3.69 h | 1.55 e | 26.34 j | 12.35 i |
TiO2 NPs | 0.315 e | 0.695 g | 4.58 f | 1.76 b | 29.57 g | 15.14 d | |
Myco-Root | 0.308 g | 0.732 f | 4.18 g | 1.66 c | 31.02 e | 14.89 e | |
Myco-Root + TiO2 NPs | 0.343 c | 0.803 d | 4.85 e | 2.07 a | 33.41 c | 15.90 c | |
LSD 0.05 | 0.0032 | 0.0118 | 0.08 | 0.029 | 0.25 | 0.119 |
Soil Texture | Sand (%) | Silt (%) | Clay (%) | OM (g kg−1) | EC (ds.m−1) | pH | FC (%) | PWP (%) | CEC (Cmolc kg−1) | N (g kg−1) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sandy clay loam | 56.3 | 16.3 | 27.4 | 8.1 | 1.17 | 7.73 | 27.1 | 13.7 | 26.5 | 0.87 | 9.7 | 563.85 |
Year | April | May | June | July | August | September |
---|---|---|---|---|---|---|
Monthly average temperature (°C) | ||||||
2019 | 10.4 | 18.5 | 25.7 | 27.6 | 27.8 | 22.1 |
2020 | 11.8 | 19.1 | 24.2 | 28.0 | 25.1 | 23.8 |
2-year mean | 11.1 | 18.8 | 25.0 | 27.8 | 26.5 | 23.0 |
10-year mean | 12.6 | 18.2 | 24.1 | 28.1 | 27.5 | 22.7 |
Total monthly precipitation (mm) | ||||||
2019 | 51.3 | 37.8 | 4.2 | 0.0 | 0.0 | 0.0 |
2020 | 63.3 | 12.0 | 2.6 | 0.1 | 1.2 | 0.0 |
2-year mean | 57.3 | 24.9 | 3.4 | 0.1 | 0.6 | 0.0 |
10-year mean | 44.8 | 20.6 | 1.7 | 0.5 | 0.4 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Kakaei, K. Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions. Plants 2023, 12, 151. https://doi.org/10.3390/plants12010151
Ostadi A, Javanmard A, Amani Machiani M, Kakaei K. Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions. Plants. 2023; 12(1):151. https://doi.org/10.3390/plants12010151
Chicago/Turabian StyleOstadi, Ali, Abdollah Javanmard, Mostafa Amani Machiani, and Karim Kakaei. 2023. "Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions" Plants 12, no. 1: 151. https://doi.org/10.3390/plants12010151
APA StyleOstadi, A., Javanmard, A., Amani Machiani, M., & Kakaei, K. (2023). Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint (Mentha piperita L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions. Plants, 12(1), 151. https://doi.org/10.3390/plants12010151