Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities
Abstract
:1. Introduction
2. Results
2.1. Traditional Medicinal Plants for Treatment/Management of Worm Infections
2.2. Bioactivities of Medicinal Plant Extracts against Parasites
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Study Design, Data Collection Methods and Ethical Considerations
4.3. Plant Collection and Extract Preparation
4.4. Anthelmintic Assays
4.4.1. In Vitro Tests on A. ceylanicum, H. polygyrus, N. americanus, S. ratti and T. muris
4.4.2. In Vitro Tests Using S. mansoni
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herricks, J.R.; Hotez, P.J.; Wanga, V.; Coffeng, L.E.; Haagsma, J.A.; Basañez, M.G.; Buckle, G.; Budke, C.M.; Carabin, H.; Fèvre, E.M.; et al. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl. Trop. Dis. 2017, 11, e0005424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochola, E.A.; Karanja, D.M.S.; Elliott, S.J. The impact of Neglected Tropical Diseases (NTDs) on health and wellbeing in sub-Saharan Africa (SSA): A case study of Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009131. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Supports Botswana to Strengthen System Operations towards Malaria and Other Vector Borne Disease Elimination. Available online: https://www.afro.who.int/news/who-supports-botswana-strengthen-system-operations-towards-malaria-and-other-vector-borne (accessed on 23 June 2022).
- World Health Organization. Towards Eliminating Intestinal Worms in Primary School-Going Children in Botswana. Available online: https://www.afro.who.int/news/towards-eliminating-intestinal-worms-primary-school-going-children-botswana (accessed on 1 March 2022).
- Kokaliaris, C.; Garba, A.; Matuska, M.; Bronzan, R.N.; Colley, D.G.; Dorkenoo, A.M.; Ekpo, U.F.; Fleming, F.M.; French, M.D.; Kabore, A.; et al. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: A spatiotemporal modelling study. Lancet Infect. Dis. 2022, 22, 136–149. [Google Scholar] [CrossRef]
- Chimbari, M.J.; Kalinda, C.; Siziba, N. Changing patterns of Schistosoma host snail population densities in Maun, Botswana. Afr. J. Aquat. Sci. 2020, 45, 493–499. [Google Scholar] [CrossRef]
- Appleton, C.C.; Ellery, W.N.; Byskov, J.; Mogkweetsinyana, S.S. Epidemic transmission of intestinal schistosomiasis in the seasonal part of the Okavango Delta, Botswana. Ann. Trop. Med. Parasitol. 2008, 102, 611–623. [Google Scholar] [CrossRef]
- Molehin, A.J.; McManus, D.P.; You, H. Vaccines for human schistosomiasis: Recent progress, new developments and future prospects. Int. J. Mol. Sci. 2022, 23, 2255. [Google Scholar] [CrossRef]
- Crellen, T.; Walker, M.; Lamberton, P.H.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 2016, 63, 1151–1159. [Google Scholar] [CrossRef] [Green Version]
- Redman, E.; Whitelaw, F.; Tait, A.; Burgess, C.; Bartley, Y.; Skuce, P.J.; Jackson, F.; Gilleard, J.S. The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Negl. Trop. Dis. 2015, 9, e0003494. [Google Scholar] [CrossRef] [Green Version]
- Sharpton, T.J.; Combrink, L.; Arnold, H.K.; Gaulke, C.A.; Kent, M. Harnessing the gut microbiome in the fight against anthelminthic drug resistance. Curr. Opin. Microbiol. 2020, 53, 26–34. [Google Scholar] [CrossRef]
- Rashwan, N.; Bourguinat, C.; Keller, K.; Gunawardena, N.K.; de Silva, N.; Prichard, R. Isothermal diagnostic assays for monitoring single nucleotide polymorphisms in Necator americanus associated with benzimidazole drug resistance. PLoS Negl. Trop. Dis. 2016, 10, e0005113. [Google Scholar] [CrossRef]
- World Health Organization. WHO Traditional Medicine Strategy 2014–2023. Available online: https://apps.who.int/iris/rest/bitstreams/434690/retrieve (accessed on 23 June 2022).
- Andrae-Marobela, K.; Ngwenya, B.N.; Okatch, H.; Monyatsi, K.N.; Masizana-Katongo, A.; Muzila, M. An insight into patient management and health outcome monitoring by traditional healers in Botswana. J. Herb. Med. 2021, 29, 100462. [Google Scholar] [CrossRef]
- Okatch, H.; Andrae-Marobela, K.; Monyatsi, K.N.; Masizana-Katongo, A.; Ngwenya, B.N.; Muzila, M. Perceptions of safety and efficacy of traditional medicines by community members in Botswana. Public Health 2013, 6, 143–157. [Google Scholar] [CrossRef]
- Tietjen, I.; Ngwenya, B.N.; Fotso, G.; Williams, D.E.; Simonambango, S.; Ngadjui, B.T.; Andersen, R.J.; Brockman, M.A.; Brumme, Z.L.; Andrae-Marobela, K. The Croton megalobotrys Müll Arg. traditional medicine in HIV/AIDS management: Documentation of patient use, in vitro activation of latent HIV-1 provirus, and isolation of active phorbol esters. J. Ethnopharmacol. 2018, 211, 267–277. [Google Scholar] [CrossRef]
- Mhlongo, L.S.; Van Wyk, B.-E. Zulu medicinal ethnobotany: New records from the Amandawe area of KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2019, 122, 266–290. [Google Scholar] [CrossRef]
- Odhiambo, G.O.; Musuva, R.M.; Odiere, M.R.; Mwinzi, P.N. Experiences and perspectives of community health workers from implementing treatment for schistosomiasis using the community directed intervention strategy in an informal settlement in Kisumu City, western Kenya. BMC Public Health 2016, 16, 986. [Google Scholar] [CrossRef] [Green Version]
- Bah, S.; Diallo, D.; Dembélé, S.; Paulsen, B.S. Ethnopharmacological survey of plants used for the treatment of schistosomiasis in Niono District, Mali. J. Ethnopharmacol. 2006, 105, 387–399. [Google Scholar] [CrossRef]
- Allan, L.A.; Kutima, H.L.; Muya, S.; Ayonga, D.; Yole, D. The efficacy of a herbal drug, Schitozim over praziquantel in the management of Schistosoma mansoni infection in BALB/c mice. J. Biol. Agric. Health Care 2014, 4, 77–87. [Google Scholar]
- Geary, T.G.; Sakanari, J.A.; Caffrey, C.R. Anthelmintic drug discovery: Into the future. J. Parasitol. 2015, 101, 125–133. [Google Scholar] [CrossRef]
- Geary, T.G.; Thompson, D.P. Development of antiparasitic drugs in the 21st century. Vet. Parasitol. 2003, 115, 167–184. [Google Scholar] [CrossRef]
- Zheng, W.; Thorne, N.; McKew, J.C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 2013, 18, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Jayawardene, K.L.T.D.; Palombo, E.A.; Boag, P.R. Natural products are a promising source for anthelmintic drug discovery. Biomolecules 2021, 11, 1457. [Google Scholar] [CrossRef]
- Liu, M.; Panda, S.K.; Luyten, W. Plant-based natural products for the discovery and development of novel anthelmintics againsts nematodes. Biomolecules 2020, 10, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Laing, M.; Nsahlai, I. In vitro anthelmintic activity of crude extracts of selected medicinal plants against Haemonchus contortus from sheep. J. Helminthol. 2013, 87, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Maphosa, V.; Masika, P.J.; Bizimenyera, E.S.; Eloff, J.N. In-vitro anthelminthic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus. Trop. Anim. Health Prod. 2010, 42, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Mwale, M.; Masika, P.J. In vivo anthelmintic efficacy of Aloe ferox, Agave sisalana, and Gunnera perpensa in village chickens naturally infected with Heterakis gallinarum. Trop. Anim. Health Prod. 2015, 47, 131–138. [Google Scholar] [CrossRef]
- Bossard, E. La Médecine Traditionnelle au Centre et à l’ouest de l’Angola; Ministério da Ciênciae da Tecnologia: Lisboa, Portugal, 1996. [Google Scholar]
- Mongalo, N.I.; McGaw, L.J.; Segapelo, T.V.; Finnie, J.F.; Van Staden, J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea Burch. ex DC. (Combretaceae)—A review. J. Ethnopharmacol. 2016, 194, 789–802. [Google Scholar] [CrossRef]
- Mashabane, L.G.; Wessels, D.C.J.; Potgieter, M.J. The utilisation of Colophospermum mopane by the Vatsonga in the Gazankulu region (eastern Northern Province, South Africa). S. Afr. J. Bot. 2001, 67, 199–205. [Google Scholar] [CrossRef]
- Aremu, A.O.; Finnie, J.F.; Van Staden, J. Potential of South African medicinal plants used as anthelmintics—Their efficacy, safety concerns and reappraisal of current screening methods. S. Afr. J. Bot. 2012, 82, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Moyo, B.; Masika, P.J.; Muchenje, V. Effects of supplementing cross-bred Xhosa lop eared goats with Moringa oleifera Lam. on helminth load and corresponding body condition score, packed cell volume. Afr. J. Agric. Res. 2013, 8, 5327–5335. [Google Scholar]
- Pedraza-Hernández, J.; Elghandour, M.M.M.Y.; Khusro, A.; Salem, M.Z.M.; Camacho-Diaz, L.M.; Barbabosa-Pliego, A.; Salem, A.Z.M. Assessment on bioactive role of Moringa oleifera leaves as anthelmintic agent and improved growth performance in goats. Trop. Anim. Health Prod. 2021, 53, 318. [Google Scholar] [CrossRef]
- Reis, A.; Joaquim, J. Drug Interaction With Milk and the Relevance of Acidifying/Alkalizing Nature of Food. Clin. Ther. 2015, 37, e67–e68. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Butterweck, V.; Nahrstedt, A. What is the best strategy for preclinical testing of botanicals? A critical perspective. Planta Med. 2012, 78, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wild, D.; Guha, R. PubChem as a source of polypharmacology. J. Chem. Inf. Model 2009, 49, 2044–2055. [Google Scholar] [CrossRef]
- Takenaka, T. Classical vs. reverse pharmacology in drug discovery. BJU Int. 2001, 88 (Suppl. S2), 7–10. [Google Scholar] [CrossRef]
- Heinrich, M. Ethnopharmacology in the 21st century—Grand challenges. Front. Pharmacol. 2010, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Aura, A.M.; OʼLeary, K.A.; Williamson, G.; Ojala, M.; Bailey, M.; Puupponen-Pimia, R.; Nuutila, A.M.; Oksman-Caldentey, K.M.; Poutanen, K. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J. Agric. Food Chem. 2002, 50, 1725–1730. [Google Scholar] [CrossRef]
- Blaut, M.; Schoefer, L.; Braune, A. Transformation of flavonoids by intestinal microorganisms. Int. J. Vitam. Nutr. Res. 2003, 73, 79–87. [Google Scholar] [CrossRef]
- Griffiths, L.A.; Smith, G.E. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem. J. 1972, 130, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Morand, C.; Manach, C.; Remesy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vuuren, S.; Viljoen, A. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Burfield, T.; Reekie, S.-L. Mosquitoes, malaria and essential oils. Int. J. Aromather. 2005, 15, 30–41. [Google Scholar] [CrossRef]
- Wagner, H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia 2011, 82, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Allescher, H.D. Multitarget therapy in functional dyspepsia. Phytomedicine 2006, 13 (Suppl. V), 1–130. [Google Scholar] [CrossRef]
- Partridge, F.A.; Bataille, C.J.R.; Forman, R.; Marriott, A.E.; Forde-Thomas, J.; Häberli, C.; Dinsdale, R.L.; O’Sullivan, J.D.B.; Willis, N.J.; Wynne, G.M.; et al. Structural Requirements for dihydrobenzoxazepinone anthelmintics: Actions against medically important and model parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni. ACS Infect. Dis. 2021, 7, 1260–1274. [Google Scholar] [CrossRef]
- Paraskeva, M.P.; van Vuuren, S.F.; van Zyl, R.L.; Davids, H.; Viljoen, A.M. The in vitro biological activity of selected South African Commiphora species. J. Ethnopharmacol. 2008, 119, 673–679. [Google Scholar] [CrossRef]
- Bromilow, C. Problem Plants and Alien Weeds of South Africa, 3rd ed.; Briza Publications: Pretoria, South Africa, 2010. [Google Scholar]
- Aderogba, M.A.; McGaw, L.J.; Bagla, V.P.; Eloff, J.N.; Abegaz, B.M. In vitro antifungal activity of the acetone extract and two isolated compounds from the weed, Pseudognaphalium luteoalbum. S. Afr. J. Bot. 2014, 94, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Wittstock, U.; Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 2002, 5, 300–307. [Google Scholar] [CrossRef]
- Mdee, L.K.; Masoko, P.; Eloff, J.N. The activity of extracts of seven common invasive plant species on fungal phytopathogens. S. Afr. J. Bot. 2009, 75, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Mahfuz, S.; Piao, X.S. Application of Moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Okatch, H.; Ngwenya, B.; Raletamo, K.M.; Andrae-Marobela, K. Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana. Anal. Chim. Acta 2012, 730, 42–48. [Google Scholar] [CrossRef]
- Green, E.; Samie, A.; Obi, C.L.; Bessong, P.O.; Ndip, R.N. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis. J. Ethnopharmacol. 2010, 130, 151–157. [Google Scholar] [CrossRef]
- More, G.; Tshikalange, T.E.; Lall, N.; Botha, F.; Meyer, J.J.M. Antimicrobial activity of medicinal plants against oral microorganisms. J. Ethnopharmacol. 2008, 119, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Prozesky, E.A.; Meyer, J.J.M.; Louw, A.I. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected South African plants. J. Ethnopharmacol. 2001, 76, 239–245. [Google Scholar] [CrossRef]
- Selogatwe, K.M.; Asong, J.A.; Struwig, M.; Ndou, R.V.; Aremu, A.O. A review of ethnoveterinary knowledge, biological activities and secondary metabolites of medicinal woody plants used for managing animal health in South Africa. Vet. Sci. 2021, 8, 228. [Google Scholar] [CrossRef]
- Wintola, O.A.; Afolayan, A.J. An inventory of indigenous plants used as anthelmintics in Amathole district municipality of the Eastern Cape province, South Africa. Afr. J Tradit. Complement. Altern. Med. 2015, 12, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Mukandiwa, L.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Extracts of four plant species used traditionally to treat myiasis influence pupation rate, pupal mass and adult blowfly emergence of Lucilia cuprina and Chrysomya marginalis (Diptera: Calliphoridae). J. Ethnopharmacol. 2012, 143, 812–818. [Google Scholar] [CrossRef]
- Maroyi, A. Boscia albitrunca: Review of its botany, medicinal uses, phytochemistry, and biological activities. Asian J. Pharm. Clin. Res. 2019, 12, 51–56. [Google Scholar] [CrossRef]
- Pendota, S.C.; Aderogba, M.A.; Van Staden, J. In vitro antimicrobial activity of extracts and an isolated compound from Boscia albitrunca leaves. S. Afr. J. Bot. 2015, 96, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Tshikalange, T.E.; Modishane, D.C.; Tabit, F.T. Antimicrobial, antioxidant, and cytotoxicity properties of selected wild edible fruits of traditional medicinal plants. J. Herbs Spices Med. Plants 2017, 23, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; De Mieri, M.; Neuburger, M.; Zietsman, P.C.; Marston, A.; Van Vuuren, S.F.; Ferreira, D.; Hamburger, M.; Van der Westhuizen, J.H. Labdane and clerodane diterpenoids from Colophospermum mopane. J. Nat. Prod. 2015, 78, 2494–2504. [Google Scholar] [CrossRef] [PubMed]
- Syakalima, M.; Simuunza, M.; Zulu, V.C. Ethnoveterinary treatments for common cattle diseases in four districts of the Southern Province, Zambia. Vet. World 2018, 11, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Angeh, J.E.; Huang, X.; Sattler, I.; Swan, G.E.; Dahse, H.; Härtl, A.; Eloff, J.N. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae). J. Ethnopharmacol. 2007, 110, 56–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinsembu, K.C. Ethnobotanical study of medicinal flora utilised by traditional healers in the management of sexually transmitted infections in Sesheke District, Western Province, Zambia. Rev. Bras. Farmacogn. 2016, 26, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Chinsembu, K.C.; Negumbo, J.; Likando, M.; Mbangu, A. An ethnobotanical study of medicinal plants used to treat livestock diseases in Onayena and Katima Mulilo, Namibia. S. Afr. J. Bot. 2014, 94, 101–107. [Google Scholar] [CrossRef] [Green Version]
- McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jäger, A.K.; Eloff, J.N.; van Staden, J. An investigation on the biological activity of Combretum species. J. Ethnopharmacol. 2001, 75, 45–50. [Google Scholar] [CrossRef]
- Katerere, D.R.; Gray, A.I.; Nash, R.J.; Waigh, R.D. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 2003, 63, 81–88. [Google Scholar] [CrossRef]
- Available online: https://austria-forum.org/af/Geography/Africa/Botswana/Maps/Botswana (accessed on 7 March 2022).
- Creswell, J.W.; Clarke, V.L.P. Designing and Conducting Mixed Method Research, 2nd ed.; SAGE: London, UK, 2011. [Google Scholar]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 2nd ed.; SAGE: London, UK, 2003. [Google Scholar]
- Ngwenya, B.N.; Thakadu, O.T.; Magole, L.; Chimbari, M.J. Memories of environmental change and local adaptations among molapo farming communities in the Okavango Delta, Botswana—A gender perspective. Acta Trop. 2017, 175, 31–41. [Google Scholar] [CrossRef]
- Andrae-Marobela, K.; Ngwenya, B.N.; Monyatsi, K.N.; Okatch, H.; Masizana, A.; Muzila, M. Documentation and promotion of indigenous knowledge-based solutions for Botswana—An ethnosurvey, CESRIKI Research Report. In Gaborone: Center for Scientific Research, Indigenous Knowledge and Innovation; University of Botswana: Gaborone, Botswana, 2010. [Google Scholar]
- Fetterman, D.M. Ethnography: Step by Step; Sage Publications: California, CA, USA, 1989. [Google Scholar]
- Bernard, H.R. Research Methods in Anthropology—Qualitative and Quantitative Approaches, 6th ed.; The Rowmann and Littlefield Publishing Group: Lanham, MD, USA, 2018. [Google Scholar]
- Coates Palgrave, K. Trees of Southern Africa, 3rd ed.; Struik Publishers: Capetown, South Africa, 1983; pp. 24–73, 214–286. [Google Scholar]
- Ellery, K.; Ellery, W. Plants of the Okavango Delta: A Field Guide; Tsaro Publishers: Durban, South Africa, 1997; pp. 34–49. [Google Scholar]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Pasche, V.; Panic, G.; Endriss, Y.; Keiser, J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. Nat. Protoc. 2019, 14, 461–481. [Google Scholar] [CrossRef]
- Keiser, J.; Haeberli, C. Evaluation of commercially available anthelmintics in laboratory models of human intestinal nematode infections. ACS Infect. Dis. 2021, 7, 1177–1185. [Google Scholar] [CrossRef]
- Dube, M.; Saoud, M.; Rennert, R.; Fotso, G.W.; Andrae-Marobela, K.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N. Anthelmintic Activity and Cytotoxic Effects of Compounds Isolated from the Fruits of Ozoroa insignis Del. (Anacardiaceae). Biomolecules 2021, 11, 1893. [Google Scholar] [CrossRef]
- Garcia, L.S.; Bruckner, D.A. Diagnostic Medical Parasitology, 3rd ed.; ASM Press: Washington, DC, USA, 1997. [Google Scholar]
Plant Species/Voucher Numbers | Plant Family | Local Name | Plant Part | Location | Preparation and Dosage | Supporting Literature |
---|---|---|---|---|---|---|
Aloe ferox Mill. (MDU/SEP-1/2019) | Xanthorrhoeaceae | - | Leaves | Maun | Pierce the leaves to extract the juice and infuse in cold or warm water. Take one cup twice a day after food. | In vitro anthelmintic activity against H. contortus and in vivo anthelmintic activity against Heterakis gallinarum [26,27,28] |
Aloe zebrina Baker (MDU/SEP-2/2019) | Xanthorrhoeaceae | Ghopha | Leaves | Maun | Cut the leaves and infuse in water. Drink one cup two or three times a day. | The leaf extract is used against parasites and the root extract is used to treat bilharziosis (schistosomiasis) [29] |
Terminalia sericea Burch. ex DC. (MDU/SEP-3/2019) | Combretaceae | Mogonono | Roots | Maun | Boil the roots and drink the water extract 3 times a day. | Roots are used to treat bilharzia (schistosomiasis) [30] |
Colophospermum mopane (Benth.) Leonard (MDU/SEP-4/2019) | Leguminosae | Mophane | Seeds | Maun | Grind to a powder and put one tablespoon in a cup of hot water. Drink one cup three times a day. | Used in traditional medicine for the treatment of tapeworms [31] |
Boscia albitrunca (Burch.) Gilg & Benedict (MDU/SEP-5/2019) | Capparaceae | Motopi | Leaves | Maun | Infuse one tablespoon of leaf powder in a warm cup of milk. Drink three times a day. | No reports |
Combretum imberbe Wawra (MDU/SEP-6/2019) | Combretaceae | Motswere | Leaves | Maun | Boil the leaves and drink one cup of warm water extract three times a day. | Has shown in vitro biological activity against Schistosoma haematobium [32] |
Commiphora pyracanthoides Engl. (MDU/SEP-7/2019) | Burseraceae | Moroka | Stem bark | Maun | Boil the bark and drink one cup two times a day. | No reports |
Solanum panduriforme E. Mey. (MDU/SEP-8/2019) | Solanaceae | Tholwatholwane | Fruit | Maun | Mix the inner pulp of the fruit with milk. Three fruit pulps are mixed with one cup of milk. Drink the infused milk once a day. | Used in the treatment of tapeworm in conjunction with the roots of Pseudeminia benguellensis [29] |
Laphangium luteoalbum (L.) Tzvelev (MDU/TIR-9/2019) | Compositae | Mookojane | Leaves | Sehithwa | Boil the roots and drink the water extract three times a day. After drinking the root extract, drink one cup of the boiled leaf extract at the end of the day. | No reports |
Laphangium luteoalbum (L.) Tzvelev (MDU/TIR-10/2019) | Compositae | Mookojane | Roots | Sehithwa | No reports | |
Moringa oleifera Lam. (MDU/TIR-11/2019) | Moringaceae | Moringa | Leaves | Sehithwa | Boil the leaves and drink two cups of the water extract twice a day. | Anthelmintic activity against H. contortus, Trichostrongylus colubriforms, Oesophagastum columbianum, Trichuris sp. and Ostertagia sp. [33,34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dube, M.; Raphane, B.; Sethebe, B.; Seputhe, N.; Tiroyakgosi, T.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N.; Andrae-Marobela, K. Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities. Plants 2022, 11, 2945. https://doi.org/10.3390/plants11212945
Dube M, Raphane B, Sethebe B, Seputhe N, Tiroyakgosi T, Imming P, Häberli C, Keiser J, Arnold N, Andrae-Marobela K. Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities. Plants. 2022; 11(21):2945. https://doi.org/10.3390/plants11212945
Chicago/Turabian StyleDube, Mthandazo, Boingotlo Raphane, Bongani Sethebe, Nkaelang Seputhe, Tsholofelo Tiroyakgosi, Peter Imming, Cécile Häberli, Jennifer Keiser, Norbert Arnold, and Kerstin Andrae-Marobela. 2022. "Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities" Plants 11, no. 21: 2945. https://doi.org/10.3390/plants11212945
APA StyleDube, M., Raphane, B., Sethebe, B., Seputhe, N., Tiroyakgosi, T., Imming, P., Häberli, C., Keiser, J., Arnold, N., & Andrae-Marobela, K. (2022). Medicinal Plant Preparations Administered by Botswana Traditional Health Practitioners for Treatment of Worm Infections Show Anthelmintic Activities. Plants, 11(21), 2945. https://doi.org/10.3390/plants11212945